NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Latent Dirichlet Analysis of Categorical Survey Expectations

Evan M. Munro, Serena Ng

NBER Working Paper No. 27182
Issued in May 2020
NBER Program(s):Economic Fluctuations and Growth, Monetary Economics

Beliefs are important determinants of an individual's choices and economic outcomes, so understanding how they differ across individuals is of considerable interest. Researchers often rely on surveys that report individual expectations as qualitative data. We propose using a Bayesian hierarchical latent class model to summarize and interpret observed heterogeneity in categorical expectations data. We show that the statistical model corresponds to an economic structural model of information acquisition, which guides interpretation and estimation of the model parameters. An algorithm based on stochastic optimization is proposed to estimate a model for repeated surveys when beliefs follow a dynamic structure and conjugate priors are not appropriate. Guidance on selecting the number of belief types is also provided. Two examples are considered. The first shows that there is information in the Michigan survey responses beyond the consumer sentiment index that is officially published. The second shows that belief types constructed from survey responses can be used in a subsequent analysis to estimate heterogeneous returns to education.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w27182

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us