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1 Introduction

The problem of endogenous regressors in simultaneous equations models has a long history
in econometrics and empirical studies. In models with additively separable errors researchers
have used both the instrumental variable (IV) approach and the classical control function
(CF) approach to correct for the bias induced by the correlation between the error and the
regressor(s).1 While both approaches yield consistent estimates if their assumptions hold,
they differ in exactly the assumptions they maintain. In addition, both the IV and CF’s
maintained assumptions vary depending upon whether the model is linear, nonlinear,2 or
non-parametric in the regressors (see the review in Blundell and Powell (2003)).

We start this paper by developing new results on the relationship between the IV and CF
estimators. We start with the base case, where the principal equation of interest is linear in
regressors. We call this equation the structural equation. For identification both estimators
require sufficient exclusion restrictions (or order conditions) and their associated moment
conditions. The classic CF estimator further imposes that the first moment of the error
in the structural equation cannot depend in any way on exogenous variables, conditional
on the standard CF control (i.e. the mean projection residual obtained from regressing
the endogenous variable on the instruments). Since it is well known that the two stage
least squares estimator (2SLS) and the classic CF estimator are numerically identical, the
question arises as to whether this latter assumption is necessary for consistency of the CF
estimator. We show that it is not - as it could not be given the equivalence result - although
the estimated control function is no longer consistent for the expected value of the error
conditional on the control and exogenous variables.3 Furthermore, the classic CF estimator
can be generalized to allow the expected value of the error to depend on both the classic CF
control and other exogenous variables by adding the moment restrictions used by 2SLS for
identification. In this case, 2SLS and the generalized CF estimator are no longer numerically
equivalent, although they are both consistent.

We then turn to the non-linear and the non-parametric setting. We show how to use our
insights from the linear case to develop a new and simple multi-step least squares estimator
for non-linear and non-parametric models. This new estimator combines the strengths of

1 For the classic control function approach see, for example, Telser (1964), Hausman (1978), or Heckman

(1978).

2We use “nonlinear model” to refer to a regression model that is nonlinear in regressors but linear in
parameters.

3In the classic CF case this is typically viewed as a nuisance parameter, although sometimes it is used to
test for endogeneity. The IV estimator does not estimate the expected value of the error.
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both the non-parametric 2SLS (NP2SLS) estimator of Newey and Powell (2003) and the
non-parametric CF (NPVCF) estimator of Newey, Powell, and Vella (1999) while avoiding a
weakness of each of these approaches. Specifically, while we utilize the same assumptions for
identification from Newey and Powell (2003) (a conditional mean restriction and a sufficient
order condition, (e.g.) a completeness condition), by adding a “generalized CF” moment
condition we get an estimator that does not suffer from the ill-posed inverse problem faced
by the NP2SLS estimator and the associated complications that arise.4 Our new estimator
also does not require the NPVCF condition that the expected value of the error in the
structural equation must not depend on exogenous variables. After developing convergence
rates for our estimators and consistent estimators for the standard errors of our multi-step
estimator, we then provide several monte carlos that illustrate the ease of implementing
our estimator. The monte carlos also show that our estimator remains consistent when the
NPVCF condition previously noted does not hold, while the NPVCF becomes inconsistent,
as theory suggests it would.

The paper proceeds as follows. In the next section we consider the linear additive model.
Section 3 uses the results from Section 2 to formulate our new estimator for the non-linear or
non-parametric setting. Section 4 discusses identification and Section 5 develops the details
of our estimator. Section 6 addresses convergence rates and Section 7 provides conditions
under which asymptotic normality holds for several structural objects often of interest Section
8 provides monte carlos and Section 9 concludes.

2 The Linear Setting with Additive Errors

Our first set of results will relate the IV and CF estimators in the base case, the linear
setting with separable errors. We start by reviewing the 2SLS estimator and the classic
control function estimator for the linear simultaneous equations model in mean-deviated
form,

yi = xiβ0 + εi, (1)

with yi the dependent variable and xi a scalar explanatory variable that is potentially corre-
lated with εi, so E[xiεi] 6= 0 (and E[yi] = 0 and E[xi] = 0). We let zi denote an instrument
vector satisfying

E[zi εi] = 0, E[zi xi] 6= 0, (2)
4 These complications include the question of existence of a unique solution and the difficulties associated

with computation and estimation.
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(and E[zi] = 0). β̂2SLS, the 2SLS estimator for β0, is calculated by first projecting xi on
the instruments zi to recover the predicted values of xi given zi, which we denote x̂i. yi is
then regressed on x̂i to get β̂2SLS. β̂CF , the control function estimator, is also calculated
in two steps, with the first step projecting xi off of the instruments zi to recover the mean
projection residual v̂i = xi− x̂i. The second step regresses yi on xi and v̂i, with the coefficient
on xi from this regression the estimator for β̂CF .

It is well known that these two approaches yield numerically identical estimates. We
provide a simple proof using projection that shows why they are equivalent. Let Y =

(y1, . . . , yn)′, X = (x1, . . . , xn)′, Z = (z1, . . . , zn)′, X̂ = (x̂1, . . . , x̂n)′, and V̂ = (v̂1, . . . , v̂n)′.
Theorem 1 (2SLS-CF Numerical Equivalence). If

β̂2SLS = (X̂ ′X̂)−1X̂ ′Y and

(β̂CF , ρ̂CF ) = ((X, V̂ )′(X, V̂ ))−1(X, V̂ )′Y

are well-defined and exist, then β̂2SLS= β̂CF .

Proof. From projection theory the same numerical estimate obtains for the coefficient on
xi from either regressing Y on (X, V̂ ) or regressing Y on the projection of X off of V̂ . Nu-
merical equivalence follows because the projection of X off of V̂ is equal to X̂ because
(I − V̂ (V̂ ′V̂ )−1V̂ ′)X = (I − V̂ (V̂ ′V̂ )−1V̂ ′)(X̂ + V̂ ) = X̂, as V̂ ′X̂ = 0 by projection.

While the proof is helpful for understanding the numerical equivalence of these two
approaches, it masks the fact that the control function estimator places a different restriction
on the data generating process relative to 2SLS. We recast the two estimators in terms of
the conditional expectations they use to illustrate this difference.

In the first step of 2SLS an estimate of E[xi|zi] is constructed using projection, and in
the second stage the dependent variable yi is regressed on the estimate of E[xi|zi] to obtain
β̂2SLS. Even though this new regressor measures xi with error, the error is by construction
uncorrelated with the new regressor x̂i leading 2SLS to be consistent.

Defining vi = xi − E[xi|zi], the spirit of the classic CF estimator is to regress yi on
E[xi|zi, vi] = E[xi|zi, xi] = xi and E[εi|zi, vi] (orE[εi|zi, xi]), where conditioning the error on
(zi, vi) controls for its correlation with xi, leaving the remaining variation in xi exogenous.
In implementation the classic CF approach estimates the following equation:

yi = xiβ + ρvi + ηi, (3)

replacing vi with v̂i, thus imposing
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(CF Restriction) E[εi|zi, xi] = E[εi|zi, vi] = E[εi|vi], (4)

and we refer to this as the classic CF restriction (relative to 2SLS).5 The first equality requires
that vi be chosen such that, conditional on it and zi, xi is known, which is satisfied by the
way vi is defined. The second equality insists that the mean of εi does not depend on the
instruments zi conditional on the control vi, a restriction that 2SLS does not impose. Our
first main result of interest arises from this apparent “puzzle”; β̂2SLS= β̂CF , but the classic
CF approach maintains a different stochastic assumption on εi relative to 2SLS that could
easily be violated.

We resolve this puzzle in two steps. We start by considering an (unrestricted) general
specification for the conditional expectation of the error

E[εi|zi, vi] ≡ h(zi, vi) = ρ̃vi + h̃(zi, vi),

with the function characterizing E[εi|zi, vi] having a leading term in vi and a remaining term
denoted by the function h̃(zi, vi). We first show that the instruments are uncorrelated with
h̃(zi, vi) when E[zi εi] = 0 and vi is constructed as the classic control function variable.

Theorem 2. If E[zi εi] = 0 and vi is such that E[vi|zi] = 0 then E[zi h̃(zi, vi)] = 0.

Proof. Using the law of iterated expectations we have

0 = E[zi εi] = E[ziE[E[εi|zi, vi]|zi] ] = E[zi(ρ̃E[vi|zi] + E[h̃(zi, vi)|zi])] (5)

= E[ziE[h̃(zi, vi)|zi]] = E[zi h̃(zi, vi)].

We then consider the generalization of equation (3), with

Y = Xβ0 + ρ̃V̂ + H̃(Z, V̂ ) + η̂ (6)

where H̃(Z, V̂ ) = (h̃(z1, v̂1), . . . , h̃(zn, v̂n))′ and V̂ = X − Zπ̂, the vector of controls, which
are the ordinary least squares residuals from the regression of X on Z, and η̂ is the residual
after the estimated vector of controls are included. We can rewrite (6) as

Y = (Zπ̂ + V̂ )β0 + ρ̃V̂ + H̃(Z, V̂ ) + η̂. (7)
5

From (3) it is also clear that in the implementation the classic CF approach further assumes E[εi|vi] = ρvi.
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Define MV̂ = I − V̂ (V̂ ′V̂ )−1V̂ ′, the matrix that projects off of V̂ , and note that MV̂ V̂ = 0

and MV̂Z = Z (because V̂ ′Z = 0). Then by partitioned regression theory, estimation of β0

in (7) is numerically equivalent to the estimation of

Y = MV̂ (Zπ̂ + V̂ )β0 +MV̂ H̃(Z, V̂ ) +MV̂ η̂

= Zπ̂β +MV̂ H̃(Z, V̂ ) +MV̂ η̂.

If MV̂ H̃(Z, V̂ ) is asymptotically uncorrelated with Zπ̂, i.e., if Z ′MV̂ H̃(Z, V̂ )/n converges
to zero as the sample size goes to infinity, then the least squares estimator of β0 in (6) is
consistent whether or not we include H̃(Z, V̂ ) in the regression as long as V̂ is included as
a regressor in (6).

Theorem 3 couples (2) with weak regularity conditions which are sufficient for Z ′MV̂ H̃(Z, V̂ )/n

to converge to zero.

Theorem 3. Assume (i) E[‖zi‖ · ||h̃(zi, vi)||] <∞, (ii) h̃(z, v) is differentiable with respect
to v, (iii) for vi(π) ≡ xi − z′iπ, assume supπ∗∈Π0

E[‖zi‖2
∥∥∥∂h̃(zi,vi(π

∗))
∂vi

∥∥∥] < ∞ for Π0 some

neighborhood of π0, (iv) assume E[‖zi‖2
∥∥∥∂h̃(zi,vi(π))

∂vi

∥∥∥] is continuous at π = π0, and (v) π̂ →p

π0. If (2) holds then Z ′MV̂ H̃(Z, V̂ )/n→ 0 as n→∞.

Proof. We can reexpress as

Z ′MV̂ H̃(Z, V̂ )/n = Z ′(I − V̂ (V̂ ′V̂ )−1V̂ ′)H̃(Z, V̂ )/n = Z ′H̃(Z, V̂ )/n =
∑n

i=1
zih̃(zi, v̂i)/n

because Z ′V̂ = 0. Write
∑n

i=1 zih̃(zi, v̂i)/n =
∑n

i=1 zih̃(zi, vi)/n+
∑n

i=1 zi(h̃(zi, v̂i)−h̃(zi, vi))/n.
We have

∑n
i=1 zih̃(zi, vi)/n →p E[zih̃(zi, vi)] by the law of large numbers under (i). Obtain

||
∑n

i=1 zi(h̃(zi, v̂i) − h̃(zi, vi))/n|| ≤ ‖π̂∗ − π0‖
∑n

i=1 ‖zi‖
2 ||∂h̃(zi,vi(π̂

∗))
∂vi

||/n by applying the
mean-value expansion, where π̂∗ lies between π̂ and π0 and vi(π) = xi − z′iπ. Then the term∑n

i=1 zi(h̃(zi, v̂i)−h̃(zi, vi))/n→p 0 by the consistency of π̂ and
∑n

i=1 ‖zi‖
2
∥∥∥∂h̃(zi,vi(π̂

∗))
∂vi

∥∥∥ /n→p

E[‖zi‖2
∥∥∥∂h̃(zi,vi(π0))

∂vi

∥∥∥] <∞ under (iii) and (iv). Therefore
∑n

i=1 zih̃(zi, v̂i)/n→p E[zih̃(zi, vi)] =

0 by (2) and Theorem 2.

