NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Identification of a Class of Health-Outcome Distributions under a Common Form of Partial Data Observability

John Mullahy

NBER Working Paper No. 26011
Issued in June 2019
NBER Program(s):Health Care, Health Economics

This paper suggests analytical strategies for obtaining informative parameter bounds when multivariate health-outcome data are partially observed in a particular yet common manner. One familiar context is where M>1 health outcomes' respective totals across N>1 time periods are observed but where questions of interest involve features—probabilities, moments, etc.—of their unobserved joint distribution at each of the N time periods. For instance, one might wish to understand the distribution of any type of unhealthy day experienced over a month but have access only to the separate totals of physically unhealthy and mentally unhealthy days that are experienced. After demonstrating methods to bound, or partially identify, such distributions and related parameters under several sampling assumptions, the paper proceeds to derive bounds on partial effects involving exogenous covariates. These results are applied in three empirical exercises. Whether the proposed bounds prove to be sufficiently narrow to usefully inform decisionmakers can only be determined in context, although it is suggested in the paper's conclusion that the issues considered in this paper are likely to become increasingly important for analysts.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w26011

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us