NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Local Polynomial Order in Regression Discontinuity Designs

Zhuan Pei, David S. Lee, David Card, Andrea Weber

NBER Working Paper No. 27424
Issued in June 2020
NBER Program(s):Economics of Education, Labor Studies

Treatment effect estimates in regression discontinuity (RD) designs are often sensitive to the choice of bandwidth and polynomial order, the two important ingredients of widely used local regression methods. While Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014) provide guidance on bandwidth, the sensitivity to polynomial order still poses a conundrum to RD practitioners. It is understood in the econometric literature that applying the argument of bias reduction does not help resolve this conundrum, since it would always lead to preferring higher orders. We therefore extend the frameworks of Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014) and use the asymptotic mean squared error of the local regression RD estimator as the criterion to guide polynomial order selection. We show in Monte Carlo simulations that the proposed order selection procedure performs well, particularly in large sample sizes typically found in empirical RD applications. This procedure extends easily to fuzzy regression discontinuity and regression kink designs.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w27424

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us