Ş. Pelin Akyol

Bilkent University
Department of Economics
06800 Ankara / TURKEY

Institutional Affiliation: Bilkent University

NBER Working Papers and Publications

August 2018Taking PISA Seriously: How Accurate are Low Stakes Exams?
with Kala Krishna, Jinwen Wang: w24930
PISA is seen as the gold standard for evaluating educational outcomes worldwide. Yet, being a low-stakes exam, students may not take it seriously resulting in downward biased scores and inaccurate rankings. This paper provides a method to identify and account for non-serious behavior in low-stakes exams by leveraging information in computer-based assessments in PISA 2015. We compare the score/rankings with no corrections to those generated using the PISA approach as well as our method which fully corrects for the bias. We show that the total bias is large and that the PISA approach corrects for only about half of it.
July 2016Hit or Miss? Test Taking Behavior in Multiple Choice Exams
with James Key, Kala Krishna: w22401
We model and estimate the decision to answer questions in multiple choice tests with negative marking. Our focus is on the trade-off between precision and fairness. Negative marking reduces guessing, thereby increasing accuracy considerably. However, it reduces the expected score of the more risk averse, discriminating against them. Using data from the Turkish University Entrance Exam, we find that students' attitudes towards risk differ according to their gender and ability. Women and those with high ability are significantly more risk averse: nevertheless, the impact on scores of such differences is small, making a case for negative marking.
March 2014Preferences, Selection, and Value Added: A Structural Approach
with Kala Krishna: w20013
This paper investigates two main questions: i) What do applicants take into consideration when choosing a high school? ii) To what extent do schools contribute to their students' academic success? To answer these questions, we model students' preferences and derive demand for each school by taking each student's feasible set of schools into account. We obtain average valuation placed on each school from market clearing conditions. Next, we investigate what drives these valuations by carefully controlling for endogeneity using a set of creative instruments suggested by our model. Finally, controlling for mean reversion bias, we look at each school's value-added. We find that students infer the quality of a school from its selectivity and past performance on the university entrance exam. Ho...

Published: Şaziye Pelin Akyol & Kala Krishna, 2016. "Preferences, Selection, and Value Added: A Structural Approach," European Economic Review, . citation courtesy of

NBER Videos

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email:

Contact Us