Several results emerge from these theorems. The main one is that the CF estimator
is consistent whether or not we include the term H̃(Z, V̂ ) in the estimation as long as we
include the control V̂ in (6). Thus the classic CF estimator based only on including V̂ is
consistent under (2), the same stochastic assumption required for the consistency of the 2SLS
estimator. If the classic CF estimator is modified to include the new regressors associated
with H̃(Z, V̂ ) - our generalized CF estimator - then 2SLS and this generalized CF estimator
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for β0 are no longer numerically equivalent, although asymptotically they both converge to
β0.

The theorems also make it clear that the classic control function approach does not
generally yield consistency for the expected value of the error conditional on the control and
exogenous variables unless H̃(Z, V̂ ) is also included in the regression equation. Although
this is not typically the object of interest of either the classic CF estimator or the 2SLS
estimator, an exception is when one tests for endogeneity based on the estimate of ρ in (3).6

A simple example is illustrative of these points. Consider the case where zi is a scalar
and

E[εi|zi, vi] = ρ1vi + viziρ2, (8)

but the researcher only includes xi and v̂i as regressors. Even though the researcher omits
the relevant variable v̂izi, the ordinary least squares estimator β̂ is consistent for β0 because

n∑
i=1

v̂iz
2
i /n→p E[viz

2
i ] = 0,

which follows from v̂i →p vi (because π̂ →p π0) and E[vi|zi] = 0 and by LLN under standard
regularity conditions (E[‖vi‖ · ‖zi‖2] < ∞ and E[‖zi‖3] < ∞). However, ρ̂1v̂i is not a
consistent estimator of E[εi|zi, vi]. If one desired a consistent estimator of this conditional
expectation, then v̂izi would have to be included in the regression, and ρ̂1v̂i+ ρ̂2v̂izi would be
consistent for E[εi|zi, vi]. In this case 2SLS and our generalized CF estimates for β0 would
not longer be numerically equivalent in a finite sample, although they would both converge
asymptotically to β0.

6 See e.g.Smith and Blundell (1986). In this case the misspecification of this conditional expectation may
reduce the power of the test or call into question the test’s consistency.
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3 The Non-Linear or Non-Parametric Setting with Ad-

ditive Errors

We consider a nonparametric simultaneous equations model with additivity:

xi = Π0(zi) + vi (9)

yi = f0(xi, z1i) + εi. (10)

where the instruments zi includes z1i andf(xi, z1i) can be parametric as f(xi, z1i) ≡ f(xi, z1i; θ)

or nonparametric. We strengthen the unconditional moment condition to the conditional
moment condition (CMR)

(CMR) E[εi|zi] = 0,

as we must in the non-parametric setting for identification. In this setting equation (9) is
not a “structural” equation but simply an orthogonal decomposition, so E[vi|zi] = 0 is not
restrictive.

Two approaches to estimation exist for an equation of the form (10). The non-parametric
2SLS (NP2SLS) estimator of Newey and Powell (2003) solves the integral equation implied
by the CMR condition

E[y|z] = E[f0(x, z1)|z] =

∫
f0(x, z1)µ(dx|z)

where µ denotes the conditional c.d.f. of x given z. While evidently the natural approach if
the CMR condition is maintained, it suffers from the well-known ill-posed inverse problem.

The second approach is the non-parametric control function estimator of Newey, Powell,
and Vella (1999) (NPVCF), which does not use the CMR condition but instead uses the
orthogonal decomposition from equation (9) and maintains the classic CF restriction from
(3) (i.e. E[εi|zi, vi] = E[εi|vi]). Identification of f(xi, z1i) for the NPVCF estimator is thus
achieved by ruling out the possibility that the error has an additive functional relationship
with (xi, z1i). As noted in Section 2, this assumption is not necessarily innocuous, and while
unnecessary in the linear case, is necessary for identification of the NPVCF estimator.7

As we note previously (9) itself is not restrictive because it does not need to be the
true genesis of the endogenous regressor xi. However, the mean independence restriction
E[εi|zi, vi] = E[εi|vi] is restrictive. To understand this point suppose xi = r0(zi, v

∗
i ) is the

true genesis of xi where v∗i is possibly a vector. Then even when εi is independent with
zi given the true control v∗i , it is possible that E[εi|zi, vi] 6= E[εi|vi] if we use the pseudo

7For example, let vi = ψ(zi)εi (ψ(zi) 6= 0). Then we have εi = vi/ψ(zi) and E[εi|zi, vi] = vi/ψ(zi) 6=
E[εi|vi] unless ψ(zi) is constant.
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control vi from (9), so the classic CF restriction essentially requires that (9) should be the
true genesis of xi, the true structural equation. On the other hand in our approach we can
still use the pseudo control vi regardless of the true genesis of xi as we develop our estimator
in the next section.

3.1 The Conditional Moment Restriction-Control Function (CM-

RCF) estimator

We now describe our new estimator, which combines the strengths of both the NP2SLS
estimator and the NPVCF estimator while avoiding a key weakness of each of these ap-
proaches. We consider the following regression, which is based on our generalized version of
the classic CF estimator from Section 2

yi = f0(xi, z1i) + h0(zi, vi) + ηi, with E[ηi|zi, vi] = 0. (11)

Without further restrictions on h0(zi, vi), f0(xi, z1i) is not identified because h0(zi, vi) can be
a function of (xi, z1i). To achieve identification we add to this model the CMR condition,
which implies that the function h0(zi, vi) must satisfy E[h0(zi, vi)|zi] = 0, because by the law
of iterated expectations

0 = E[εi|zi] = E[E[εi|zi, vi]|zi] = E[h0(zi, vi)|zi]. (12)

This restriction will suffice for identification of f0(xi, z1i) as we show below. Our approach
thus loosens the classic CF restriction in (4) by combining the generalized CF moment in
(11) with the more commonly used CMR restriction, and we refer to our estimator as the
CMRCF estimator.8

We discuss general identification in Section 4 and we formalize our estimation procedure
as a sieve method in Section 5. Here we provide a simple example that is illustrative of how
in general identification is obtained, that is, how we can identify f0(xi, z1i) from an additive
regression of yi on (xi, z1i) and (zi, vi) where (zi, vi) enters the control function h0(zi, vi)

satisfying the CMR condition. Conditional on (zi, vi), the expectation of yi (from (10)) is
equal to

E[yi|zi, vi] = f0(xi, z1i) + E[εi|zi, vi] ≡ f0(xi, z1i) + h0(zi, vi) (13)

because xi is known given zi and vi. For this example we assume

h0(zi, vi) = a1(Π0(zi) + vi) + a2v
2
i + a′3zivi + ϕ(zi) = a1xi + a2v

2
i + a′3zivi + ϕ(zi)

8Note that the classic CF restriction does not imply the CMR restriction and vice versa.
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where ϕ(zi) denotes any arbitrary function of zi. Then the CMR condition implies that

0 = E[h0(zi, vi)|zi] = a1E[xi|zi] + a2E[v2
i |zi] + a′3E[zivi|zi] + E[ϕ(zi)|zi]

= a1Π0(zi) + a2E[v2
i |zi] + ϕ(zi)

since E[vi|zi] = 0. It follows that

h0(zi, vi) = h0(zi, vi)− E[h0(zi, vi)|zi]
= a1vi + a2(v2

i − E[v2
i |zi]) + a′3zivi + (ϕ(zi)− ϕ(zi)) = a1vi + a2ṽ2i + a3zivi

where ṽ2i = v2
i − E[v2

i |zi]. Thus the CMR condition puts shape restrictions on h0(zi, vi) so
it is not a function of xi and it does not contain functions of zi only. Identification in this
example is then equivalent to the non-existence of a linear functional relationship among
xi, z1i, vi, ṽ2i, and zivi (i.e. no perfect multicollinearity).

Estimation proceeds in three simple steps. In the first step we obtain the control
v̂i = xi − Ê[xi|zi] from the first stage nonparametric regression (e.g., series estimation in
Newey (1997) or sieve estimation in Chen (2007)). In the second step we construct an
approximation of h(zi, v̂i) using (e.g.) polynomial approximations while imposing the re-
striction E[h(zi, vi)|zi] = 0. For example, we can take

h(zi, v̂i) ≈
∑L1

l1=1
al1,0(v̂l1i − E[v̂l1i |zi]) +

∑L

l=2

∑
l1≥1,l2≥1 s.t. l1+l2=l

al1,l2ϕl2(zi)(v̂
l1
i − E[v̂l1i |zi])

where ϕl2(zi) denotes functions of zi, L1, L → ∞ and L1/n, L/n → 0 as n → ∞, and
we approximate E[v̂l1i |zi] using (possibly nonparametric) regressions. In the last step we
estimate f(xi, z1i) by including h(zi, v̂i) in the regression, estimating f(xi, z1i) (or θ in the
parametric function f(xi, z1i; θ)) and h(zi, v̂i) simultaneously.

4 Identification

We ask whether f0(xi, z1i) is identified by equation (11) with restrictions (12). Our
approach to identification closely follows Newey, Powell, and Vella (1999) and Newey and
Powell (2003). We consider pairs of functions f̄(xi, z1i) and h̄(zi, vi) that satisfy the con-
ditional expectation in (13) and (12). Because conditional expectations are unique with
probability one, if there is such a pair f̄(xi, z1i) and h̄(zi, vi), it must be that

Pr(f0(xi, z1i) + h0(zi, vi) = f̄(xi, z1i) + h̄(zi, vi)) = 1. (14)

Identification of f0(xi, z1i) means we must have f0(xi, z1i) = f̄(xi, z1i) whenever (14) holds.
Working with differences, we let δ(xi, z1i) = f0(xi, z1i)− f̄(xi, z1i) and κ(zi, vi) = h0(zi, vi)−
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h̄(zi, vi), with E[κ(zi, vi)|zi] = 0 by (12). Identification of f0(xi, z1i) is then equivalent to

Pr(δ(xi, z1i) + κ(zi, vi) = 0) = 1 implying Pr(δ(xi, z1i) = 0, κ(zi, vi) = 0) = 1.

Theorem 4 (Identification with CMR). If equations (11) and (12) are satisfied, then f0(xi, z1i)

is identified if for all δ(xi, z1i) with finite expectation, E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0

a.s.

Proof. Suppose it is not identified. Then we must find functions δ(xi, z1i) 6= 0 and κ(zi, vi) 6=
0 with E[κ(zi, vi)|zi] = 0 such that Pr(δ(xi, z1i) + κ(zi, vi) = 0) = 1. But this is not
possible because 0 = E[δ(xi, z1i) + κ(zi, vi)|zi] = E[δ(xi, z1i)|zi] and E[δ(xi, z1i)|zi] = 0

implies δ(xi, z1i) = 0 a.s., so Pr(δ(xi, z1i) = 0, κ(zi, vi) = 0) = 1.

We consider several cases, with the regressors demeaned in each example. For the simple
model f0(xi, z1i) = β0xi, we have the alternative function f̃(xi, z1i) = β̃xi 6= β0xi. We have
δ(xi, z1i) = (β0 − β̃)xi, so E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0 (or (β0 = β̃)) as long
as E[xi|zi] 6= 0. Identification is then equivalent to zi being correlated xi, the standard
instrumental variable condition.

The general case is given by f0(xi, z1i) = β′0xi + β′10z1i. An alternative function is
f̃(xi, z1i) = β̃′xi + β̃′1z1i 6= β′0xi + β′10z1i, so E[δ(xi, z1i)|zi] = (β0− β̃)′E[xi|zi] + (β10− β̃1)′z1i.
Therefore E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0 - or β0 = β̃ and β10 = β̃1 - if zi satisfies the
standard rank condition (e.g., it includes excluded instruments from z1i that are correlated
with xi).

For the general non-parametric case, a sufficient condition for identification is that the
conditional distribution of xi given zi satisfies the completeness condition (see Newey and
Powell (2003) or Hall and Horowitz (2005)). The condition implies that E[δ(xi, z1i)|zi] = 0

implies δ(xi, z1i) = 0 for any δ(xi, z1i) with finite expectation. In this sense the completeness
condition is nothing but a nonparametric version of the rank condition for identification.

