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1 Introduction

The problem of endogenous regressors in simultaneous equations models has a long history
in econometrics and empirical studies. In linear models with additively separable errors
researchers have used both two-stage least squares (2SLS) and the classic control function
(CF) approach to correct for the bias induced by the correlation between the error and the
regressor(s).1 While it is well known from projection theory that these two estimators are
numerically equivalent, they require different exclusion restrictions (or order conditions) to
hold for identification. In the case of the classic CF estimator, the first moment of the error in
the structural equation cannot depend on the exogenous regressors or instruments conditional
on the classic CF control (i.e. the mean projection residual obtained from regressing the
endogenous variable on the instruments). If it did the control function would have to include
both the regressors and the classic CF control and one would not be able to separately
identify the impact of the regressors on the dependent variable from their impact on the
control function.

A weakness of the CF restriction is that it can be violated in economic settings where
endogeneity is a first-order concern. These include estimation of returns to education, pro-
duction functions, and demand or supply with non-separable reduced forms for equilibrium
prices. Yet the classic CF estimator must be consistent in these settings because it is equal
to the 2SLS estimator.

Our first result resolves this puzzle. We show that the classic CF approach omits a
generalized control function term that may depend on the instruments and control. This
term is (asymptotically) uncorrelated with the endogenous regressor(s) given the classic CF
control under the unconditional moment restrictions of the 2SLS.2 We then show that the
classic CF estimator can be generalized to allow the conditional expectation of the error to
depend on both the classic CF control and instruments by adding the moment restrictions
used by 2SLS for identification.

We then turn to the non-linear and the non-parametric setting with additive errors. We
build on the non-parametric CF estimator of Newey, Powell, and Vella (1999)(NPVCF) which
achieves identification using the classic CF restriction.3 In contrast to the linear setting, the
NPVCF estimator is no longer consistent if the classic CF condition is violated. We show

1For the classic control function approach see, for example, Telser (1964), Hausman (1978), or Heckman
(1978).

2The estimated control function in the classic CF approach is no longer consistent for the expected
value of the error conditional on the control and instruments although this is typically viewed as a nuisance
parameter.

3We use “nonlinear model” to refer to a regression model that is nonlinear in regressors but linear in
parameters.
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how to use our insights from the linear case to develop an estimator for non-linear and
non-parametric models that is consistent even when the structural error may depend on the
instruments given the control.

Our approach is to add the conditional moment restrictions to the NPVCF setting to
loosen the classic CF restriction. We cast our estimator as a multi-step sieve estimator and
develop convergence rates and consistent estimators for the standard errors. An advantage of
our estimator is that it maintains the simplicity of implementation of the NPVCF estimator.

Our monte carlos are motivated by our economic examples. They illustrate the ease of
implementing our estimator. They also show that our new estimator performs well while the
classic CF estimator and the non-parametric analog of NPVCF can be biased in non-linear
settings.

The paper proceeds as follows. In the next section we consider the linear additive model.
Section 3 provides economic examples where the classic CF restriction may not hold and then
uses the results from Section 2 to formulate our new estimator for the non-linear or non-
parametric setting. Section 4 discusses identification and Section 5 develops the details of
our estimator. Section 6 addresses convergence rates and Section 7 provides conditions under
which asymptotic normality holds for several structural objects often of interest. Section 8
provides monte carlos and Section 9 concludes.

2 The Linear Setting with Additive Errors

In this section we revisit the implication of the well-known numerical equivalence of the
classic CF estimator and the 2SLS estimator in the linear simultaneous equations models
and find that the classic CF approach omits a generalized control function term that is
asymptotically irrelevant in this setting. We then show that the classic CF estimator can
be generalized to allow the conditional expectation of the error in the outcome equation to
depend on both the classic CF control and instruments.

We work in the linear simultaneous equations model in mean-deviated form,

yi = xiβ0 + εi,

with yi the dependent variable and xi a scalar explanatory variable that is potentially cor-
related with εi. We let zi denote an instrument vector satisfying

E[zi εi] = 0, E[zi xi] 6= 0. (1)

Defining vi = xi −E[xi|zi] (we further let E[xi|zi] = z′iπ0, the linear projection in this linear
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setting), the classic CF estimator posits:

yi = xiβ0 + ρvi + ηi, (2)

and regresses yi on E[xi|zi, vi] = xi and E[εi|zi, vi], where conditioning the error on (zi, vi)

controls for its correlation with xi. The classic CF estimator thus imposes

(Classic CF Restriction) E[εi|zi, xi] = E[εi|zi, vi] = E[εi|vi] = ρvi. (3)

The first equality in (3) requires that vi be chosen such that, conditional on it and zi, xi is
known. This assumption is not restrictive given the way that vi is constructed. The second
equality requires the conditional mean of εi to not depend on the instruments zi conditional
on the control vi. This latter restriction is not innocuous and can be violated in common
economic settings (see Section 3.1 for examples). This raises a puzzle as it is well known that
2SLS and the classic CF estimator are numerically equivalent but 2SLS does not require the
classic CF restriction to hold.

We resolve the puzzle by using the unconditional moment restrictions from 2SLS given
in (1). Consider an unrestricted general specification for the conditional expectation of the
error

E[εi|zi, vi] ≡ h(zi, vi) = ρ̃vi + h̃(zi, vi)

with the function characterizing E[εi|zi, vi] having a leading term in vi and a remaining
term denoted by the function h̃(zi, vi). Under the moment restriction of (1) using the law of
iterated expectations we have

0 = E[zi εi] = E[ziE[E[εi|zi, vi]|zi] ] = E[zi(ρ̃E[vi|zi] + E[h̃(zi, vi)|zi])] (4)

= E[ziE[h̃(zi, vi)|zi]] = E[zi h̃(zi, vi)].

The result shows that xi is also uncorrelated with h̃(zi, vi) given vi when E[zi εi] = 0 and
vi is constructed as the classic control function variable, vi = xi − z′iπ0. It suggests that
omitting the term h̃(zi, vi) that satisfies (4) in the classic CF estimation does not create
omitted variable bias as long as the classic control vi is included in the estimation. We
elaborate on this point below.

Letting Y = (y1, . . . , yn)′, X = (x1, . . . , xn)′, Z = (z1, . . . , zn)′, and V̂ = (v̂1, . . . , v̂n)′ we
rewrite equation (2) as

Y = Xβ0 + ρ̃V̂ + H̃(Z, V̂ ) + η̂ (5)

where H̃(Z, V̂ ) = (h̃(z1, v̂1), . . . , h̃(zn, v̂n))′, v̂i = xi − z′iπ̂ is the estimated classic CF control
(the fitted residual from the linear projection of xi on zi), and η̂ is the remaining error term.
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Then due to the partitioned regression theory, definingMV̂ = I− V̂ (V̂ ′V̂ )−1V̂ ′ and rewriting
(5), estimation of β0 is numerically equivalent to the estimation of β0 from

Y = MV̂ (Zπ̂ + V̂ )β0 +MV̂ H̃(Z, V̂ ) +MV̂ η̂

= Zπ̂β0 +MV̂ H̃(Z, V̂ ) +MV̂ η̂.

By coupling (1) with weak regularity conditions we can show Z ′MV̂ H̃(Z, V̂ )/n converges to
zero as the sample size increases which proves that the classic CF estimator that omits the
function H̃(Z, V̂ ) in the regression is consistent as long as we include the control V̂ in (5)
(see Appendix A).

