How and When to Use the Political Cycle to Identify Advertising Effects

Sarah Moshary, Bradley T. Shapiro, Jihong Song

NBER Working Paper No. 27349
Issued in June 2020
NBER Program(s):Industrial Organization, Political Economy

A central challenge in estimating the causal effect of TV advertising on demand is isolating quasi-random variation in advertising. Political advertising, which topped $14 billion in expenditures in 2016, has been proposed as a plausible source of such variation and thus a candidate for an instrumental variable. We provide a critical evaluation of how and where this instrument is valid and useful across categories. We characterize the conditions under which political cycles theoretically identify the causal effect of TV advertising on demand, highlight threats to the exclusion restriction and monotonicity condition, and suggest a specification to address the most serious concerns. We test the strength of the first stage category-by-category for 274 product categories. For most categories, weak-instrument robust inference is recommended, as first-stage F-statistics are less than 10 for 221 of 274 product categories in our benchmark specification. The largest first-stage F-statistics occur in categories that typically advertise locally, such as automobile dealerships and restaurants. Failure to use the suggested specification leads to results that suggest violations of exclusion and monotonicity in a significant number of categories. Finally, we conduct a case study of the auto industry. Despite a very strong first stage, the IV estimate for this category is imprecise.

You may purchase this paper on-line in .pdf format from ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.


Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w27349

NBER Videos

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email:

Contact Us