5 Estimation

Our estimator is obtained in three steps. We focus on sieve estimation because it is
convenient to impose the restriction (12). We use capital letters to denote random variables
and lower case letters to denote their realizations. We assume the tuple {(Yi, Xi, Zi)} for i =

1, . . . , n are i.i.d. We let Xi be dx×1, Z1i be d1×1, Z2i be d2×1, dz = d1 +d2 and d = dz+dx,
with dx = 1 for ease of exposition. Let {pj(Z), j = 1, 2, . . .} denote a sequence of approximat-
ing basis functions (e.g. orthonormal polynomials or splines). Let pkn = (p1(Z), . . . , pkn(Z))′,
P = (pkn(Z1), . . . , pkn(Zn))′, and (P ′P )− denote the Moore-Penrose generalized inverse,
where kn tends to infinity but kn/n → 0. Similarly we let {φj(X,Z1), j = 1, 2, . . .} denote

11



a sequence of approximating basis functions, φKn = (φ1(X,Z1), . . . , φKn(X,Z1))′, where Kn

tends to infinity but Kn/n→ 0.9

In the first step to estimate the controls we estimate Π0(z) using

Π̂(z) = pkn(z)′(P ′P )−
∑n

i=1
pkn(zi)xi

and obtain the control variable as v̂ = x− Π̂(z).
In the second step we construct approximating basis functions using v̂ and z, where we

impose the CMR condition (12) by subtracting out the conditional means (conditional on
Z). We start by assuming v is known and then show how the setup changes when v̂ replaces
v. We write basis functions when v is known as

ϕ̃l(z, v) = ϕl(z, v)− ϕ̄l(z)

where ϕ̄l(z) = E[ϕl(V, Z)|Z = z] and {ϕl(z, v), l = 1, 2, . . .} denotes a sequence of approxi-
mating basis functions generated using (z, v) ∈ Z × V ≡ W , the support of (Z, V ). We let
H denote a space of functions that includes h0, and we let ‖·‖H be a pseudo-metric on H.
We define the sieve space Hn as the collection of functions

Hn = {h : h =
∑

l≤Ln

alϕ̃l(z, v), ‖h‖H < C̄h, (z, v) ∈ W}

for some bounded positive constant C̄h, with Ln → ∞ so that Hn ⊆ Hn+1 ⊆ . . . ⊆ H (and
Ln/n→ 0).

Because v is not known we use instead estimates of the approximating basis functions,
which we denote as ˆ̃ϕl(z, v̂) = ϕl(z, v̂) − ˆ̄ϕl(z), where ˆ̄ϕl(z) = Ê[ϕl(Z, V̂ )|Z = z]. We then
construct the approximation of h(z, v) as 10

ĥLn(z, v̂) =
∑Ln

l=1
al{ϕl(z, v̂)− Ê[ϕl(Z, V̂ )|Z = z]} (15)

=
∑Ln

l=1
al{ϕl(z, v̂)− pkn(z)′(P ′P )−

∑n

i=1
pkn(zi)ϕl(zi, v̂i)},

with coefficients, (a1, . . . , aLn) to be estimated in the last step. We approximate the sieve
9 We state specific rate conditions in the next section for our convergence rate results and also for

√
n-

consistency and asymptotic normality of linear functionals.

10 We can use different sieves (e.g., power series, splines of different lengths) to approximate E[ϕl(Z, V )|Z =
z] and Π(z) depending on their smoothness, but we assume one uses the same sieves for notational simplicity.
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space Hn with Ĥn using (15), so Ĥn is given by

Ĥn = {h : h =
∑

l≤Ln

al ˆ̃ϕl(z, v̂), ‖h‖H < C̄h, (z, v̂) ∈ W}. (16)

In the last step we define F as the space of functions that includes f0, and we let ‖·‖F
be a pseudo-metric on F . We define the sieve space Fn as the collection of functions

Fn = {f : f =
∑

l≤Kn

βlφl(x, z1), ‖f‖F < C̄f , (x, z1) ∈ X × Z1}

for some bounded positive constant C̄f , with Kn → ∞ so that Fn ⊆ Fn+1 ⊆ . . . ⊆ F (and
Kn/n→ 0). Then our multi-step series estimator is obtained by solving

(f̂,ĥ) = arginf(f,h)∈Fn×Ĥn

n∑
i=1

{yi − (f(xi, z1i) + h(zi, v̂i))}2/n (17)

where v̂i = xi − Π̂(zi).
Equivalently we can write

min(β1,...,βKn ,a1,...,aLn )

∑n

i=1
{yi − (

∑Kn

k=1
βkφk(xi, z1i) +

∑Ln

l=1
al ˆ̃ϕl(zi, v̂i))}2/n.

With fixed kn, Ln, and Kn our estimator is just a three-stage least squares estimator. Once
we obtain the estimates ˆ(f,ĥ) we can also estimate linear functionals of (f0, h0) using plug-
in methods (see Section 7). Next we provide the convergence rates of the nonparametric
estimators.

6 Convergence rates

We obtain the convergence rates building on Newey, Powell, and Vella (1999). We differ
from their approach as we have another nonparametric estimator in the middle step of esti-
mation. We derive the mean-squared error convergence rates of the nonparametric estimator
f̂(·) and ĥ(·), which we later use to obtain the

√
n-consistency and the asymptotic normality

of the linear functionals of (f0, h0).
We introduce additional notation. We let g0(zi, vi) = f0(xi, z1i) + h0(zi, vi) be a function

of (zi, vi) (xi is fixed given (zi, vi)). For a random matrix D, let ‖D‖ = (tr(D′D))1/2, and
let ‖D‖∞ be the infimum of constants C such that Pr(||D|| < C) = 1. Assumptions C1 and
C2 together ensure that we obtain the mean-squared error convergence of ĝ = f̂ + ĥ to g0,
and so that of f̂ to f0, too.
Assumption 1 (C1). (i) {(Yi, Xi, Zi)}ni=1 are i.i.d., Vi = Xi − E[Xi|Zi], and var(X|Z),
var(Y |Z, V ), and var(ϕl(Z, V )|Z) for all l are bounded; (ii) (Z,X) are continuously dis-
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tributed with densities that are bounded away from zero on their supports, which are compact;
(iii) Π0(z) is continuously differentiable of order s1 and all the derivatives of order s1 are
bounded on the support of Z; (iv) ϕ̄l(Z) is continuously differentiable of order s2 and all the
derivatives of order s2 are bounded for all l on the support of Z; (v) h0(Z, V ) is Lipschitz
and is continuously differentiable of order s and all the derivatives of order s are bounded
on the support of (Z, V ); (vi) ϕl(z, v) is Lipschitz and is twice continuously differentiable in
v and its first and second derivatives are bounded for all l; (vii) f0(X,Z1) is continuously
differentiable of order s and all the derivatives of order s are bounded on the support of
(X,Z1).

Assumptions C1 (iii), (iv), (v), and (vii) ensure that the unknown functions Π0(Z), ϕ̄l(Z),
h0(Z, V ), and f0(X,Z1) belong to a Hölder class of functions, so they can be approximated
up to the orders of O(k

−s1/dz
n ), O(k

−s2/dz
n ), O(L

−s/d
n ), and O(K

−s/(dx+d1)
n ) respectively when

using polynomials or splines (see Timan (1963), Schumaker (1981), Newey (1997), and Chen
(2007)). Assumption C1 (vi) is satisfied for polynomial and spline basis functions with
appropriate orders. Assumption C1 (ii) can be relaxed with some additional complexity
(e.g., a trimming device as in Newey, Powell, and Vella (1999)). Assumption C1 (v) and
(vii) maintain that f0 and h0 have the same order of smoothness for ease of notation, but it
is possible to allow them to differ.

Next we impose the rate conditions that restrict the growth of kn, Kn, and Ln as n tends
to infinity. We write Ln = Kn + Ln.

Assumption 2 (C2). Let 4n,1 = k
1/2
n /
√
n + k

−s1/dz
n , 4n,2 = k

1/2
n /
√
n + k

−s2/dz
n , and 4n =

max{4n,1,4n,2}. For polynomial approximations L
1/2
n (L3

n + L
1/2
n k

3/2
n /
√
n + L

1/2
n )4n → 0,

L3
n/n→ 0, and k3

n/n→ 0. For spline approximations L
1/2
n (L

3/2
n +L

1/2
n kn/

√
n+L

1/2
n )4n → 0

, L2
n/n→ 0, and k2

n/n→ 0.

Theorem 5. Suppose Assumptions C1-C2 are satisfied. Then(∫
(ĝ(z, v)− g(z, v))2dµ0(z, v)

)1/2

= Op(
√

Ln/n+ Ln4n + L−s/dn ).

where µ0(z, v) denotes the distribution function of (z, v).

In Theorem 5 the term Ln4n arises because of the estimation error from the first and
second steps of estimation. With no estimation error from these stages we would obtain
the convergence rate of Op(

√
Ln/n + L

−s/d
n ), which is a standard convergence rate of series

estimators.
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7 Asymptotic Normality

Following Newey (1997) and Newey, Powell, and Vella (1999) we consider inference for
the linear functions of g, θ = α(g). The estimator θ̂ = α(ĝ) of θ0 = α(g0) is a well-defined
“plug-in” estimator, and because of the linearity of α(g) we have

θ̂ = Aβ̂,A = (α(φ1), . . . , α(φKn), α(ϕ̃1), . . . , α(ϕ̃Ln))

where we let β̂ = (β̂1, . . . , β̂Kn , â1, . . . , âLn)′. This setup includes (e.g.) partially linear
models, where f contains some parametric components, and the weighted average derivative,
where one estimates the average response of y with respect to the marginal change of x or
z1. More generally, if A depends on unknown population objects, we can estimate it using
Â = ∂α( ˆ̂

ψL′
i β)/∂β′|β=β̂ where ˆ̂

ψL
i = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕ1(zi, v̂i), . . . , ˆ̃ϕL(zi, v̂i))

′, so
that θ̂ = Âβ̂ (see Newey (1997)).

We focus on conditions that provide for
√
n-asymptotics and allow for a straightforward

consistent estimator for the standard errors of θ̂.11 If there exists a Riesz representer ν∗(Z, V )

such that
α(g) = E[ν∗(Z, V )g(Z, V )] (18)

for any g = (f, h) ∈ F × H that can be approximated by power series or splines in the
mean-squared norm, then we can obtain

√
n-consistency and asymptotic normality for θ̂,

expressed as √
n(θ̂ − θ0)→d N(0,Ω),

for some asymptotic variance matrix Ω. In Assumption C1 we take both F and H as
Hölder spaces of functions, which ensures the approximation of g in the mean-squared
norm (see e.g., Newey (1997), Newey, Powell, and Vella (1999), and Chen (2007)). Let-
ting ρv(Z) = E[ν∗(Z, V )(∂h0(Z,V )

∂V
− E[∂h0(Z,V )

∂V
|Z])|Z] and ρϕ̄l

(Z) = E[alν
∗(Z, V )|Z], the

asymptotic variance of the estimator θ̂ is given by

Ω = E[ν∗(Z, V )var(Y |Z, V )ν∗(Z, V )′] + E[ρv(Z)var(X|Z)ρv(Z)′] (19)

+ lim
n→∞

Ln∑
l=1

E[ρϕ̄l
(Z)var(ϕl(Z, V )|Z)ρϕ̄l

(Z)′].

The first term in the variance accounts for the final stage of estimation, the second term
accounts for the estimation of the control (v), and the last term accounts for the middle step
of the estimation.

Assumption C1, R1, N1, and N2 below are sufficient for us to characterize the asymp-
11Developing the asymptotic distributions of the functionals that do not yield the

√
n-consistency is also

possible based on the convergence rates result we obtained and alternative assumptions on the functionals
of interest (see Newey, Powell, and Vella (1999)).
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totic normality of θ̂ and also a consistent estimator for the asymptotic variance of θ̂. Let
ψL(zi, vi) ≡ (φ1(xi, z1i), . . . , φK(xi, z1i), ϕ̃

L(zi, vi)
′)′ and ϕ̃L(zi, vi) = (ϕ̃1(zi, vi), . . . , ϕ̃L(zi, vi))

′.