If the classic CF estimator is modified to include the new regressors associated with
H̃(Z, V̂ ) then 2SLS and this generalized CF estimator for β0 are no longer numerically
equivalent although asymptotically they both converge to β0.4 In this generalized CF case
one would also recover a consistent estimate E[εi|zi, vi].5

3 The Non-Linear or Non-Parametric Setting with Ad-

ditive Errors

We consider a nonparametric simultaneous equations model with additivity:

xi = Π0(zi) + vi, E[vi|zi] = 0 (6)

yi = f0(xi, z1i) + εi (7)

where the instruments zi includes z1i and f(xi, z1i) can be parametric as f(xi, z1i) ≡ f(xi, z1i; θ)

or nonparametric. (6) is a conditional mean decomposition of xi with Π0(zi) denoting
E[xi|zi], so E[vi|zi] = 0 is not restrictive and (6) does not need to be the true decision
equation (or selection equation). We write the true decision equation as xi = r0(zi, v

∗
i )

where v∗i is possibly a vector. The second equation is the outcome equation and it speci-
fies how the decision variable affects the outcome of interest. f0(xi, z1i) is our parameter of

4On the other hand the numerical equivalence of the 2SLS and the classical CF estimators follows from
projection theory. Let X̂ = (x̂1, . . . , x̂n)′ where x̂i is the fitted regressor from the linear projection of xi on
zi. Then in matrix formulation β̂2SLS = (X̂ ′X̂)−1X̂ ′Y and (β̂CF , ρ̂CF ) = ((X, V̂ )′(X, V̂ ))−1(X, V̂ )′Y . The
same numerical estimate obtains for the coefficient on xi from either regressing Y on (X, V̂ ) or regressing
Y on the projection of X off of V̂ . The estimators are then identical because the projection of X off of V̂ is
equal to X̂ because (I − V̂ (V̂ ′V̂ )−1V̂ ′)X = (I − V̂ (V̂ ′V̂ )−1V̂ ′)(X̂ + V̂ ) = X̂, as V̂ ′X̂ = 0.

5For example, if zi is a scalar and

E[εi|zi, vi] = ρ1vi + ρ2vizi,

then including v̂izi in the regression would yield an estimate for E[εi|zi, vi] of ρ̂1v̂i + ρ̂2v̂izi which would be
consistent. Although this is not typically the object of interest, an exception is when one tests for endogeneity
based on the estimate of ρ in (2) (See e.g. Smith and Blundell (1986)).
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interest and endogeneity arises because there is dependence between v∗i and εi.
We introduce our estimator for this setup in Section 3.2. It is based on the non-parametric

control function estimator of Newey, Powell, and Vella (1999) (NPVCF). They use the or-
thogonal decomposition from equation (6) and maintain E[εi|zi, vi] = E[εi|vi] to achieve
identification of f0(xi, z1i). The role of the classic CF assumption in their setting is that it
rules out the possibility that the control function E[εi|vi] has an additive functional rela-
tionship with (xi, z1i).

Unlike the linear setting, in the nonlinear/non-parametric setting of Newey, Powell, and
Vella (1999) the classic CF assumption is necessary for identification of the structural func-
tion f0(xi, z1i). This assumption can be restrictive because even if εi is independent of zi
given the true control v∗i , εi needs not be mean independent of zi conditional on the pseudo
control vi from (6). For example, in the simple case when v∗i = εi, if vi = ψ(zi)v

∗
i with

ψ(zi) 6= 0, then εi = vi/ψ(zi) and E[εi|zi, vi] = vi/ψ(zi) 6= E[εi|vi] unless ψ(zi) is constant.

3.1 Economic Examples Where the Classic CF Assumption May

Not Hold

There are several economic settings where endogeneity is a first-order concern and where
εi is not necessarily mean independent of the instruments once the classic CF control is
conditioned upon. These include estimation of returns to education, production functions,
and demand or supply with non-separable reduced forms for equilibrium prices.

We borrow the setup from Imbens and Newey (2009) and Florens, Heckman, Meghir, and
Vytlacil (2008) and consider the returns to education and the production function examples
together. We let y denote the outcome variable - individual lifetime earnings or firm revenue -
and we let x be the agent’s choice variable, which is either individual schooling or firm’s input
into production. ε is the input into production that is unobserved by the econometrician
but partially observed by the agent in the sense that she sees a noisy signal η of ε, with η
possibly a vector.

We write the output function as y = f(x) + ε and we let the cost function be given as
c(x, z, η) where z denotes a cost shifter. The agent optimally chooses x by maximizing the
expected profit given the information available to her so the observed x is the solution to

x = arg max
x̃
{E[f(x̃) + ε|z, η]− c(x̃, z, η)}. (8)

Assuming differentiability the optimal x solves

∂f(x)/∂x− ∂c(x, z, η)/∂x = 0, (9)
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so we have x = k(z, η) for some function k(·). By the implicit function theorem we have

∂x

∂η
=

∂2c(x, z, η)/∂x∂η

∂2f(x)/∂x2 − ∂2c(x, z, η)/∂x2
.

Without further restrictions on f(·) and c(·), x = k(z, η) is neither additively separable in z
and η nor is it necessarily monotonic in η when η is a scalar.

We illustrate by considering a simple example where the (educational) production func-
tion is given as

y = ϕ0 + ϕ1x+
1

2
ϕ2x

2 + ε

and the cost function is

c(x, z, η) = c0(z, η0) + c1(z, η1)x+
1

2
c2(z, η2)x2,

where ε and η = (η0, η1, η2) are unobserved heterogeneity production and cost. Endogeneity
arises because of dependence between ε and η. We assume the instruments z are independent
of ε and η. From (9) the optimal educational choice x is

x =
ϕ1 − c1(z, η1)

c2(z, η2)− ϕ2

. (10)

In the special case when c1(z, η1) = c1z(z) + η1 and c2(z, η2) is constant the CF restriction
holds with the control v = x − E[x|z] = − η1

c2−ϕ2
. More generally, if η1 is not additively

separable from z in c1(z, η1) or if c2(·) depends on η2 the CF restriction will not hold.
In our last example we consider a single product monopolistic pricing model in a binary

choice setting with logit demands. If ui0 = εi0 and ui1 = β0 + β′1X − αp + ξ + εi1 with
(εi0,εi1) i.i.d. extreme value and (X, p, ξ) denoting observed characteristics, price, and the
unobserved characteristic (to the econometrician), then the market share for good 1 is given
by s =

exp(β0+β′1X−αp+ξ)
1+exp(β0+β′1X−αp+ξ)

. Let mc(·) denote marginal costs and assume the practitioner
observes a cost shifter z that does not enter demand. The monopolist chooses price p such
that

p = argmaxp (p−mc(·)) exp(β0 + β′1X − αp+ ξ)

1 + exp(β0 + β′1X − αp+ ξ)
.

