NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Bayesian Adaptive Clinical Trials for Anti-Infective Therapeutics during Epidemic Outbreaks

Shomesh Chaudhuri, Andrew W. Lo, Danying Xiao, Qingyang Xu

NBER Working Paper No. 27175
Issued in May 2020
NBER Program(s):Asset Pricing, Health Care, Health Economics

In the midst of epidemics such as COVID-19, therapeutic candidates are unlikely to be able to complete the usual multiyear clinical trial and regulatory approval process within the course of an outbreak. We apply a Bayesian adaptive patient-centered model—which minimizes the expected harm of false positives and false negatives—to optimize the clinical trial development path during such outbreaks. When the epidemic is more infectious and fatal, the Bayesian-optimal sample size in the clinical trial is lower and the optimal statistical significance level is higher. For COVID-19 (assuming a static R0 – 2 and initial infection percentage of 0.1%), the optimal significance level is 7.1% for a clinical trial of a nonvaccine anti-infective therapeutic and 13.6% for that of a vaccine. For a dynamic R0 decreasing from 3 to 1.5, the corresponding values are 14.4% and 26.4%, respectively. Our results illustrate the importance of adapting the clinical trial design and the regulatory approval process to the specific parameters and stage of the epidemic.

download in pdf format
   (661 K)

email paper

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w27175

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us