Assumption 3 (R1). There exist ν∗(Z, V ) and βL such that E[||ν∗(Z, V )||2] <∞, α(g0) =

E[ν∗(Z, V )g0(Z, V )], α(φk) = E[ν∗(Z, V )φk] for k = 1, . . . , K, α(ϕ̃l) = E[ν∗(Z, V )ϕ̃l] for
l = 1, . . . , L, and E[||ν∗(Z, V )− ψL(Z, V )′βL||2]→ 0 as L→∞.

To present the theorem, we need additional notation and assumptions. Let aL = (a1, . . . , aL)′

with an abuse of notation and for any differentiable function c(w), let |µ| =
∑dim(w)

j=1 µj and
define ∂µc(w) = ∂|µ|c(w)/∂w1 · · · ∂wdim(w). Also define |c(w)|δ = max|µ|≤δ supw∈W ||∂µc(w)||
and others are defined similarly.

Assumption 4 (N1). (i) there exist δ, γ, and βL such that |g0(z, v)− β′LψL(z, v)|δ ≤ CL−γ

(which also implies |h0(z, v)−a′Lϕ̃L(z, v)|δ ≤ CL−γ); (ii) var(Yi|Zi, Vi) is bounded away from
zero, E[η4

i |Zi, Vi] and E[V 4
i |Zi] are bounded and E[ϕ̃l(Zi, Vi)

4|Zi] is bounded for all l.

The assumption N1 (i) is satisfied for f0 and h0 that belong to the Hölder class. Then
we can take (e.g.) γ = s/d. Next we impose the rate conditions that restrict the growth of
kn and Ln = Kn + Ln as n tends to infinity.

Assumption 5 (N2). Let 4n,1 = k
1/2
n /
√
n + k

−s1/dz
n , 4n,2 = k

1/2
n /
√
n + k

−s2/dz
n , and 4n =

max{4n,1,4n,2}.
√
nk
−s1/dz
n → 0,

√
nk
−s2/dz
n → 0,

√
nk

1/2
n L

−s/d
n → 0,

√
nL
−s/d
n → 0 and they

are sufficiently small. For the polynomial approximations L2
n+LnL3

nkn+L
1/2
n (L4

nk
3/2
n +k

5/2
n )√

n
→ 0

and for the spline approximations L
3/2
n +LnL

3/2
n k

1/2
n +L

1/2
n (L

5/2
n kn+k

3/2
n )+L

3/2
n k

3/2
n√

n
→ 0.

Theorem 6. Suppose Assumptions C1, R1, and N1-N2 are satisfied. Then

√
n(θ̂ − θ0)→d N(0,Ω).

Based on this asymptotic distribution, one can construct the confidence intervals of θ0 and
calculate standard errors in a straightforward manner. Let ĝ(zi, v̂i) = f̂(xi, z1i) + ĥ(zi, v̂i)

and ĝi = ĝ(zi, v̂i). Define ˆ̂
ψL
i = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕL(zi, v̂i)

′)′ where ˆ̃ϕL(zi, vi) =

( ˆ̃ϕ1(zi, vi), . . . , ˆ̃ϕL(zi, vi))
′. Let
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T̂ =
∑n

i=1

ˆ̂
ψL
i

ˆ̂
ψL′
i /n, Σ̂ =

∑n

i=1
(yi − ĝ(zi, v̂i))

2 ˆ̂
ψL
i

ˆ̂
ψL′
i /n (20)

T̂1 = P ′P/n, Σ̂1 =
n∑
i=1

v̂2
i p
k(zi)p

k(zi)
′/n, Σ̂2,l =

n∑
i=1

{ϕl(zi, v̂i)− ˆ̄ϕl(zi)}2pk(zi)p
k(zi)

′/n

Ĥ11 =
n∑
i=1

L∑
l=1

âl
∂ϕl(zi, v̂i)

∂vi

ˆ̂
ψL
i p

k(zi)
′/n,

Ĥ12 =
n∑
i=1

pk(zi)
′((P ′P )−

n∑
j=1

pk(zj)
∂
∑L

l=1 âlϕl(zj, v̂j)

∂vj
)

ˆ̂
ψL
i p

k(zi)
′/n,

Ĥ2,l =
∑n

i=1
âl

ˆ̂
ψL
i p

k(zi)
′/n, Ĥ1 = Ĥ11 − Ĥ12.

Then, we can estimate Ω consistently by

Ω̂ = AT̂ −1
[
Σ̂ + Ĥ1T̂ −1

1 Σ̂1T̂ −1
1 Ĥ ′1 +

∑Ln

l=1
Ĥ2,lT̂ −1

1 Σ̂2,lT̂ −1
1 Ĥ ′2,l

]
T̂ −1A′. (21)

Theorem 7. Suppose Assumptions C1, R1, and N1-N2 are satisfied. Then Ω̂→p Ω.

This is the heteroskedasticity robust variance estimator that accounts for the first and
second steps of estimation. The first variance termAT̂ −1Σ̂T̂ −1A′ corresponds to the variance
estimator without error from the first and second steps of estimation. The second variance
term accounts for the estimation of v (and corresponds to the second term in (19)). The
third variance term accounts for the estimation of ϕ̄l(·)’s) (and corresponds to the third term
in (19)). If we view our model as a parametric one with fixed kn, Kn, and Ln, the same
variance estimator Ω̂ can be used as the estimator of the variance for the parametric model
(e.g, Newey (1984) and Murphy and Topel (1985)).

7.1 Discussion

We discuss Assumption R1 for the partially linear model and the weighted average derivative.
Consider a partially linear model of the form

f0(x, z1) = x′1β10 + f20(x−1, z1)

where x can be multi-dimensional and x1 is a subvector of x such that x = (x1, x−1). Then
we have

β10 = α(g0) = E[ν∗(Z, V )g0(Z, V )]

where ν∗(z, v) = (E[q(Z, V )q(Z, V )′])−1q(z, v) and q(z, v) is the residual from the mean-
square projection of x1 on the space of functions that are additive in (x−1, z1) and any
h(z, v) such that E[h(Z, V )|Z] = 0.12 Thus we can approximate q(z, v) by the mean-square

12Note that existence of the Riesz representer in this setting requires E[q(Z, V )q(Z, V )′] to be nonsingular.
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projection residual of x1 on ψL
−1(zi, vi) ≡ (φ1(x−1i, z1i), . . . , φK(x−1i, z1i), ϕ̃

L(zi, vi)
′)′, and

then use these estimates to approximate ν∗(z, v).
Next consider a weighted average derivative of the form

α(g0) =

∫
W̄
$(x, z1, κ(z, v))

∂g0(z, v)

∂x
d(z, v) =

∫
$(x, z1, κ(z, v))

∂f0(x, z1)

∂x
d(z, v)

where the weight function $(x, z1, κ(z, v)) puts zero weights outside W̄ ⊂ W and κ(z, v) is
some function such that E[κ(Z, V )|Z] = 0. This is a linear functional of g0. Integration by
parts shows that

α(g0) = −
∫
W̄
proj(µ0(z, v)−1∂$(x, z1, κ(z, v))

∂x
|S)g0(z, v)dµ0(z, v) = E[ν∗(Z, V )g(Z, V )]

where proj(·|S) denotes the mean-square projection on the space of functions that are addi-
tive in (x, z1) and any h(z, v) such that E[h(Z, V )|Z] = 0 (so the Riesz representer ν∗(z, v)

is well-defined), and ν∗(z, v) = −proj(µ0(z, v)−1 ∂$(x,z1,κ(z,v))
∂x

|S) with µ0(z, v) denoting the
distribution of (z, v). We can then approximate ν∗(z, v) using a mean-square projection of
µ0(z, v)−1 ∂$(x,z1,κ(z,v))

∂x
on ψL(zi, vi).

8 Simulation Study

We investigate the performance of our CMRCF estimator in nonlinear additive models
when the classic CF condition (3) does not hold. We compare three estimators: the classical
CF estimator that assumes E[εi|zi, vi] = E[εi|vi] = ρvi, a simple version of NPVCF estimator
that maintains E[εi|zi, vi] = E[εi|vi], and our new CMRCF estimator. Our simulation results
illustrate that maintaining the classic CF restriction can produce biased estimates while the
CMRCF estimator performs well when the classic CF condition does not hold.

We consider the following simultaneous equations models :

[1] yi = α + βxi + γx2
i + εi ; xi = zi + (3εi + ςi) · log(zi)

[2] yi = α + βxi + γx2
i + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[3] yi = α + βxi + γ log xi + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[4] yi = α + βxi + γ log xi + εi ; xi = zi + (3εi + ςi + εi · ςi)/ exp(zi)

[5] yi = α + βxi + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[6] yi = α + βxi + γx2
i + εi ; xi = zi + (3εi + ςi).

In all designs [1]-[6], xi is correlated with εi, and the CMR condition holds.13 Except for

13For example, in design [2] E[εi|zi] = E[E[εi|zi, vi]|zi] = exp(zi)E[vi|zi]−E[ςi|zi]
3 = 0 since E[vi|zi] = 0 and
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design [6], the classic CF restriction does not hold.14 We generate simulation data based
on the following distributions: εi ∼ U[−1/2,1/2], ςi ∼ U[−1/2,1/2], zi = 2 + 2U[−1/2,1/2], where
U[−1/2,1/2] denotes the uniform distribution supported on [−1/2, 1/2], and all three random
variables are independent of one another. We set the true parameter values (α0, β0, γ0) =

(1, 1,−1). The data is generated with the sample sizes: n = 1, 000.
The classic CF (CCF) estimates

yi = f(xi) + ρv̂i + ηi

using the first stage estimation residual v̂i = xi − (π̂0 + π̂1zi + π̂2z
2
i ) where f(xi) is given by

the designs [1]-[6]. The NPVCF estimator is obtained by estimating

yi = f(xi) + h(v̂i) + ηi,

where we approximate h(v̂i) as h(v̂i) =
∑5

l=1 alv̂
l
i.15 Since the NPVCF does not identify the

constant term by design, we normalize h(v̂i) = 0 in the estimation so that the constant term
(α) is correctly obtained.

We obtain the CMRCF estimator as follows. Using the first stage estimation residual v̂i
construct approximating functions ṽ1i = v̂i, ṽ2i = v̂2

i −Ê[v̂2
i |zi], ṽ3i = v̂3

i −Ê[v̂3
i |zi], and others

(e.g., interactions with polynomials of zi as ziv̂i and z2
i v̂i) are defined similarly where Ê[·|zi]

is implemented by the least squares estimation on (1, zi, z
2
i ). In the last step we estimate

the model parameters using the least squares as described in Section 3. In this simulation
design, we estimate the parameters as

(α̂, β̂, γ̂, â) = argmin
∑n

i=1
{yi − (f(xi;α, β, γ) + h(zi, v̂i))}2/n

where h(zi, v̂i) =
∑L

l=1 alṽli depends on the simulation designs. The choice of the basis in the
finite sample is not a consistency issue but it is an efficiency issue, and we vary this choice
across specifications. In design [1] we use ṽ1i and ziṽi as the controls. In designs [2], [5], and
[6] we use the controls ṽ1i, ṽ2i, and ziṽi. In design [3] we use the controls ṽ1i, ṽ2i, ziṽi, and
z2
i ṽi, and in design [4] we use ṽ1i, ṽ2i, ṽ3i, ṽ4i, ziṽi.

E[ςi|zi] = 0 by construction.
14 For example, in design [2] we have vi = xi − E[xi|zi] = (3εi + ςi)/ exp(zi) (we will let the error terms

εi and ςi be independent with the instrument zi). Then we have εi = (exp(zi)vi − ςi)/3 and therefore
E[εi|zi, vi] = (exp(zi)vi − E[ςi|zi, vi])/3, and this cannot be written as a function of vi only.

15We do not use the trimming device in Newey, Powell, and Vella (1999). The trimming is not important
here because the supports of variables are compact and tightly bounded.
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We report the biases and the RMSE’s based on 200 repetitions of the estimations. The
simulation results in Tables I-VI show that CCF and NPVCF are biased in all designs
except [5] and [6], for which the theory says they should be consistent. The CMRCF is robust
regardless of the designs. In design [5] all three approaches produce correct estimates because
the outcome equation is linear, which is consistent with our discussion in Section 2. In
design [6] all three approaches are consistent because the classic CF restriction holds. From
these simulation results we conclude that our CMRCF approach performs well regardless of
whether the model is linear or nonlinear or whether the classic CF restriction holds (or not),
while the CCF and NPVCF approaches critically hinge on the model and the CF restriction.