While demands can be linearized as

ln s− ln(1− s) = β0 + β′1X − αp+ ξ,

prices will not generally either be separable or necessarily monotonic in ξ. Thus, with
v = p− E[p|z], E[ξ|z, v] will not necessarily equal E[ξ|v].
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3.2 The Conditional Moment Restriction-Control Function (CM-

RCF) estimator

We now describe our estimator. We consider a regression based on our generalized version
of the classic CF estimator from Section 2 given as

yi = f0(xi, z1i) + h0(zi, vi) + ηi with E[ηi|zi, vi] = 0 (11)

where vi is given as in (6) and h0(zi, vi) = E[εi|zi, vi]. Without further restrictions on
h0(zi, vi), f0(xi, z1i) is not identified because h0(zi, vi) can be a function of (xi, z1i).

We achieve identification by adding the conditional moment restrictions (CMR)

(CMR) E[εi|zi] = 0

which strengthens the unconditional moment restrictions from the linear setting as we must
in the non-parametric setting for identification. CMR implies that the function h0(zi, vi)

must satisfy E[h0(zi, vi)|zi] = 0 because by the law of iterated expectations

0 = E[εi|zi] = E[E[εi|zi, vi]|zi] = E[h0(zi, vi)|zi]. (12)

We prove that this restriction suffices for identification of f0(xi, z1i) in Section 4 and develop
the properties of a sieve estimator that can be used to recover f0(xi, z1i) in Sections 5-7.
Our approach loosens the classic CF restriction in (3) by combining the generalized CF
moment in (11) with the commonly used CMR restriction.6 We refer to our estimator as
the CMRCF estimator.

We provide a simple example that shows how we can identify f0(xi, z1i) from an addi-
tive regression of yi on (xi, z1i) and the control function when h0(zi, vi) satisfies the CMR
condition. Conditional on (zi, vi), the expectation of yi (from (7)) is equal to

E[yi|zi, vi] = f0(xi, z1i) + E[εi|zi, vi] ≡ f0(xi, z1i) + h0(zi, vi) (13)

because xi is known given zi and vi. For this example we assume

h0(zi, vi) = a1(Π0(zi) + vi) + a2v
2
i + a′3zivi + ϕ(zi) = a1xi + a2v

2
i + a′3zivi + ϕ(zi)

6However note that the classic CF restriction does not imply the CMR restriction and vice versa.
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where ϕ(zi) denotes any arbitrary function of zi. Then the CMR condition implies that

0 = E[h0(zi, vi)|zi] = a1E[xi|zi] + a2E[v2
i |zi] + a′3E[zivi|zi] + E[ϕ(zi)|zi]

= a1Π0(zi) + a2E[v2
i |zi] + ϕ(zi)

since E[vi|zi] = 0. It follows that

h0(zi, vi) = h0(zi, vi)− E[h0(zi, vi)|zi]

= a1vi + a2(v2
i − E[v2

i |zi]) + a′3zivi + (ϕ(zi)− ϕ(zi)) = a1vi + a2ṽ2i + a3zivi

where ṽ2i = v2
i − E[v2

i |zi]. Thus the CMR condition puts shape restrictions on h0(zi, vi) so
it is not a function of xi and it does not contain functions of zi only. Identification in this
example is then equivalent to the non-existence of a linear functional relationship among
xi, z1i, vi, ṽ2i, and zivi.

Estimation proceeds in three steps. In the first step we obtain the control v̂i = xi−Ê[xi|zi]
from the first stage nonparametric regression (e.g., series estimation in Newey (1997) or sieve
estimation in Chen (2007)). In the second step we construct an approximation of h(zi, v̂i)

using (e.g.) polynomial approximations while imposing the restriction E[h(zi, vi)|zi] = 0.
For example, we can take

h(zi, v̂i) ≈
∑L1

l1=1
al1,0(v̂l1i − E[v̂l1i |zi]) +

∑L

l=2

∑
l1≥1,l2≥1 s.t. l1+l2=l

al1,l2ϕl2(zi)(v̂
l1
i − E[v̂l1i |zi])

where ϕl2(zi) denotes functions of zi, L1, L → ∞, L1/n, L/n → 0 as n → ∞, and we ap-
proximate E[v̂l1i |zi] using (possibly nonparametric) regressions. In the last step we estimate
f(xi, z1i) by including h(zi, v̂i) in the regression, estimating f(xi, z1i) and h(zi, v̂i) simulta-
neously.

An alternative to the control function approach is the non-parametric IV (NPIV) esti-
mator that solves the integral equation implied by the CMR condition

E[y|z] = E[f0(x, z1)|z] =

∫
f0(x, z1)µ(dx|z)

where µ denotes the conditional c.d.f. of x given z (see (e.g.) Newey and Powell (2003), Hall
and Horowitz (2005), Darolles, Florens, and Renault (2006), Blundell, Chen, and Kristensen
(2007), and Gagliardini and Scaillet (2009), to name only a few). This approach imposes
regularity conditions on f0 and the conditional expectation operator to achieve identification.
The control function (CF) approaches do not impose these restrictions but they must impose
restrictions on h0 because the CF approaches estimate both f0 and h0.
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4 Identification

We ask whether f0(xi, z1i) is identified by equation (11) with restrictions (12). Our
approach to identification closely follows Newey, Powell, and Vella (1999) and Newey and
Powell (2003). We consider pairs of functions f̄(xi, z1i) and h̄(zi, vi) that satisfy the con-
ditional expectation in (13) and (12). Because conditional expectations are unique with
probability one, if there is such a pair f̄(xi, z1i) and h̄(zi, vi), it must be that

Pr(f0(xi, z1i) + h0(zi, vi) = f̄(xi, z1i) + h̄(zi, vi)) = 1. (14)

Identification of f0(xi, z1i) means we must have f0(xi, z1i) = f̄(xi, z1i) whenever (14) holds.
Working with differences, we let δ(xi, z1i) = f0(xi, z1i)− f̄(xi, z1i) and κ(zi, vi) = h0(zi, vi)−
h̄(zi, vi), with E[κ(zi, vi)|zi] = 0 by (12). Identification of f0(xi, z1i) is then equivalent to

Pr(δ(xi, z1i) + κ(zi, vi) = 0) = 1 implying Pr(δ(xi, z1i) = 0, κ(zi, vi) = 0) = 1.

Theorem 1 (Identification with CMR). If equations (11) and (12) are satisfied, then f0(xi, z1i)

is identified if for all δ(xi, z1i) with finite expectation, E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0

a.s.

Proof. Suppose it is not identified. Then we must find functions δ(xi, z1i) 6= 0 and κ(zi, vi) 6=
0 with E[κ(zi, vi)|zi] = 0 such that Pr(δ(xi, z1i) + κ(zi, vi) = 0) = 1. But this is not
possible because 0 = E[δ(xi, z1i) + κ(zi, vi)|zi] = E[δ(xi, z1i)|zi] and E[δ(xi, z1i)|zi] = 0

implies δ(xi, z1i) = 0 a.s., so Pr(δ(xi, z1i) = 0, κ(zi, vi) = 0) = 1.

The result implies that h0(zi, vi) is also identified because the conditional expectation
E[yi|zi, vi] is nonparametrically identified and h0(zi, vi) = E[yi|zi, vi]− f0(xi, z1i).

We consider several cases, with the regressors demeaned in each example. For the simple
model f0(xi, z1i) = β0xi, we have the alternative function f̃(xi, z1i) = β̃xi 6= β0xi. We have
δ(xi, z1i) = (β0 − β̃)xi, so E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0 (or β0 = β̃) as long
as E[xi|zi] 6= 0. Identification is then equivalent to zi being correlated xi, the standard
instrumental variable condition.

