A New Control Function Approach for Non-Parametric Regressions with Endogenous Variables

Kyoo il Kim, Amil Petrin

NBER Working Paper No. 16679
Issued in January 2011
NBER Program(s):   TWP

When the endogenous variable enters the structural equation non-parametrically the linear Instrumental Variable (IV) estimator is no longer consistent. Non-parametric IV (NPIV) can be used but it requires one to impose restrictions during estimation to make the problem well-posed. The non-parametric control function estimator of Newey, Powell, and Vella (1999) (NPV-CF) is an alternative approach that uses the residuals from the conditional mean decomposition of the endogenous variable as controls in the structural equation. While computationally simple identification relies upon independence between the instruments and the expected value of the structural error conditional on the controls, which is hard to motivate in many economic settings including estimation of returns to education, production functions, and demand or supply elasticities. We develop an estimator for non-linear and non-parametric regressions that maintains the simplicity of the NPV-CF estimator but allows the conditional expectation of the structural error to depend on both the control variables and the instruments. Our approach combines the conditional moment restrictions (CMRs) from NPIV with the controls from NPV-CF setting. We show that the CMRs place shape restrictions on the conditional expectation of the error given instruments and controls that are sufficient for identification. When sieves are used to approximate both the structural function and the control function our estimator reduces to a series of Least Squares regressions. Our monte carlos are based on the economic settings suggested above and illustrate that our new estimator performs well when the NPV-CF estimator is biased. Our empirical example replicates NPV-CF and we reject the maintained assumption of the independence of the instruments and the expected value of the structural error conditional on the controls in their setting.

download in pdf format
   (378 K)

email paper

This paper was revised on April 26, 2013

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w16679

Users who downloaded this paper also downloaded these:
Florens, Heckman, Meghir, and Vytlacil w14002 Identification of Treatment Effects Using Control Functions in Models with Continuous, Endogenous Treatment and Heterogeneous Effects
Lochner and Moretti w17039 Estimating and Testing Models with Many Treatment Levels and Limited Instruments
Gandhi, Kim, and Petrin w16894 Identification and Estimation in Discrete Choice Demand Models when Endogenous Variables Interact with the Error
Morck and Yeung w16678 Economics, History, and Causation
Li and Whalley w16686 Rebalancing and the Chinese VAT: Some Numerical Simulation Results
NBER Videos

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email:

Contact Us