9 Conclusion

The problem of endogenous regressors in simultaneous equations models has a long history
in econometrics and empirical studies. In models with additively separable errors researchers
have used both the instrumental variable (IV) approach and the classical control function
(CF) approach to correct for the bias induced by the correlation between the error and
the regressor(s). We revisit the well-known numerical equivalence result between two-stage
least squares (2SLS) and the classic CF. We show this equivalence raises an interesting but
unrecognized puzzle. The classic CF approach maintains that the regression error is mean
independent of the instruments conditional on the CF control, which is not required by 2SLS,
and could easily be violated.

We show that the classic CF estimator can be modified to allow the mean of the error to
depend in a general way on the instruments and control. We do so by replacing the classic
CF restriction with a generalized CF moment condition combined with the moment restric-
tions maintained by 2SLS or nonparametric 2SLS. We then show that our generalized CF
estimator is consistent in parametric or non-parametric settings with endogenous regressors
and additive errors.

If the outcome equation is nonlinear/nonparametric in the endogenous regressor, then
both the classical CF estimator and the NPVCF estimator of Newey, Powell, and Vella
(1999) are inconsistent when the classic CF restriction does not hold while our estimator
remains consistent. Our new approach is not subject to the ill-posed inverse problem and
can be estimated using a multi-step least squares in the simplest case. Therefore our new
estimator combines the strengths of both the NP2SLS estimator of Newey and Powell (2003)
and the NPVCF estimator of Newey, Powell, and Vella (1999) while avoiding a weakness of
each of these approaches. Our simulation study shows that the classic CF estimator and
the NPVCF estimator are biased when the CF restriction is violated while our estimator
remains consistent.
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Table I: Design [1], α0 = 1, β0 = 1, γ0 = −1
Nonlinear & CF condition does not hold

mean bias RMSE
CCF α 0.7076 -0.2924 0.2952

β 1.3078 0.3078 0.3094
γ -1.0679 -0.0679 0.0682

NPVCF α 0.7010 -0.2990 0.3034
β 1.3677 0.3677 0.3738
γ -1.0917 -0.0917 0.0938

CMRCF α 0.9978 -0.0022 0.0548
β 1.0021 0.0021 0.0503
γ -1.0005 -0.0005 0.0109

Table II: Design [2], α0 = 1, β0 = 1, γ0 = −1
Nonlinear & CF condition does not hold

mean bias RMSE
CCF α 1.5331 0.5531 0.5452

β 0.4056 -0.5944 0.6055
γ -0.8496 0.1504 0.1529

NPVCF α 1.3466 0.3466 0.3697
β 0.6283 -0.3717 0.3948
γ -0.9090 0.0910 0.0966

CMRCF α 0.9933 -0.0067 0.1478
β 1.0079 0.0079 0.1611
γ -1.0021 -0.0021 0.0405

Table III: Design [3], α0 = 1, β0 = 1, γ0 = −1
Nonlinear & CF condition does not hold

mean bias RMSE
CCF α 0.5818 -0.4182 0.4235

β 1.5048 0.5048 0.5108
γ -1.9246 -0.9246 0.9367

NPVCF α 0.7666 -0.2334 0.2482
β 1.3042 0.3042 0.3200
γ -1.5861 -0.5861 0.6156

CMRCF α 0.9943 -0.0057 0.1103
β 1.0076 0.0076 0.1255
γ -1.0144 -0.0144 0.2249

Table IV: Design [4], α0 = 1, β0 = 1, γ0 = −1
Nonlinear & CF condition does not hold

mean bias RMSE
CCF α 0.6109 -0.3891 0.3950

β 1.4702 0.4702 0.4769
γ -1.8617 -0.8617 0.8751

NPVCF α 0.7614 -0.2386 0.2541
β 1.3333 0.3333 0.3497
γ -1.6687 -0.6687 0.6988

CMRCF α 1.0003 0.0003 0.1117
β 1.0005 0.0005 0.1267
γ -1.0016 -0.0016 0.2262

Table V: Design [5], α0 = 1, β0 = 1
Linear & CF condition does not hold

mean bias RMSE
CCF α 0.9993 -0.0007 0.0343

β 1.0004 0.0004 0.0172
. . .

NPVCF α 1.0007 0.0007 0.0384
β 0.9997 -0.0003 0.0192

. . .
CMRCF α 0.9991 -0.0009 0.0343

β 1.0005 0.0005 0.0171
. . .

Table VI: Design [6], α0 = 1, β0 = 1, γ0 = −1
Nonlinear & CF condition holds

mean bias RMSE
CCF α 0.9991 -0.0009 0.0354

β 1.0010 0.0010 0.0200
γ -1.0002 -0.0002 0.0024

NPVCF α 0.9997 -0.0003 0.0338
β 1.0004 0.0004 0.0210
γ -1.0001 -0.0001 0.0032

CMRCF α 0.9975 -0.0025 0.0891
β 1.0068 0.0068 0.1204
γ -1.0021 -0.0021 0.0304

21



Appendix

A Proof of convergence rates

We first introduce notation and prove Lemma L1 below that is useful to prove the con-
vergence rate results.

Define hL(z, v) = a′Lϕ̃
L(z, v) and ĥL(z, v) = a′L ˆ̃ϕL(z, v) where aL16 satisfies Assump-

tion L1 (iv). Define ψL
i (zi, vi) = (φ1(xi, z1i), . . . , φK(xi, z1i), ϕ̃

L(zi, vi)
′)′ where ϕ̃L(zi, vi) =

(ϕ̃1(zi, vi), . . . , ϕ̃L(zi, vi))
′ and ψ̂L

i (zi, vi) = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕL(zi, vi)
′)′ with ˆ̃ϕL(zi, vi) =

( ˆ̃ϕ1(zi, vi), . . . , ˆ̃ϕL(zi, vi))
′. We further let ˆ̂

ψL
i = ψ̂L(zi, v̂i), ψL

i = ψL(zi, vi), and ψ̂L
i =

ψ̂L(zi, vi). We further let ψL,n = (ψL
1 , . . . , ψ

L
n )′ , ψ̂L,n = (ψ̂L

1 , . . . , ψ̂
L
n )′, and ˆ̂

ψL,n = (
ˆ̂
ψL

1 , . . . ,
ˆ̂
ψL
n )′.

Let C (also C1,C2, and others) denote a generic positive constant and let C(Z, V ) or
C(X,Z1) (also C1(·), C2(·), and others) denote a generic bounded positive function of (Z, V )

or (X,Z1). We often write Ci = C(xi, z1i). Recall W = Z × V .
Assumption 6 (L1). (i) (X,Z, V ) is continuously distributed with bounded density; (ii) for
each k, L, and L = K + L there are nonsingular matrices B1, B2, and B such that for
pkB1

(z) = B1p
k(z), ϕ̃LB2

(z, v) = B2ϕ̃
L(z, v), and ψL

B(z, v) = BψL(z, v), E[pkB1
(Zi)p

k
B1

(Zi)
′],

E[ϕ̃LB2
(Zi, Vi)ϕ̃

L
B2

(Zi, Vi)
′], and E[ψL

B(Zi, Vi)ψ
L
B(Zi, Vi)

′] have smallest eigenvalues that are
bounded away from zero, uniformly in k, L, and L; (iii) for each integer δ > 0, there are
ζδ(L) and ξδ(k) such that |ψL(z, v)|δ ≤ ζδ(L) (this also implies that |ϕ̃L(z, v)|δ ≤ ζδ(L))
and |pk(z)|δ ≤ ξδ(k) ; (iv) There exist γ, γ1, γ2 > 0, and βL, aL, λ1

k, and λ2
l,k such that

|Π0(z)−λ1′
k p

k(z)|δ ≤ Ck−γ1, |ϕ̄0l(z)−λ2′
l,kp

k(z)|δ ≤ Ck−γ2 for all l, |h0(z, v)−a′Lϕ̃L(z, v)|δ ≤
CL−γ, and |g0(z, v)− β′LψL(z, v)|δ ≤ CL−γ; (v) both Z and X are compact.

Let 4n,1 = k
1/2
n /
√
n+ k−α1

n and 4n,2 = k
1/2
n /
√
n+ k−α2

n and 4n = max{4n,1,4n,2}.

Lemma 1 (L1). Suppose Assumptions L1 and Assumptions C1 (i), (vi), (v), (vi), and (vii)
hold. Further suppose L1/2(ζ1(L) + L1/2ξ0(k)

√
k/n + L1/2)4n → 0 , ξ0(k)2k/n → 0, and

ζ0(L)2L/n→ 0. Then,

(
∑n

i=1
(ĝ(zi, vi)− g0(zi, vi))

2 /n)1/2 = Op(
√

L/n+ Lξ0(k)4n,1

√
k/n+ L4n,2 + L−γ).

16With abuse of notation we write aL = (a1, . . . , aL)′.
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A.1 Proof of Lemma L1

Without loss of generality, we will let pk(z) = pkB1
(z), ϕ̃L(z, v) = ϕ̃LB2

(z, v), and ψL(z, v) =

ψL
B(z, v). Let Π̂i = Π̂(zi) and Πi = Π0(zi). Let ˆ̄ϕl,i = ˆ̄ϕl(zi) and ϕ̄l,i = ϕ̄l(zi). Let ˆ̃̂ϕl,i =

ˆ̃ϕl(zi, v̂i) and ϕ̃l,i = ϕ̃l(zi, vi). Also let ˆ̃̂ϕLi = ˆ̃ϕL(zi, v̂i) and ϕ̃Li = ϕ̃L(zi, vi). Further define
˙̄ϕl(z) = pk(z)′(P ′P )−

∑n
i=1 p

k(zi)ϕl(zi, vi) where we have ˆ̄ϕl(z) = pk(z)′(P ′P )−
∑n

i=1 p
k(zi)ϕl(zi, v̂i).

Let ˙̄ϕL(z) = ( ˙̄ϕ1(z), . . . , ˙̄ϕL(z))′ and ϕ̄L(z) = (ϕ̄1(z), . . . , ϕ̄L(z))′. We also let
ϕL(zi, v̂i) = (ϕ1(zi, v̂i), . . . , ϕL(zi, v̂i))

′ and ϕL(zi, vi) = (ϕ1(zi, vi), . . . , ϕL(zi, vi))
′.

First note (P ′P )/n becomes nonsingular w.p.a.1 as ξ0(k)2k/n → 0 by Assumption L1
(ii) and the same proof in Theorem 1 of Newey (1997). Then by the same proof (A.3) of
Lemma A1 in Newey, Powell, and Vella (1999), we obtain∑n

i=1
||Π̂i − Πi||2/n = Op(42

n,1) and
∑n

i=1
|| ˙̄ϕl,i − ϕ̄l,i||2/n = Op(42

n,2) for all l. (22)

Also by Theorem 1 of Newey (1997), it follows that

max
i≤n
||Π̂i − Πi|| = Op(ξ0(k)4n,1) (23)

max
i≤n
|| ˙̄ϕl,i − ϕ̄l,i|| = Op(ξ0(k)4n,2) for all l. (24)

Define T̂ = (
ˆ̂
ψL,n)′

ˆ̂
ψL,n/n and Ṫ = (ψL,n)′ψL,n/n. Our goal is to show that T̂ is nonsin-

gular w.p.a.1. We first show that Ṫ is nonsingular w.p.a.1 and this is closely related with
the identification result of Theorem 4. Recall that (xi, z1i) and κ(zi, vi) has no additive
functional relationship for any κ(zi, vi) satisfying E[κ(Zi, Vi)|Zi] = 0 and E[ϕ̃Li ϕ̃

L′
i ] is non-

singular by Assumption L1 (ii). Therefore, Ṫ is nonsingular w.p.a.1 by Assumption L1 (ii)
as ζ0(L)2L/n → 0 by the same proof in Lemma A1 of Newey, Powell, and Vella (1999).
The same conclusion holds even when instead we take Ṫ =

∑n
i=1C(zi, vi)ψ

L
i ψ

L′
i /n for some

positive bounded function C(zi, vi) by the same proof in Lemma A1 of Newey, Powell, and
Vella (1999) and this helps to derive the consistency of the heteroskedasticity robust variance
estimator later.

For ease of notation along the proof, we will assume some rate conditions are satisfied.
Then we collect those rate conditions in Section A.2 and derive conditions under which all
of them are satisfied.