The general case is given by f0(xi, z1i) = β′0xi + β′10z1i. An alternative function is
f̃(xi, z1i) = β̃′xi + β̃′1z1i 6= β′0xi + β′10z1i, so E[δ(xi, z1i)|zi] = (β0− β̃)′E[xi|zi] + (β10− β̃1)′z1i.
Therefore E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0 - or β0 = β̃ and β10 = β̃1 - if zi satisfies the
standard rank condition (e.g., it includes excluded instruments from z1i that are correlated
with xi).

For the general non-parametric case, a sufficient condition for identification is that the
conditional distribution of xi given zi satisfies the completeness condition (see Newey and
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Powell (2003) or Hall and Horowitz (2005)). The condition implies that E[δ(xi, z1i)|zi] = 0

implies δ(xi, z1i) = 0 for any δ(xi, z1i) with finite expectation. In this sense the completeness
condition is the nonparametric analog of the rank condition for identification in the linear
setting.

5 Estimation

Our estimator is obtained in three steps. We focus on sieve estimation because it is
convenient to impose the restriction (12). We use capital letters to denote random variables
and lower case letters to denote their realizations. We assume the tuple {(Yi, Xi, Zi)} for i =

1, . . . , n are i.i.d. We let Xi be dx×1, Z1i be d1×1, Z2i be d2×1, dz = d1 +d2 and d = dz+dx,
with dx = 1 for ease of exposition. Let {pj(Z), j = 1, 2, . . .} denote a sequence of approximat-
ing basis functions (e.g. orthonormal polynomials or splines). Let pkn = (p1(Z), . . . , pkn(Z))′,
P = (pkn(Z1), . . . , pkn(Zn))′, and (P ′P )− denote the Moore-Penrose generalized inverse,
where kn tends to infinity but kn/n → 0. Similarly we let {φj(X,Z1), j = 1, 2, . . .} denote
a sequence of approximating basis functions, φKn = (φ1(X,Z1), . . . , φKn(X,Z1))′, where Kn

tends to infinity but Kn/n→ 0.7

In the first step to estimate the controls we estimate Π0(z) using

Π̂(z) = pkn(z)′(P ′P )−
∑n

i=1
pkn(zi)xi

and obtain the control variable as v̂ = x− Π̂(z).
In the second step we construct approximating basis functions using v̂ and z, where we

impose the CMR condition (12) by subtracting out the conditional means (conditional on
Z). We start by assuming v is known and then show how the setup changes when v̂ replaces
v. We write basis functions when v is known as

ϕ̃l(z, v) = ϕl(z, v)− ϕ̄l(z)

where ϕ̄l(z) = E[ϕl(Z, V )|Z = z] and {ϕl(z, v), l = 1, 2, . . .} denotes a sequence of approxi-
mating basis functions generated using (z, v) ∈ Z × V ≡ W , the support of (Z, V ). We let
H denote a space of functions that includes h0, and we let ‖·‖H be a pseudo-metric on H.

7 We state specific rate conditions in the next section for our convergence rate results and also for
√
n-

consistency and asymptotic normality of linear functionals.
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We define the sieve space Hn as the collection of functions

Hn = {h : h =
∑

l≤Ln

alϕ̃l(z, v), ‖h‖H < C̄h, (z, v) ∈ W}

for some bounded positive constant C̄h, with Ln → ∞ so that Hn ⊆ Hn+1 ⊆ . . . ⊆ H (and
Ln/n→ 0).

Because v is not known we use instead estimates of the approximating basis functions,
which we denote as ˆ̃ϕl(z, v̂) = ϕl(z, v̂) − ˆ̄ϕl(z), where ˆ̄ϕl(z) = Ê[ϕl(Z, V̂ )|Z = z]. We then
construct the approximation of h(z, v) as 8

ĥLn(z, v̂) =
∑Ln

l=1
al{ϕl(z, v̂)− Ê[ϕl(Z, V̂ )|Z = z]} (15)

=
∑Ln

l=1
al{ϕl(z, v̂)− pkn(z)′(P ′P )−

∑n

i=1
pkn(zi)ϕl(zi, v̂i)},

with coefficients, (a1, . . . , aLn) to be estimated in the last step. We approximate the sieve
space Hn with Ĥn using (15), so Ĥn is given by

Ĥn = {h : h =
∑

l≤Ln

al ˆ̃ϕl(z, v̂), ‖h‖H < C̄h, (z, v̂) ∈ W}.

In the last step we define F as the space of functions that includes f0, and we let ‖·‖F
be a pseudo-metric on F . We define the sieve space Fn as the collection of functions

Fn = {f : f =
∑

l≤Kn

βlφl(x, z1), ‖f‖F < C̄f , (x, z1) ∈ X × Z1}

for some bounded positive constant C̄f , with Kn → ∞ so that Fn ⊆ Fn+1 ⊆ . . . ⊆ F (and
Kn/n→ 0). Then our multi-step series estimator is obtained by solving

(f̂,ĥ) = arginf(f,h)∈Fn×Ĥn

n∑
i=1

{yi − (f(xi, z1i) + h(zi, v̂i))}2/n

where v̂i = xi − Π̂(zi).
Equivalently we can write the estimation problem as

min(β1,...,βKn ,a1,...,aLn )

∑n

i=1
{yi − (

∑Kn

k=1
βkφk(xi, z1i) +

∑Ln

l=1
al ˆ̃ϕl(zi, v̂i))}2/n.

8 We can use different sieves (e.g., power series, splines of different lengths) to approximate E[ϕl(Z, V )|Z =
z] and Π(z) depending on their smoothness, but we assume one uses the same sieves for notational simplicity.
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With fixed kn, Ln, and Kn our estimator is just a three-stage least squares estimator. Once
we obtain the estimates ˆ(f,ĥ) we can also estimate linear functionals of (f0, h0) using plug-
in methods (see Section 7). Next we provide the convergence rates of the nonparametric
estimators.

6 Convergence rates

We obtain the convergence rates building on Newey, Powell, and Vella (1999). We differ
from their approach as we have another nonparametric estimation stage in the middle step
of estimation that creates additional terms in the convergence rate results. We derive the
mean-squared error convergence rates of the nonparametric estimator f̂(·) and ĥ(·), which we
later use to obtain the

√
n-consistency and the asymptotic normality of the linear functionals

of (f0, h0).
We introduce additional notation. We let g0(zi, vi) = f0(xi, z1i) + h0(zi, vi) be a function

of (zi, vi) (xi is fixed given (zi, vi)). For a random matrix D, let ‖D‖ = (tr(D′D))1/2, and
let ‖D‖∞ be the infimum of constants C such that Pr(||D|| < C) = 1. Assumptions C1 and
C2 together ensure that we obtain the mean-squared error convergence of ĝ = f̂ + ĥ to g0,
and so that of f̂ to f0, too.
Assumption 1 (C1). (i) {(Yi, Xi, Zi)}ni=1 are i.i.d., Vi = Xi − E[Xi|Zi], and var(X|Z),
var(Y |Z, V ), and var(ϕl(Z, V )|Z) for all l are bounded; (ii) (Z,X) are continuously dis-
tributed with densities that are bounded away from zero on their supports, which are compact;
(iii) Π0(z) is continuously differentiable of order s1 and all the derivatives of order s1 are
bounded on the support of Z; (iv) ϕ̄l(Z) is continuously differentiable of order s2 and all the
derivatives of order s2 are bounded for all l on the support of Z; (v) h0(Z, V ) is Lipschitz
and is continuously differentiable of order s and all the derivatives of order s are bounded
on the support of (Z, V ); (vi) ϕl(z, v) is Lipschitz and is twice continuously differentiable in
v and its first and second derivatives are bounded for all l; (vii) f0(X,Z1) is continuously
differentiable of order s and all the derivatives of order s are bounded on the support of
(X,Z1).

