NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Partial Identification and Inference for Dynamic Models and Counterfactuals

Myrto Kalouptsidi, Yuichi Kitamura, Lucas Lima, Eduardo A. Souza-Rodrigues

NBER Working Paper No. 26761
Issued in February 2020
NBER Program(s):Industrial Organization, International Trade and Investment

We provide a general framework for investigating partial identification of structural dynamic discrete choice models and their counterfactuals, along with uniformly valid inference procedures. In doing so, we derive sharp bounds for the model parameters, counterfactual behavior, and low-dimensional outcomes of interest, such as the average welfare effects of hypothetical policy interventions. We char- acterize the properties of the sets analytically and show that when the target outcome of interest is a scalar, its identified set is an interval whose endpoints can be calculated by solving well-behaved constrained optimization problems via standard algorithms. We obtain a uniformly valid inference pro- cedure by an appropriate application of subsampling. To illustrate the performance and computational feasibility of the method, we consider both a Monte Carlo study of firm entry/exit, and an empirical model of export decisions applied to plant-level data from Colombian manufacturing industries. In these applications, we demonstrate how the identified sets shrink as we incorporate alternative model restrictions, providing intuition regarding the source and strength of identification.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w26761

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us