Next note that

∥∥ ˆ̃̂ϕLi − ϕ̃Li
∥∥ ≤ ∥∥ϕL(zi, v̂i)− ϕL(zi, vi)

∥∥+
∥∥ ˆ̄ϕL(zi)− ϕ̄L(zi)

∥∥ (25)

≤
∥∥ϕL(zi, v̂i)− ϕL(zi, vi)

∥∥+
∥∥ ˆ̄ϕL(zi)− ˙̄ϕL(zi)

∥∥+
∥∥ ˙̄ϕL(zi)− ϕ̄L(zi)

∥∥ .
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We find
∥∥ϕL(zi, v̂i)− ϕL(zi, vi)

∥∥ ≤ Cζ1(L)||Π̂i − Πi|| applying a mean value expansion be-
cause ϕl(zi, vi) is Lipschitz in Πi for all l (Assumption C1 (vi)). Combined with (22), it
implies that ∑n

i=1

∥∥ϕL(zi, v̂i)− ϕL(zi, vi)
∥∥2
/n = Op(ζ1(L)242

n,1). (26)

Next let ω̂l = (ϕl(z1, v̂1)− ϕl(z1, v1), . . . , ϕl(zn, v̂n)− ϕl(zn, vn))′. Then we can write for any
l = 1, . . . , L,∑n

i=1

∥∥ ˆ̄ϕl(zi)− ˙̄ϕl(zi)
∥∥2
/n = tr

{∑n

i=1
pk(zi)

′(P ′P )−P ′ω̂lω̂
′
lP (P ′P )−pk(zi)

}
/n (27)

= tr

{
(P ′P )−P ′ω̂lω̂

′
lP (P ′P )−

n∑
i=1

pk(zi)p
k(zi)

′

}
/n

= tr
{

(P ′P )−P ′ω̂lω̂
′
lP
}
/n

≤ C max
i≤n
||Π̂i − Πi||2tr

{
(P ′P )−P ′P

}
/n ≤ Cξ0(k)242

n,1k/n

where the first inequality is obtained by (23) and applying a mean value expansion to ϕl(zi, vi)
which is Lipschitz in Πi for all l (Assumption C1 (vi)). From (22), (25), (26), and (27), we
conclude ∑n

i=1
|| ˆ̄ϕL(zi)− ϕ̄L(zi)||2/n = Op(Lξ0(k)242

n,1k/n) +Op(L42
n,2) = op(1) (28)

and∑n

i=1

∥∥ ˆ̃̂ϕLi − ϕ̃Li
∥∥2
/n = Op(ζ1(L)242

n,1) +Op(Lξ0(k)242
n,1k/n) +Op(L42

n,2) = op(1). (29)

This also implies that by the triangle inequality and the Markov inequality,

∑n

i=1
|| ˆ̃̂ϕLi ||2/n ≤ 2

n∑
i=1

|| ˆ̃̂ϕLi − ϕ̃Li ||2/n+ 2
n∑
i=1

||ϕ̃Li ||2/n = op(1) +Op(L). (30)

Let 4ϕ
n = (ζ1(L) + L1/2ξ(k)

√
k/n+ L1/2)4n. It also follows that

∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n ≤
∑n

i=1

∥∥∥ ˆ̃̂ϕLi − ϕ̃Li
∥∥∥2

/n = Op((4ϕ
n)2) = op(1). (31)

This also implies ∑n

i=1

∥∥∥ ˆ̂
ψL
i

∥∥∥2

/n = Op(L)

because
∑n

i=1

∥∥∥ ˆ̂
ψL
i

∥∥∥2

/n ≤ 2
∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n+ 2
∑n

i=1

∥∥ψL
i

∥∥2
/n = Op(L).

Then applying (31) and applying the triangle inequality and Cauchy-Schwarz inequality
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and by Assumption L1 (iii) , we obtain

||T̂ − Ṫ || ≤
∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n+ 2
∑n

i=1

∥∥ψL
i

∥∥∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥ /n (32)

≤ Op((4ϕ
n)2) + 2

(∑n

i=1

∥∥ψL
i

∥∥2
/n
)1/2

(∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n

)1/2

= Op((4ϕ
n)2) +Op(L

1/24ϕ
n) = op(1).

It follows that

||T̂ − T || ≤ ||T̂ − Ṫ ||+ ||Ṫ − T ||

= Op((4ϕ
n)2 + L1/24ϕ

n + ζ0(L)
√

L/n) ≡ Op(4T ) = op(1) (33)

where we obtain ||Ṫ − T || = Op(ζ0(L)
√

L/n) by the same proof in Lemma A1 of Newey,
Powell, and Vella (1999).

Therefore we conclude T̂ is also nonsingular w.p.a.1. The same conclusion holds even
when instead we take T̂ =

∑n
i=1C(zi, vi)

ˆ̂
ψL
i

ˆ̂
ψL′
i /n and Ṫ =

∑n
i=1C(zi, vi)ψ

L
i ψ

L′
i /n for

some positive bounded function C(zi, vi) and this helps to derive the consistency of the
heteroskedasticity robust variance estimator later.

Let ηi = yi − g0(zi, vi) and let η = (η1, . . . , ηn)′. Let (Z,V) = ((Z1, V1), . . . , (Zn, Vn)).
Then we have E[ηi|Z,V] = 0 and by the independence assumption of the observations, we
have E[ηiηj|Z,V] = 0 for i 6= j. We also have E[η2

i |Z,V] < ∞. Then by (31) and the
triangle inequality, we bound

E
[
||( ˆ̂
ψL,n − ψL,n)′η/n||2|Z,V

]
≤ Cn−2

∑n

i=1
E[η2

i |Z,V]
∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

≤ n−1Op(L(4ϕ
n)2) = op(n

−1).

Then from the standard result (see Newey (1997) or Newey, Powell, and Vella (1999)) that
the bound of a term in the conditional mean implies the bound of the term itself, we obtain
||( ˆ̂
ψL,n − ψL,n)′η/n||2 = op(n

−1). Also note that E[
∥∥(ψL,n)′η/n

∥∥2
] = CL/n (see proof of

Lemma A1 in Newey, Powell, and Vella (1999)). Therefore, by the triangle inequality

||( ˆ̂
ψL,n)′η/n||2 ≤ 2||( ˆ̂

ψL,n − ψL,n)′η/n||2 + 2||(ψL,n)′η/n||2. (34)

= op(1) +Op(L/n) = Op(L/n).

Define

ĝi = f̂(xi, z1i) + ĥ(zi, v̂i), ˆ̂gLi = fK(xi, z1i) + ĥL(zi, v̂i), g̃Li = fK(xi, z1i) + hL(zi, v̂i),
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g̃0i = f0(xi, z1i)+h0(zi, v̂i), and g0i = f0(xi, z1i)+h0(zi, vi) where fK(xi, z1i) =
∑K

l=1 βlφl(xi, z1i),
ĥ(zi, v̂i) = â′L ˆ̃ϕ(zi, v̂i), ĥL(zi, v̂i) = a′L ˆ̃ϕ(zi, v̂i), and hL(zi, v̂i) = a′L(ϕ(zi, v̂i) − ϕ̄L(zi)) and
let ĝ, ˆ̂gL, g̃L, and g̃0 stack the n observations of ĝi, ˆ̂gLi, g̃Li, and g̃0i, respectively. Recall
βL = (β1, . . . , βK , a

′
L)′ and let this βL satisfies Assumption L1 (iv). From the first order

condition of the last step least squares we obtain

0 =
ˆ̂
ψL,n′(y − ĝ)/n (35)

=
ˆ̂
ψL,n′(η − (ĝ − ˆ̂gL)− (ˆ̂gL − g̃L)− (g̃L − g̃0))/n

=
ˆ̂
ψL,n′(η − ˆ̂

ψL,n(β̂ − βL)− (ˆ̂gL − g̃L)− (g̃L − g̃0)− (g̃0 − g0))/n.

Note that by ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent and by Assumption L1 (iv),

||T̂ −1 ˆ̂
ψL,n′(g̃L − g̃0)/n|| ≤ Op(1){(g̃L − g̃0)′

ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′(g̃L − g̃0)/n}1/2 (36)

≤ Op(1){(g̃L − g̃0)′(g̃L − g̃0)/n}1/2 = Op(L
−γ).

Similarly we obtain by ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent, Assumption L1 (iv), and (28),

||T̂ −1 ˆ̂
ψL,n′(ˆ̂gL − g̃L)/n|| = Op(1){(ˆ̂gL − g̃L)′(ˆ̂gL − g̃L)/n}1/2 (37)

≤ Op(1)(
n∑
i=1

||ĥL(zi, v̂i)− h̃L(zi, v̂i)||2/n)1/2

≤ Op(1)(
n∑
i=1

||aL||2|| ˆ̄ϕL(zi)− ϕ̄L(zi)||2/n)1/2 = Op(Lξ0(k)4n,1

√
k/n+ L4n,2).

Similarly also by ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent and (22) and applying the mean value
expansion to h0(zi, vi), we have

||T̂ −1 ˆ̂
ψL,n′(g̃0 − g0)/n|| = Op(1)(

n∑
i=1

||h0(zi, v̂i)− h0(zi, vi)||2/n)1/2 (38)

≤ Op(1)(
∑n

i=1
||Π̂i − Πi||2/n)1/2 = Op(4n,1) = op(1).

Combining (34), (35), (36), (37), (38) and by T̂ is nonsingular w.p.a.1, we obtain

||β̂ − βL|| ≤ ||T̂ −1 ˆ̂
ψL,n′η/n||+ ||T̂ −1 ˆ̂

ψL,n′(ˆ̂gL − g̃L)/n||+ ||T̂ −1 ˆ̂
ψL,n′(g̃L − g̃0)/n||+ op(1)

= Op(1){
√

L/n+ Lξ0(k)4n,1

√
k/n+ L4n,2 + L−γ} ≡ Op(4n,β). (39)

Define g∗Li = fK(xi, z1i) +h∗L(zi, vi) where h∗L(zi, vi) = a′L(ϕL(zi, vi)− ˆ̄ϕL(zi)). Then applying
the triangle inequality, by (28), (39), the Markov inequality, Assumption L1 (iv), and T̂ is
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nonsingular w.p.a.1 (by Assumption L1 (ii) and (33)), we conclude∑n

i=1
(ĝ(zi, vi)− g0(zi, vi))

2 /n (40)

≤ 3
∑n

i=1
(ĝ(zi, vi)− g∗Li)

2 /n+ 3
∑n

i=1
(g∗Li − gLi)

2 /n+ 3
∑n

i=1
(gLi − g0(zi, vi))

2 /n

≤ Op(1)||β̂ − βL||2

+C1

∑n

i=1
||aL||2|| ˆ̄ϕL(zi)− ϕ̄L(zi)||2/n+ C2 sup

W
||β′LψL(z, v)− g0(z, v)||2

≤ Op(42
n,β) + LOp(Lξ0(k)242

n,1k/n+ L42
n,2) +Op(L

−2γ) = Op(42
n,β).

This also implies that by a similar proof to Theorem 1 of Newey (1997)

max
i≤n
|ĝi − g0i| = Op(ζ0(L)4n,β). (41)

A.2 Proof of Theorem 5

Under Assumptions C1, all the assumptions in Assumption L1 are satisfied. For the
consistency, we require the following rate conditions: R(i) L1/24ϕ

n → 0 from (32), R(ii)
ζ0(L)2L/n → 0 (such that Ṫ is nonsingular w.p.a.1), and R(iii) ξ0(k)2k/n → 0 (such that
P ′P/n is nonsingular w.p.a.1). The other rate conditions are dominated by these three.
From the definition of 4ϕ

n = (ζ1(L) +L1/2ξ0(k)
√
k/n+L1/2)4n, we have R(i) : L1/2(ζ1(L) +

L1/2ξ0(k)
√
k/n+ L1/2)4n.

For the polynomial approximations, we have ζδ(L) ≤ CL1+2δ and ξ0(k) ≤ Ck and for
the spline approximations, we have ζδ(L) ≤ CL0.5+δ and ξ0(k) ≤ Ck0.5. Therefore for
the polynomial approximations, the rate condition becomes (i) L1/2(L3 + L1/2k3/2/

√
n +

L1/2)4n → 0, (ii) L3/n → 0, and (iii) k3/n → 0 and for the spline approximations, it
becomes R(i) L1/2(L3/2 +L1/2k/

√
n+L1/2)4n → 0, (ii) L2/n→ 0, and (iii) k2/n→ 0. Also

note that

4n,β ≡
√

L/n+ Lξ0(k)4n,1

√
k/n+ L4n,2 + L−γ

=
√

L/n+ L4n + L−γ

since ξ0(k)
√
k/n = o(1). We take γ = s/d because f0 and h0 belong to the Hölder class

and we can apply the approximation theorems (e.g., see Timan (1963), Schumaker (1981),
Newey (1997), and Chen (2007)).