Assumptions C1 (iii), (iv), (v), and (vii) ensure that the unknown functions Π0(Z), ϕ̄l(Z),
h0(Z, V ), and f0(X,Z1) belong to a Hölder class of functions, so they can be approximated
up to the orders of O(k

−s1/dz
n ), O(k

−s2/dz
n ), O(L

−s/d
n ), and O(K

−s/(dx+d1)
n ) respectively when

using polynomials or splines (see Timan (1963), Schumaker (1981), Newey (1997), and Chen
(2007)). Assumption C1 (vi) is satisfied for polynomial and spline basis functions with
appropriate orders. Assumption C1 (ii) can be relaxed with some additional complexity
(e.g., a trimming device as in Newey, Powell, and Vella (1999)). Assumption C1 (v) and
(vii) maintain that f0 and h0 have the same order of smoothness for ease of notation, but it
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is possible to allow them to differ.
Next we impose the rate conditions that restrict the growth of kn, Kn, and Ln as n tends

to infinity. We write Ln = Kn + Ln.

Assumption 2 (C2). Let 4n,1 = k
1/2
n /
√
n + k

−s1/dz
n , 4n,2 = k

1/2
n /
√
n + k

−s2/dz
n , and 4n =

max{4n,1,4n,2}. For polynomial approximations L
1/2
n (L3

n + L
1/2
n k

3/2
n /
√
n + L

1/2
n )4n → 0,

L3
n/n→ 0, and k3

n/n→ 0. For spline approximations L
1/2
n (L

3/2
n +L

1/2
n kn/

√
n+L

1/2
n )4n → 0

, L2
n/n→ 0, and k2

n/n→ 0.

Theorem 2. Suppose Assumptions C1-C2 are satisfied. Then(∫
(ĝ(z, v)− g(z, v))2dµ0(z, v)

)1/2

= Op(
√

Ln/n+ Ln4n + L−s/dn ).

where µ0(z, v) denotes the distribution function of (z, v).

In Theorem 2 the term Ln4n arises because of the estimation error from the first and
second steps of estimation. With no estimation error from these stages we would obtain
the convergence rate of Op(

√
Ln/n + L

−s/d
n ), which is a standard convergence rate of series

estimators.

7 Asymptotic Normality

Following Newey (1997) and Newey, Powell, and Vella (1999) we consider inference for the
linear functions of g, θ = α(g) where we also need to account for the multi-stage estimation of
g as described in Section 5. The estimator θ̂ = α(ĝ) of θ0 = α(g0) is a well-defined “plug-in”
estimator, and because of the linearity of α(g) we have

θ̂ = Aβ̂,A = (α(φ1), . . . , α(φKn), α(ϕ̃1), . . . , α(ϕ̃Ln))

where we let β̂ = (β̂1, . . . , β̂Kn , â1, . . . , âLn)′. This setup includes (e.g.) partially linear
models, where f contains some parametric components, and the weighted average derivative,
where one estimates the average response of y with respect to the marginal change of x or
z1. More generally, if A depends on unknown population objects, we can estimate it using
Â = ∂α( ˆ̂

ψL′
i β)/∂β′|β=β̂ where ˆ̂

ψL
i = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕ1(zi, v̂i), . . . , ˆ̃ϕL(zi, v̂i))

′, so
that θ̂ = Âβ̂ (see Newey (1997)).

We focus on conditions that provide for
√
n-asymptotics and allow for a straightforward
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consistent estimator for the standard errors of θ̂.9 If there exists a Riesz representer ν∗(Z, V )

such that
α(g) = E[ν∗(Z, V )g(Z, V )]

for any g = (f, h) ∈ F × H that can be approximated by power series or splines in the
mean-squared norm, then we can obtain

√
n-consistency and asymptotic normality for θ̂,

expressed as
√
n(θ̂ − θ0)→d N(0,Ω),

for some asymptotic variance matrix Ω. In Assumption C1 we take both F and H as
Hölder spaces of functions, which ensures the approximation of g in the mean-squared
norm (see e.g., Newey (1997), Newey, Powell, and Vella (1999), and Chen (2007)). Let-
ting ρv(Z) = E[ν∗(Z, V )(∂h0(Z,V )

∂V
− E[∂h0(Z,V )

∂V
|Z])|Z] and ρϕ̄l

(Z) = E[alν
∗(Z, V )|Z], the

asymptotic variance of the estimator θ̂ is given by

Ω = E[ν∗(Z, V )var(Y |Z, V )ν∗(Z, V )′] + E[ρv(Z)var(X|Z)ρv(Z)′] (16)

+ lim
n→∞

Ln∑
l=1

E[ρϕ̄l
(Z)var(ϕl(Z, V )|Z)ρϕ̄l

(Z)′].

The first term in the variance accounts for the final stage of estimation, the second term
accounts for the estimation of the control (v), and the last term accounts for the middle step
of the estimation.

Assumption C1, R1, N1, and N2 below are sufficient for us to characterize the asymp-
totic normality of θ̂ and also a consistent estimator for the asymptotic variance of θ̂. Let
ψL(zi, vi) ≡ (φ1(xi, z1i), . . . , φK(xi, z1i), ϕ̃

L(zi, vi)
′)′ and ϕ̃L(zi, vi) = (ϕ̃1(zi, vi), . . . , ϕ̃L(zi, vi))

′.

Assumption 3 (R1). There exist ν∗(Z, V ) and βL such that E[||ν∗(Z, V )||2] <∞, α(g0) =

E[ν∗(Z, V )g0(Z, V )], α(φk) = E[ν∗(Z, V )φk] for k = 1, . . . , K, α(ϕ̃l) = E[ν∗(Z, V )ϕ̃l] for
l = 1, . . . , L, and E[||ν∗(Z, V )− ψL(Z, V )′βL||2]→ 0 as L→∞.

To present the theorem, we need additional notation and assumptions. Let aL = (a1, . . . , aL)′

with an abuse of notation and for any differentiable function c(w), let |µ| =
∑dim(w)

j=1 µj and
define ∂µc(w) = ∂|µ|c(w)/∂w1 · · · ∂wdim(w). Also define |c(w)|δ = max|µ|≤δ supw∈W ||∂µc(w)||
and others are defined similarly.

Assumption 4 (N1). (i) there exist δ, γ, and βL such that |g0(z, v)− β′LψL(z, v)|δ ≤ CL−γ

9Developing the asymptotic distributions of the functionals that do not yield the
√
n-consistency is also

possible based on the convergence rates result we obtained and alternative assumptions on the functionals
of interest (see Newey, Powell, and Vella (1999)).
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(which also implies |h0(z, v)−a′Lϕ̃L(z, v)|δ ≤ CL−γ); (ii) var(Yi|Zi, Vi) is bounded away from
zero, E[η4

i |Zi, Vi] and E[V 4
i |Zi] are bounded and E[ϕ̃l(Zi, Vi)

4|Zi] is bounded for all l.

