NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Text Selection

Bryan T. Kelly, Asaf Manela, Alan Moreira

NBER Working Paper No. 26517
Issued in November 2019
NBER Program(s):Asset Pricing Program

Text data is ultra-high dimensional, which makes machine learning techniques indispensable for textual analysis. Text is often selected—journalists, speechwriters, and others craft messages to target their audiences’ limited attention. We develop an economically motivated high dimensional selection model that improves learning from text (and from sparse counts data more generally). Our model is especially useful when the choice to include a phrase is more interesting than the choice of how frequently to repeat it. It allows for parallel estimation, making it computationally scalable. A first application revisits the partisanship of US congressional speech. We find that earlier spikes in partisanship manifested in increased repetition of different phrases, whereas the upward trend starting in the 1990s is due to entirely distinct phrase selection. Additional applications show how our model can backcast, nowcast, and forecast macroeconomic indicators using newspaper text, and that it substantially improves out-of-sample fit relative to alternative approaches.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w26517

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us