Therefore, the conclusion of Theorem C1 follows from Lemma L1 applying the dominated
convergence theorem by ĝi and g0i are bounded.
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B Proof of asymptotic normality

Along the proof, we will obtain a series of convergence rate conditions. We collect them
here. First define

4ϕ
n = (ζ1(L) + L1/2ξ0(k)

√
k/n+ L1/2)4n

4n,β =
√

L/n+ L4n + L−γ

4T = (4ϕ
n)2 + L1/24ϕ

n + ζ0(L)
√

L/n,4T1 = ξ0(k)
√
k/n

4H = ζ0(L)k1/2/
√
n+ k1/24ϕ

n + L−γζ0(L)
√
k

4dϕ = ζ0(L)L1/24n,2,4g = ζ0(L)4n,β

4Σ = ∆T + ζ0(L)2L/n,4Ĥ = (ζ1(L)4n,β + ξ0(k)4n,1)L1/2ξ0(k)

and we need the following rate conditions for the
√
n-consistency and the consistency of the

variance matrix estimator Ω̂:

√
nL−γ → 0,

√
nk1/2L−γ → 0,

√
nk−γ1 → 0,

√
nk−γ2 → 0

k1/2(4T1 +4H) + L1/24T → 0, n−1(ζ0(L)2L + ξ0(k)2k + ξ0(k)2kL4)→ 0,

k1/2(4T1 +4H) + L1/24T +4dϕ → 0,4g → 0,4Σ → 0,4Ĥ → 0.

Dropping the dominated ones and assuming
√
nL−γ,

√
nk−γ1 , and

√
nk−γ2 are small enough,

under the following all the rate conditions are satisfied:

ζ0(L)k + ζ1(L)k3/2 + ζ0(L)L + Lζ1(L)ξ0(k) + L1/2ζ1(L)Lξ0(k)k1/2 + L1/2ξ0(k)2k1/2

√
n

→ 0

for the polynomial approximations it becomes L2+LL3k+L1/2(L4k3/2+k5/2)√
n

→ 0 and for the spline

approximations it becomes L3/2+LL3/2k1/2+L1/2(L5/2k+k3/2)+L3/2k3/2
√
n

→ 0.

28



Let pki = pk(Zi). We start with introducing additional notation:

Σ = E[ψL
i ψ

L′
i var(Yi|Zi, Vi)], T = E[ψL

i ψ
L′
i ], T1 = E[pki p

k′
i ], (42)

Σ1 = E[V 2
i p

k
i p
k′
i ],Σ2,l = E[(ϕl(Zi, Vi)− ϕ̄l(Zi))2pki p

k′
i ],

H11 = E[
∂h0i

∂Vi
ψL
i p

k′
i ], H̄11 =

n∑
i=1

∂h0i

∂Vi
ψL
i p

k′
i /n

H12 = E[E[
∂h0i

∂Vi
|Zi]ψL

i p
k′
i ], H̄12 =

n∑
i=1

E[
∂h0i

∂Vi
|Zi]ψL

i p
k′
i /n

H2,l = E[alψ
L
i p

k′
i ], H̄2,l =

n∑
i=1

alψ
L
i p

k′
i /n,H1 = H11 −H12, H̄1 = H̄11 − H̄12

Ω̄ = AT −1[Σ +H1T −1
1 Σ1T −1

1 H ′1 +
∑L

l=1
H2,lT −1

1 Σ2,lT −1
1 H ′2,l]T −1A′.

We let T1 = E[pki p
k′
i ] = I and E[ϕ̃i

Lϕ̃i
L′] = I without loss of generality.

Then Ω̄ = AT −1
[
Σ +H1Σ1H

′
1 +

∑L
l=1H2,lΣ2,lH

′
2,l

]
T −1A′. Let Γ be a symmetric square

root of Ω̄. Because T is nonsingular and var(Yi|Zi, Vi) is bounded away from zero, Σ − CI
is positive semidefinite for some positive constant C. It follows that

||ΓAT −1|| = {tr(ΓAT −1T −1A′T ′)}1/2 ≤ C{tr(ΓAT −1ΣT −1A′Γ′)}1/2

≤ {tr(CΓΩ̄Γ′)}1/2 ≤ C.

Next we show Ω̄ → Ω. Under Assumption R1, we have A = E[ν∗(Z, V )ψL′
i ]. Take

ν∗L(Z, V ) = AT −1ψL
i . Then note E[||ν∗(Z, V ) − ν∗L(Z, V )||2] → 0 because (i) ν∗L(Z, V ) =

E[ν∗(Z, V )ψL′
i ]T −1ψL

i is a mean-squared projection of ν∗(zi, vi) on ψL
i ; (ii) ν∗(zi, vi) is smooth

and the second moment of ν∗(zi, vi) is bounded, so it is well-approximated in the mean-
squared error as assumed in Assumption R1. Let ν∗i = ν∗(Zi, Vi) and ν∗Li = ν∗L(Zi, Vi). It
follows that

E[ν∗Livar(Yi|Zi, Vi)ν∗′Li] = AT −1E[ψL
i var(Yi|Zi, Vi)ψL′

i ]T −1A′

→ E[ν∗i var(Yi|Zi, Vi)ν∗′i ].

It concludes that AT −1ΣT −1A′ converges to E[ν∗i var(Yi|Zi, Vi)ν∗i ′] (the first term in Ω) as
k,K,L→∞. Let

bLi = E[ν∗Li

(
∂h0i

∂Vi
− E[

∂h0i

∂Vi
|Zi]
)
pk′i ]pki

and bi = E
[
ν∗i

(
∂h0i

∂Vi
− E[∂h0i

∂Vi
|Zi]
)
pk′i

]
pki . Then E[||bLi−bi||2] ≤ CE[||ν∗Li−ν∗i ||2]→ 0 where

the first inequality holds because the mean square error of a least squares projection cannot
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be larger than the MSE of the variable being projected. Also note that E[||ρv(Zi)−bi||2]→ 0

as k → ∞ because bi is a least squares projection of ν∗i
(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi
])

on pki and it
converges to the conditional mean as k →∞. Finally note that

E[bLivar(Vi|Zi)b′Li]

= AT −1E

[
ψL
i

(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi
])

pk′i

]
E[var(Vi|Zi)pki pk′i ]

×E
[
pki

(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi
])

ψL′
i

]
T −1A′

= AT −1H1Σ1H
′
1T −1A′

and this conclude that AT −1H1Σ1H
′
1T −1A′ converges to E[ρv(Z)var(X|Z)ρv(Z)′] (the sec-

ond term in Ω). Similarly we can show that for all l

AT −1H2,lΣ2,lH
′
2,lT −1A′ → E[ρϕ̄l

(Z)var(ϕl(Z, V )|Z)ρϕ̄l
(Z)′].

Therefore we conclude Ω̄ → Ω as k,K,L → ∞. This also implies that Γ → Ω−1/2 and Γ is
bounded.

Next we derive the asymptotic normality of
√
n(θ̂−θ0). After we establish the asymptotic

normality, we will show the convergence of the each term in (20) to the corresponding
terms in (42). We show some of them first, which will be useful to derive the asymptotic
normality. Note ||T̂ − T || = Op(4T ) = op(1) and ||T̂1 − T1|| = Op(4T1) = op(1) . We
also have ||ΓA(T̂ −1 − T −1)|| = op(1) and ||ΓAT̂ −1/2||2 = Op(1) (see proof in Lemma A1
of Newey, Powell, and Vella (1999)). We next show ||H̄11 − H11|| = op(1). Let H11L =

E[
∑L

l=1 al
∂ϕl(Zi,Vi)

∂Vi
ψL
i p

k′
i ] and H̄11L =

∑n
i=1

∑L
l=1 al

∂ϕl(Zi,Vi)
∂Vi

ψL
i p

k′
i /n. Similarly define H12L

and H̄12L and let H1L = H11L −H12L. By Assumption N1 (i), Assumption L1 (iii), and the
Cauchy-Schwarz inequality,

||H1 −H1L||2

≤ CE[||{(∂h0i

∂Vi
− E[

∂h0i

∂Vi
|Zi])−

∑
l

al(
∂ϕl(Zi, Vi)

∂Vi
− E[

∂ϕl(Zi, Vi)

∂Vi
|Zi])}ψL

i p
k′
i ||2]

≤ CL−2γE[||ψL
i ||2

∑
k

p2
ki] = O(L−2γζ0(L)2k).
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Next consider that by Assumption L1 (iii) and the Cauchy-Schwarz inequality,

E[
√
n||H̄11L −H11L||] ≤ C(E[(

L∑
l=1

al
∂ϕl(Zi, Vi)

∂Vi
)2||ψL

i ||2
∑
k

p2
ki])

1/2

= C(E[(
∂hLi
∂Vi

)2||ψL
i ||2

∑
k

p2
ki])

1/2 ≤ Cζ0(L)k1/2

where the first equality holds because ∂hLi

∂Vi
=
∑L

l=1 al
∂ϕ̃l(Zi,Vi)

∂Vi
=
∑L

l=1 al
∂ϕl(Zi,Vi)

∂Vi
and the last

result holds because hLi ∈ Hn (i.e. |hLi|1 is bounded). Similarly by (31), the Cauchy-Schwarz
inequality, and the Markov inequality, we obtain

∥∥H̄11 − H̄11L

∥∥ ≤ Cn−1
∑n

i=1
|
L∑
l=1

al
∂ϕl(Zi, Vi)

∂Vi
| · || ˆ̂ψL

i − ψL
i || · ||pki ||

≤ C
(∑n

i=1
Ci|| ˆ̂ψL

i − ψL
i ||2/n

)1/2

·
(∑n

i=1
||pki ||2/n

)1/2

≤ Op(k
1/24ϕ

n).

Therefore, we have ||H̄11−H11|| = Op(ζ0(L)k1/2/
√
n+ k1/24ϕ

n +L−γζ0(L)
√
k) ≡ Op(4H) =

op(1). Similarly we can show that ||H̄12 −H12|| = op(1) and ||H̄2,l −H2,l|| = op(1) for all l.
Now we derive the asymptotic expansion to obtain the influence functions. Further

define ĝLi = fK(xi, z1i) + h̃L(zi, v̂i) where h̃L(zi, v̂i) = a′L(ϕL(zi, v̂i) − E[ϕL(Zi, V̂i)|zi]) and
gLi = fK(xi, z1i) +hL(zi, vi). From the first order condition, we obtain the expansion similar
to (35). Recall βL = (β1, . . . , βK , a

′
L)′ and let this βL satisfy Assumption N1 (i).

0 =
ˆ̂
ψL,n′(y − ĝ)/

√
n (43)

=
ˆ̂
ψL,n′(η − (ĝ − ˆ̂gL)− (ˆ̂gL − ĝL)− (ĝL − gL)− (gL − g0))/

√
n

=
ˆ̂
ψL,n′(η − ˆ̂

ψL,n(β̂ − βL)− (ˆ̂gL − ĝL)− (ĝL − gL)− (gL − g0))/
√
n.

Similar to (36), we obtain

||T̂ −1 ˆ̂
ψL,n′(gL − g0)/

√
n|| = Op(

√
nL−γ). (44)

Also note that

√
n||Γ(α(gL)− α(g0))|| =

√
n||Γ|| · ||α(gL − g0)|| ≤ C

√
n ‖Γ‖ · |ψL′(·)βL − g0(·)|δ (45)

= Op(
√
nL−γ) = op(1)

because α(·) is a linear functional and by Assumption N1 (i).
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From the linearity of α(·), (43), (44), and (45) we have

√
nΓ(θ̂ − θ0) =

√
nΓ(α(ĝ)− α(g0)) =

√
nΓ(α(ĝ)− α(gL)) +

√
nΓ(α(gL)− α(g0)) (46)

=
√
nΓA(β̂ − βL) +

√
nΓ{a(gL)− a(g0)}

= ΓAT̂ −1 ˆ̂
ψL,n′(η − (ˆ̂gL − ĝL)− (ĝL − gL))/

√
n+ op(1).