The assumption N1 (i) is satisfied for f0 and h0 that belong to the Hölder class. Then
we can take (e.g.) γ = s/d. Next we impose the rate conditions that restrict the growth of
kn and Ln = Kn + Ln as n tends to infinity.

Assumption 5 (N2). Let 4n,1 = k
1/2
n /
√
n + k

−s1/dz
n , 4n,2 = k

1/2
n /
√
n + k

−s2/dz
n , and 4n =

max{4n,1,4n,2}.
√
nk
−s1/dz
n → 0,

√
nk
−s2/dz
n → 0,

√
nk

1/2
n L

−s/d
n → 0,

√
nL
−s/d
n → 0 and they

are sufficiently small. For the polynomial approximations L2
n+LnL3

nkn+L
1/2
n (L4

nk
3/2
n +k

5/2
n )√

n
→ 0

and for the spline approximations L
3/2
n +LnL

3/2
n k

1/2
n +L

1/2
n (L

5/2
n kn+k

3/2
n )+L

3/2
n k

3/2
n√

n
→ 0.

Theorem 3. Suppose Assumptions C1, R1, and N1-N2 are satisfied. Then

√
n(θ̂ − θ0)→d N(0,Ω).

Based on this asymptotic distribution, one can construct the confidence intervals of θ0 and
calculate standard errors in a straightforward manner. Let ĝ(zi, v̂i) = f̂(xi, z1i) + ĥ(zi, v̂i)

and ĝi = ĝ(zi, v̂i). Define ˆ̂
ψL
i = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕL(zi, v̂i)

′)′ where ˆ̃ϕL(zi, vi) =

( ˆ̃ϕ1(zi, vi), . . . , ˆ̃ϕL(zi, vi))
′. Let

T̂ =
∑n

i=1

ˆ̂
ψL
i

ˆ̂
ψL′
i /n, Σ̂ =

∑n

i=1
(yi − ĝ(zi, v̂i))

2 ˆ̂
ψL
i

ˆ̂
ψL′
i /n (17)

T̂1 = P ′P/n, Σ̂1 =
n∑
i=1

v̂2
i p
k(zi)p

k(zi)
′/n, Σ̂2,l =

n∑
i=1

{ϕl(zi, v̂i)− ˆ̄ϕl(zi)}2pk(zi)p
k(zi)

′/n

Ĥ11 =
n∑
i=1

L∑
l=1

âl
∂ϕl(zi, v̂i)

∂vi

ˆ̂
ψL
i p

k(zi)
′/n,

Ĥ12 =
n∑
i=1

pk(zi)
′((P ′P )−

n∑
j=1

pk(zj)
∂
∑L

l=1 âlϕl(zj, v̂j)

∂vj
)

ˆ̂
ψL
i p

k(zi)
′/n,

Ĥ2,l =
∑n

i=1
âl

ˆ̂
ψL
i p

k(zi)
′/n, Ĥ1 = Ĥ11 − Ĥ12.

Then, we can estimate Ω consistently by

Ω̂ = AT̂ −1
[
Σ̂ + Ĥ1T̂ −1

1 Σ̂1T̂ −1
1 Ĥ ′1 +

∑Ln

l=1
Ĥ2,lT̂ −1

1 Σ̂2,lT̂ −1
1 Ĥ ′2,l

]
T̂ −1A′.

Theorem 4. Suppose Assumptions C1, R1, and N1-N2 are satisfied. Then Ω̂→p Ω.

This is the heteroskedasticity robust variance estimator that accounts for the first and
second steps of estimation. The first variance termAT̂ −1Σ̂T̂ −1A′ corresponds to the variance
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estimator without error from the first and second steps of estimation. The second variance
term accounts for the estimation of v (and corresponds to the second term in (16)). The
third variance term accounts for the estimation of ϕ̄l(·)’s) (and corresponds to the third term
in (16)). If we view our model as a parametric one with fixed kn, Kn, and Ln, the same
variance estimator Ω̂ can be used as the estimator of the variance for the parametric model
(e.g, Newey (1984) and Murphy and Topel (1985)).

7.1 Discussion

We discuss Assumption R1 for the partially linear model and the weighted average deriva-
tive. Consider a partially linear model of the form

f0(x, z1) = x′1β10 + f20(x−1, z1)

where x can be multi-dimensional and x1 is a subvector of x such that x = (x1, x−1). Then
we have

β10 = α(g0) = E[ν∗(Z, V )g0(Z, V )]

where ν∗(z, v) = (E[q(Z, V )q(Z, V )′])−1q(z, v) and q(z, v) is the residual from the mean-
square projection of x1 on the space of functions that are additive in (x−1, z1) and any
h(z, v) such that E[h(Z, V )|Z] = 0.10 Thus we can approximate q(z, v) by the mean-square
projection residual of x1 on ψL

−1(zi, vi) ≡ (φ1(x−1i, z1i), . . . , φK(x−1i, z1i), ϕ̃
L(zi, vi)

′)′, and
then use these estimates to approximate ν∗(z, v).

Next consider a weighted average derivative of the form

α(g0) =

∫
W̄
$(x, z1, κ(z, v))

∂g0(z, v)

∂x
d(z, v) =

∫
$(x, z1, κ(z, v))

∂f0(x, z1)

∂x
d(z, v)

where the weight function $(x, z1, κ(z, v)) puts zero weights outside W̄ ⊂ W and κ(z, v) is
some function such that E[κ(Z, V )|Z] = 0. This is a linear functional of g0. Integration by
parts shows that

α(g0) = −
∫
W̄
proj(µ0(z, v)−1∂$(x, z1, κ(z, v))

∂x
|S)g0(z, v)dµ0(z, v) = E[ν∗(Z, V )g(Z, V )]

where proj(·|S) denotes the mean-square projection on the space of functions that are addi-
tive in (x, z1) and any h(z, v) such that E[h(Z, V )|Z] = 0 (so the Riesz representer ν∗(z, v)

is well-defined), and ν∗(z, v) = −proj(µ0(z, v)−1 ∂$(x,z1,κ(z,v))
∂x

|S) with µ0(z, v) denoting the
distribution of (z, v). We can then approximate ν∗(z, v) using a mean-square projection of
µ0(z, v)−1 ∂$(x,z1,κ(z,v))

∂x
on ψL(zi, vi).

10Note that existence of the Riesz representer in this setting requires E[q(Z, V )q(Z, V )′] to be nonsingular.

17



8 Simulation Study

We conduct two types of monte carlos to evaluate the performance of the classic CF
estimator, the NPVCF estimator, and our CMRCF estimator. The first set of monte carlos
is based on the economic examples provided in Section 3.1 where the structural function
f(x) is parametric and the second set uses a non-parametric setup from Newey and Powell
(2003) where the structural function is estimated nonparametrically.

8.1 Monte Carlos Based on Parametric Estimators

We consider six models motivated by the economic examples from Section 3.1. The
outcome equations are parametric so f(x) is known up to a finite set of parameters. The
selection equations are treated as unknown to the practitioner and we use nonparametric
estimators for them in the simulation.

