NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

The Efficient Deployment of Police Resources: Theory and New Evidence from a Randomized Drunk Driving Crackdown in India

Abhijit Banerjee, Esther Duflo, Daniel Keniston, Nina Singh

NBER Working Paper No. 26224
Issued in September 2019
NBER Program(s):Development Economics Program

Should police activity be narrowly focused and high force, or widely-dispersed but of moderate intensity? Critics of intense “hot spot” policing argue it primarily displaces, not reduces, crime. But if learning about enforcement takes time, the police may take advantage of this period to intervene intensively in the most productive location. We propose a multi-armed bandit model of criminal learning and structurally estimate its parameters using data from a randomized controlled experiment on an anti-drunken driving campaign in Rajasthan, India. In each police station, sobriety checkpoints were either rotated among 3 locations or fixed in the best location, and the intensity of the crackdown was cross-randomized. Rotating checkpoints reduced night accidents by 17%, and night deaths by 25%, while fixed checkpoints had no significant effects. In structural estimation, we show clear evidence of driver learning and strategic responses. We use these parameters to simulate environment-specific optimal enforcement policies.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w26224

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us