Now we derive the stochastic expansion of ΓAT̂ −1 ˆ̂
ψL,n′(ĝL− gL)/

√
n. Note that by a second

order mean-value expansion of each h̃Li around vi,

ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i (ĝLi − gLi)/

√
n = ΓAT̂ −1

∑n

i=1

ˆ̂
ψL
i (h̃Li − hLi)/

√
n

= ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i (
dhLi
dvi
− E[

dhLi
dVi
|Zi])(Π̂i − Πi)/

√
n+ ς̂

= ΓAT̂ −1H̄1T̂ −1
1

∑n

i=1
pki vi/

√
n+ ΓAT̂ −1H̄1T̂ −1

1

∑n

i=1
pki (Πi − pk′i λ1

k)/
√
n

+ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i (
dhLi
dvi
− E[

dhLi
dVi
|Zi])(pk′i λ1

k − Πi)/
√
n+ ς̂ .

and the remainder term ||ς̂|| ≤ C
√
n||ΓAT̂ −1/2||ζ0(L)

∑n
i=1Ci||Π̂i−Πi||2/n = Op(

√
nζ0(L)42

n,1) =

op(1). Then by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey, Powell,
and Vella (1999), under

√
nk−s1/dz → 0 and k1/2(4T1 +4H) + L1/24T → 0 (so that we can

replace T̂1 with T1, H̄1 with H1, and T̂ with T respectively), we obtain

ΓAT̂ −1 ˆ̂
ψL,n′(ĝL − gL)/

√
n = ΓAT −1H1

∑n

i=1
pki vi/

√
n+ op(1). (47)

This derives the influence function that comes from estimating vi in the first step.
Next we derive the stochastic expansion of ΓAT̂ −1 ˆ̂

ψL,n′(ˆ̂gL − ĝL)/
√
n:

ΓAT̂ −1

n∑
i=1

ˆ̂
ψL
i (ˆ̂gLi − ĝLi)/

√
n = ΓAT̂ −1

n∑
i=1

ˆ̂
ψL
i a
′
L( ˆ̄ϕL(zi)− E[ϕL(Zi, V̂i)|zi])/

√
n

= ΓAT̂ −1{
∑

l
H̄2,lT̂ −1

1

∑n

i=1
pki ϕ̃li/

√
n+

∑
l
H̄2,lT̂ −1

1

∑n

i=1
pki (ϕ̄l(zi)− pk′i λ2

l,k)/
√
n}

+ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i

∑
l
al(p

k′
i λ

2
l,k − ϕ̄l(zi))/

√
n+ ΓAT̂ −1

∑n

i=1

ˆ̂
ψL
i ρi/
√
n (48)

where ρi = pk′i T̂ −1
1

∑n
i=1 p

k
i

∑
l al{(ϕl(zi, v̂i)−ϕl(zi, vi))−(E[ϕl(Zi, V̂i)|zi]−ϕ̄l(zi))}.We focus

on the last term in (48). Note that pk′i T̂ −1
1

∑n
i=1 p

k
i (ϕl(zi, v̂i) − ϕl(zi, vi)) is a projection of

ϕl(zi, v̂i)− ϕl(zi, vi) on pki and it converges to the conditional mean E[ϕl(Zi, V̂i)|zi]− ϕ̄l(zi).
Note that E[ρi|Z1, . . . , Zn] = 0 and therefore E[||ρi||2|Z1, . . . , Zn] ≤ LOp(42

n,2) by a similar
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proof to (22). It follows that by Assumption L1 (iii) and the Cauchy-Schwarz inequality,

E[
∥∥ n∑
i=1

ˆ̂
ψL
i ρi/
√
n
∥∥|Z1, . . . , Zn] ≤ (E[|| ˆ̂ψL

i ||2||ρi||2|Z1, . . . , Zn])1/2 ≤ Cζ0(L)L1/24n,2.

This implies that
∑n

i=1
ˆ̂
ψL
i ρi/
√
n = Op(ζ0(L)L1/24n,2) ≡ Op(4dϕ) = op(1).

Then again by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey,
Powell, and Vella (1999), under

√
nk−s2/dz → 0,

√
nk1/2L−s/d → 0, and k1/2(4T1 +4H) +

L1/24T + 4dϕ → 0 (so that we can replace T̂1 with T1, H̄2,l with H2,l, and T̂ with T
respectively and we can ignore the last term in (48)), we obtain

ΓAT̂ −1 ˆ̂
ψL,n′(ˆ̂gL − ĝL)/

√
n = ΓAT −1

∑
l
H2,l

∑n

i=1
pki ϕ̃li/

√
n+ op(1). (49)

This derives the influence function that comes from estimating E[ϕli|Zi]’s in the middle step.
We can also show that replacing ˆ̂

ψL
i with ψL

i does not influence the stochastic expansion
by (31). Therefore by (46), (47), and (49), we obtain the stochastic expansion,

√
nΓ(θ̂ − θ0) = ΓAT −1(ψL,n′η −H1

∑n

i=1
pki vi/

√
n−

∑
l
H2,l

∑n

i=1
pki ϕ̃li/

√
n) + op(1).

To apply the Lindeberg-Feller theorem, we check the Lindeberg condition. For any vector
q with ||q|| = 1, let Win = q′ΓAT −1(ψL

i ηi − H1p
k
i vi −

∑
lH2,lp

k
i ϕ̃li)/

√
n. Note that Win

is i.i.d, given n and by construction, E[Win] = 0 and var(Win) = 1/n. Also note that
||ΓAT −1|| ≤ C, ||ΓAT −1Hj|| ≤ C||ΓAT −1|| ≤ C by CI −HjH

′
j being positive semidefinite

for j = 1, (2, 1), . . . , (2, L). Also note that (
∑L

l=1 ϕ̃li)
4 ≤ L2(

∑L
l=1 ϕ̃

2
li)

2 ≤ L3
∑L

l=1 ϕ̃
4
li. It

follows that for any ε > 0,

nE[1(|Win| > ε)W 2
in] = nε2E[1(|Win| > ε)(Win/ε)

2] ≤ nε−2E[|Win|4]

≤ Cnε−2{E[||ψL
i ||4E[η4

i |Zi, Vi]] + E[||pki ||4E[V 4
i |Zi]] + L3

∑
l

E[||pki ||4E[ϕ̃4
li|Zi]]}/n2

≤ Cn−1(ζ0(L)2L + ξ0(k)2k + ξ0(k)2kL4) = o(1).

Therefore,
√
nΓ(θ̂ − θ0)→d N(0, I) by the Lindeberg-Feller central limit theorem. We have

shown that Ω̄→ Ω and Γ is bounded. We therefore also conclude
√
n(θ̂− θ0)→d N(0,Ω−1).

Now we show the convergence of the each term in (20) to the corresponding terms in
(42). Let η̂i = yi − ĝ(zi, v̂i). Note that η̂∗i ≡ η̂2

i − η2
i = −2ηi(ĝi − g0i) + (ĝi − g0i)

2 and that
maxi≤n |ĝi−g0i| = Op(ζ0(L)4n,β) = op(1) by (41). Let D̂ = ΓAT̂ −1 ˆ̂

ψL,n′diag{1+ |ηi|, . . . , 1+

|ηn|} ˆ̂
ψL,nT̂ −1A′Γ′ and note that ˆ̂

ψL,n and T̂ only depend on (Z1, V1), . . . , (Zn, Vn) and thus
E[D̂|(Z1, V1), . . . , (Zn, Vn)] ≤ CΓAT̂ −1A′Γ′ = Op(1). Therefore, ||D̂|| = Op(1) as well. Next

33



let Σ̃ =
∑n

i=1
ˆ̂
ψL
i

ˆ̂
ψL′
i η

2
i /n. Then,

||ΓAT̂ −1(Σ̂− Σ̃)T̂ −1A′Γ′|| = ||ΓAT̂ −1 ˆ̂
ψL,n′diag{η̂∗1, . . . , η̂∗n}

ˆ̂
ψL,nT̂ −1A′Γ′|| (50)

≤ Ctr(D̂) max
i≤n
|ĝi − g0i| = Op(1)op(1).

Then, by the essentially same proof in Lemma A2 of Newey, Powell, and Vella (1999), we
obtain

||Σ̃− Σ|| = Op(∆T + ζ0(L)2L/n) ≡ Op(4Σ) = op(1), (51)

||ΓAT̂ −1(Σ̂− Σ)T̂ −1A′Γ′|| = op(1),

||ΓA(T̂ −1ΣT̂ −1 − T −1ΣT −1)A′Γ′|| = op(1).

Then, by (50), (51), and the triangle ineq., we conclude ||ΓAT̂ −1Σ̂T̂ −1A′Γ′−ΓAT −1ΣT −1A′Γ′|| =
op(1). It remains to show that for j = 1, (2, 1), . . . , (2, L),

ΓA(T̂ −1ĤjT̂ −1
1 Σ̂jT̂ −1

1 Ĥ ′jT̂ −1 − T −1HjΣjH
′
jT −1)A′Γ′ = op(1). (52)

As we have shown ||Σ̂ − Σ|| = op(1), similarly we can show ||Σ̂j − Σj|| = op(1), j =

1, (2, 1), . . . , (2, L).
We focus on showing ||Ĥj − H̄j|| = op(1) for j = 1, (2, 1), . . . , (2, L). First note that

||Ĥ11 − H̄11|| = ||
∑n

i=1
(
∑L

l=1
âl
∂ϕl(zi, v̂i)

∂vi
− al

∂ϕl(zi, vi)

∂vi
)

ˆ̂
ψL
i p

k(zi)
′/n||

By the Cauchy-Schwarz inequality, (30), and Assumption L1 (iii), we have
∑n

i=1 ||
ˆ̂
ψL
i p

k′
i ||2/n ≤∑n

i=1 ||
ˆ̂
ψL
i ||2||pki ||2/n = Op(Lξ0(k)2). Also note that by the triangle inequality, the Cauchy-

Schwarz inequality, and by Assumption C1 (vi) and (23), applying a mean value expansion
to ∂ϕl(zi,vi)

∂vi
w.r.t vi,

∑n

i=1
||
∑L

l=1
(âl
∂ϕl(zi, v̂i)

∂vi
− al

∂ϕl(zi, vi)

∂vi
)||2/n

≤ 2
∑n

i=1
||
∑L

l=1
(âl − al)

∂ϕl(zi, vi)

∂vi
||2/n+ 2

∑n

i=1
||
∑L

l=1
âl(
∂ϕl(zi, v̂i)

∂vi
− ∂ϕl(zi, vi)

∂vi
)||2/n

≤ C||â− aL||2
∑n

i=1
||∂ϕ̃

L(zi, vi)

∂vi
||2/n+ C1

∑n

i=1
||
∑L

l=1
âl
∂2ϕl(zi, ṽi)

∂v2
i

(Π̂i − Πi)||2/n

≤ C||â− aL||2
∑n

i=1
||∂ϕ̃

L(zi, vi)

∂vi
||2/n+ C1 max

1≤i≤n
||Π̂i − Πi||2 ·

∑n

i=1
||
∑L

l=1
âl
∂2ϕl(zi, ṽi)

∂v2
i

||2/n

= Op(ζ
2
1 (L)42

n,β + ξ2
0(k)42

n,1)
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where ṽi lies between v̂i and vi, which may depend on l. We therefore conclude by the
triangle inequality and the Cauchy-Schwarz inequality, ||Ĥ11 − H̄11|| ≤ Op((ζ1(L)4n,β +

ξ0(k)4n,1)L1/2ξ0(k)) = Op(4Ĥ) = op(1). Similarly we can show that ||Ĥ12 − H̄12|| = op(1)

and ||Ĥ2,l − H̄2,l|| = op(1) l = 1, . . . , L. We have shown that ||H̄j − Hj|| = op(1) for
j = 1, (2, 1), . . . , (2, L) previously. Therefore, ||Ĥj −Hj|| = op(1) for j = 1, (2, 1), . . . , (2, L).
Then by the similar proof like (50) and (51), the conclusion (52) follows. From (52) finally
note that by Γ is bounded, ||Ω̂− Ω̄|| ≤ C||ΓΩ̂Γ′ − ΓΩ̄Γ′|| = op(1).
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