The six designs are given as:

[1] yi = α + βxi + γx2
i + εi ; xi = zi + (3εi + ςi) · log(zi)

[2] yi = α + βxi + γx2
i + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[3] yi = α + βxi + γ log xi + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[4] yi = α + βxi + γ log xi + εi ; xi = zi + (3εi + ςi + εi · ςi)/ exp(zi)

[5] yi = α + βxi + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[6] yi = α + βxi + γx2
i + εi ; xi = zi + (3εi + ςi).

These designs can be obtained from the underlying decision problem of (8) by varying the
structural function f(x) and the cost function c(x, z, η). For example we obtain design [1]
by letting c2(z, η2) be constant and c1(z, η1) include the leading term z and the interaction
term η1 log(z), where η1 = 3ε + ς is a noisy signal of ε. The selection equation (10) is then
x = ϕ1−c1(z,η1)

c2(z,η2)−ϕ2
= z + (3ε+ ς) · log(z). The other designs are derived in a similar way.

We generate simulation data based on the following distributions: εi ∼ Uε, ςi ∼ Uς ,
zi = 2 + 2Uz, where each Uε, Uς , and Uz independently follows the uniform distribution
supported on [−1/2, 1/2] so all three random variables εi, ςi, and zi are independent of one
another. In all designs xi is correlated with εi and the CMR condition, E[εi|zi] = 0 holds.
The CF restriction is violated in designs [1]-[5] and holds in design [6].11 We set the true
parameter values at (α0, β0, γ0) = (1, 1,−1) and the data is generated with the sample size
of n = 1, 000.

11For example, in design [2] we have vi = xi−E[xi|zi] = (3εi+ςi)/ exp(zi). Then we have εi = (exp(zi)vi−
ςi)/3 and therefore E[εi|zi, vi] = (exp(zi)vi − E[ςi|zi, vi])/3, and this cannot be written as a function of vi

only.
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All three estimators are based on a first stage estimation residual v̂i = xi − (π̂0 + π̂1zi +

π̂2z
2
i ) although estimates are robust to adding higher order terms.12 The classic CF (CCF)

estimates
yi = f(xi) + ρv̂i + ηi

using least squares where f(xi) is given by the designs [1]-[6]. The NPVCF estimator is
obtained by estimating

yi = f(xi) + h(v̂i) + ηi,

where we approximate h(v̂i) as h(v̂i) =
∑5

l=1 alv̂
l
i.13 Since the NPVCF does not separately

identify the constant term we normalize h(0) = 0 so that the constant term α is also identi-
fied. Our results are robust adding higher orders of polynomials to fit h(v̂i).

We obtain the CMRCF estimator by using the first stage estimation residual v̂i to con-
struct approximating functions ṽ1i = v̂i, ṽ2i = v̂2

i − Ê[v̂2
i |zi], ṽ3i = v̂3

i − Ê[v̂3
i |zi] where Ê[·|zi]

is estimated using least squares with regressors (1, zi, z
2
i ). Interactions with polynomials of

zi like ziv̂i and z2
i v̂i are defined similarly. In the last step we estimate the parameters as

(α̂, β̂, γ̂, â) = argmin
∑n

i=1
{yi − (f(xi;α, β, γ) + h(zi, v̂i))}2/n

where h(zi, v̂i) =
∑L

l=1 alṽli depends on the simulation designs. The choice of the basis in the
finite sample is not a consistency issue but it is an efficiency issue and we vary this choice
across specifications. In design [1] we use ṽ1i and ziṽi as the controls. In designs [2], [5], and
[6] we use the controls ṽ1i, ṽ2i, and ziṽi. In design [3] we use the controls ṽ1i, ṽ2i, ziṽi, and
z2
i ṽi, and in design [4] we use ṽ1i, ṽ2i, ṽ3i, ṽ4i, ziṽi.

We report the biases and the RMSE’s based on 200 repetitions of the estimations. The
simulation results in Tables I-VI show that CCF and NPVCF are biased in all designs
except [5] and [6] for which the theory says they should be consistent. The CMRCF is
robust regardless of the designs. In design [5] all three approaches produce correct estimates
because the outcome equation is linear, which is consistent with our discussion in Section
2. In design [6] all three approaches are consistent because the CF restriction holds. We
conclude that our CMRCF approach is consistent in these designs regardless of whether the
model is linear or nonlinear or whether the CF restriction holds while the CCF and NPVCF
approaches are not robust when the CF restriction does not hold.

12Root mean-squared errors were similar across all estimators whether we used two or more higher order
terms. Thus if we followed Newey, Powell, and Vella (1999) and used cross validation (CV) to discriminate
between alternative specifications we would be indifferent between this simplest specification and the ones
with the higher order terms.

13We do not use the trimming device in Newey, Powell, and Vella (1999). Trimming is not necessary in
these examples because the supports of variables are compact and tightly bounded.
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8.2 Monte Carlos Based on Non-Parametric Estimators

Next we conduct two small-scale simulation studies where we estimate the structural
function f(x) nonparametrically. Design A has a first stage selection equation that satisfies
the CF restriction and Design B does not.

For the first specification we follow the setup from Newey and Powell (2003) given as

y = f(x) + ε = ln(|x− 1|+ 1)sgn(x− 1) + ε

[A] x = z + η

where the errors ε and η and instruments z are generated by ε

η

z

 ∼ i.i.d N


 0

0

0

 ,

 1 ρ 0

ρ 1 0

0 0 1




with ρ = 0.5. This design satisfies the CF restriction with v = x− E[x|z] because v = η.
In the second specification we use the same outcome equation but change the first stage

equation to
[B] x = z + η/ exp(|z|)

and we use ρ = 0.5 and ρ = 0.9. The CF restriction is violated because v = x − E[x|z] =

η/ exp(|z|).
Following Newey and Powell (2003) we use the Hermite series approximation of f(x) as

f(x) ≈ xβ +
J∑
j=1

γj exp(−x2)xj−1.

We estimate f(x) using the classic CF approach, the NPVCF estimator and our CMRCF
estimator. We fix J = 5 for design [A] and J = 7 for the design [B] and we use four different
sample sizes (n=100, 400, 1000, and 2,000). In all of the designs we obtain the control using
the first stage estimation residual v̂i = xi− (π̂0 + π̂1zi+ π̂2z

2
i ). We experimented with adding

several higher order terms in the first stage and found very similar simulation results across
all three estimators. We also experimented with different choices of approximating functions
of h(v) and h(z, v) for design [B].

The results are summarized in Tables A and B. We report the root mean-squared-error
(RMSE) averaged across the 500 replications and the realized values of x. In both de-
signs RMSE decreases as the sample size increases for all estimators. The RMSEs for
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non-parametric least squares (NPLS) (that does not include any control function in the
estimation) are larger than RMSEs for the estimators that correct for endogeneity. In the
design [A] both NPVCF and CMRCF perform similarly although the CMRCF estimator
shows slightly larger RMSEs because it adds an irrelevant correction term (zv) in the con-
trol function. In the design [B] the CMRCF estimator dominates the NPVCF estimator in
terms of RMSE.

