Nonparametric Identification and Estimation of Nonadditive Hedonic Models
This paper studies the identification and estimation of preferences and technologies in equilibrium hedonic models. In it, we identify nonparametric structural relationships with nonadditive heterogeneity. We determine what features of hedonic models can be identified from equilibrium observations in a single market under weak assumptions about the available information. We then consider use of additional information about structural functions and heterogeneity distributions. Separability conditions facilitate identification of consumer marginal utility and firm marginal product functions. We also consider how identification is facilitated using multimarket data.
Published Versions
James J. Heckman & Rosa L. Matzkin & Lars Nesheim, 2010. "Nonparametric Identification and Estimation of Nonadditive Hedonic Models," Econometrica, Econometric Society, vol. 78(5), pages 1569-1591, 09. citation courtesy of