NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Combining Family History and Machine Learning to Link Historical Records

Joseph Price, Kasey Buckles, Jacob Van Leeuwen, Isaac Riley

NBER Working Paper No. 26227
Issued in September 2019
NBER Program(s):The Program on Children, The Program on the Development of the American Economy, The Labor Studies Program, The Public Economics Program

A key challenge for research on many questions in the social sciences is that it is difficult to link historical records in a way that allows investigators to observe people at different points in their life or across generations. In this paper, we develop a new approach that relies on millions of record links created by individual contributors to a large, public, wiki-style family tree. First, we use these “true” links to inform the decisions one needs to make when using traditional linking methods. Second, we use the links to construct a training data set for use in supervised machine learning methods. We describe the procedure we use and illustrate the potential of our approach by linking individuals across the 100% samples of the US decennial censuses from 1900, 1910, and 1920. We obtain an overall match rate of about 70 percent, with a false positive rate of about 12 percent. This combination of high match rate and accuracy represents a point beyond the current frontier for record linking methods.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w26227

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us