Table A: Design [A], RMSE

NPLS NPVCF CMRCF

Control Functions None h(v) ≈ a1v̂ h(z, v) ≈ a1v̂ + a2zv̂

n=100 0.4121 0.2685 0.2732

n=400 0.3844 0.1667 0.1692

n=1000 0.3788 0.1308 0.1317

n=2000 0.3695 0.1149 0.1165

Table B: Design [B], RMSE

NPLS NPVCF1 NPVCF2 CMRCF1 CMRCF2 CMRCF3

CF’s None
∑4

l=1 alv̂
l
∑5

l=1 alv̂
l a1v̂ + a2zv̂ a1v̂ + a2zv̂ + a3z

2v̂ a1v̂ + a2zv̂ + a3z
2v̂ + a4ṽ2

ρ = 0.5

n=100 0.3896 0.3233 0.3241 0.3049 0.3104 0.3231

n=400 0.2775 0.1679 0.1671 0.1540 0.1422 0.1456

n=1000 0.2511 0.1364 0.1358 0.1190 0.0999 0.1014

n=2000 0.2440 0.1150 0.1156 0.0968 0.0737 0.0745

ρ = 0.9

n=100 0.5277 0.3059 0.3018 0.2833 0.2734 0.2889

n=400 0.4462 0.2042 0.2003 0.1680 0.1296 0.1322

n=1000 0.4375 0.1885 0.1865 0.1483 0.0941 0.0950

n=2000 0.4311 0.1762 0.1773 0.1356 0.0690 0.0696

We graph the average value of the function estimates f̂(x) from the three estimators
against the true value of f(x) (dashed line). The NPLS estimates are the light solid line,
the CMRCF function estimates are the solid line and the NPVCF estimates are the dotted-
and-dashed line. The upper and lower two standard deviation limits for the simulated
distributions of f̂(x) for the CMRCF are given by the dotted lines. Both NPVCF estimators
have almost identical RMSEs and we use NPVCF2 in Table B although NPVCF1 generated
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almost identical results.14 We use the CMRCF2 from Table B because it has the smallest
RMSE among the three CMRCF specifications.

In both designs the nonparametric estimator without the correction for endogeneity is
substantially biased and often strays outside the simulated confidence interval of the CM-
RCF estimates. In design [A] where the CF restriction holds the CMRCF estimator and the
NPVCF are almost identical. In design [B] where the CF restriction does not hold, the CM-
RCF estimator performs better than the NPVCF estimator which at some points approaches
or strays outside the simulated confidence interval of the CMRCF estimator. The problem
becomes worse as the sample size increases or when the endogeneity increases (ρ = 0.5 to
ρ = 0.9). In these Monte Carlos motivated by the setup from Newey and Powell (2003) our
proposed CMRCF estimator is robust to violations of the CF restriction while the NPVCF
estimator is not.

9 Conclusion

We show that the classic CF estimator can be modified to allow the mean of the error to de-
pend in a general way on the instruments and control. We do so by replacing the classic CF
restriction with a generalized CF moment condition combined with the moment restrictions
maintained by two-stage least squares. If the outcome equation is nonlinear or nonpara-
metric in the endogenous regressor, then both the classical CF estimator and the NPVCF
estimator of Newey, Powell, and Vella (1999) are inconsistent when the classic CF restriction
does not hold. This restriction is often violated in economic settings including returns to
education, production functions, and demand or supply with non-separable reduced forms
for equilibrium prices. We use our results from the linear setting to develop an estimator ro-
bust to settings where the structural error depends on the instruments given the CF control.
We augment the NPVCF setting with conditional moment restrictions and our estimator
maintains the simplicity of the NPVCF estimator. In our simulation studies which are based
on our economic examples we find that the classic CF estimator and the NPVCF estimator
are biased when the CF restriction is violated while our estimator remains consistent.

14In this comparison we use the NPVCF estimator that possibly overfits h(v) because we are more inter-
ested in the biases of estimators when the CF restriction does not hold.
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Table I: Design [1], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & CF condition does not hold

mean bias RMSE

CCF α 0.7076 -0.2924 0.2952

β 1.3078 0.3078 0.3094

γ -1.0679 -0.0679 0.0682

NPVCF α 0.6655 -0.3345 0.3395

β 1.3677 0.3677 0.3738

γ -1.0917 -0.0917 0.0938

CMRCF α 0.9978 -0.0022 0.0548

β 1.0021 0.0021 0.0503

γ -1.0005 -0.0005 0.0109

Table II: Design [2], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & CF condition does not hold

mean bias RMSE

CCF α 1.5331 0.5331 0.5452

β 0.4056 -0.5944 0.6055

γ -0.8496 0.1504 0.1529

NPVCF α 1.3535 0.3535 0.3767

β 0.6283 -0.3717 0.3948

γ -0.9090 0.0910 0.0966

CMRCF α 0.9933 -0.0067 0.1478

β 1.0079 0.0079 0.1611

γ -1.0021 -0.0021 0.0405

Table III: Design [3],α0 = 1, β0 = 1, γ0 = −1

Nonlinear & CF condition does not hold

mean bias RMSE

CCF α 0.5818 -0.4182 0.4235

β 1.5048 0.5048 0.5108

γ -1.9246 -0.9246 0.9367

NPVCF α 0.7750 -0.2250 0.2405

β 1.3042 0.3042 0.3200

γ -1.5861 -0.5861 0.6156

CMRCF α 0.9943 -0.0057 0.1103

β 1.0076 0.0076 0.1255

γ -1.0144 -0.0144 0.2249

Table IV: Design [4, α0 = 1, β0 = 1, γ0 = −1

Nonlinear & CF condition does not hold

mean bias RMSE

CCF α 0.6109 -0.3891 0.3950

β 1.4702 0.4702 0.4769

γ -1.8617 -0.8617 0.8751

NPVCF α 0.7794 -0.2206 0.2371

β 1.3333 0.3333 0.3497

γ -1.6687 -0.6687 0.6988

CMRCF α 1.0003 0.0003 0.1117

β 1.0005 0.0005 0.1267

γ -1.0016 -0.0016 0.2262

Table V: Design [5], α0 = 1, β0 = 1

Linear & CF condition does not hold

mean bias RMSE

CCF α 0.9993 -0.0007 0.0343

β 1.0004 0.0004 0.0172

NPVCF α 1.0010 0.0010 0.0417

β 0.9997 -0.0003 0.0192

CMRCF α 0.9991 -0.0009 0.0343

β 1.0005 0.0005 0.0171

Table VI: Design [6], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & CF condition holds

mean bias RMSE

CCF α 0.9991 -0.0009 0.0354

β 1.0010 0.0010 0.0200

γ -1.0002 -0.0002 0.0024

NPVCF α 0.9997 -0.0003 0.0350

β 1.0004 0.0004 0.0210

γ -1.0001 -0.0001 0.0032

CMRCF α 0.9975 -0.0025 0.0891

β 1.0068 0.0068 0.1204

γ -1.0021 -0.0021 0.0304
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Appendix

A Asymptotic irrelevance of the generalized control func-
tion in the classic CF approach

Theorem 5. Assume (i) E[‖zi‖ · ||h̃(zi, vi)||] <∞, (ii) h̃(z, v) is differentiable with respect
to v, (iii) for vi(π) ≡ xi − z′iπ, assume supπ∗∈Π0

E[‖zi‖2
∥∥∥∂h̃(zi,vi(π

∗))
∂vi

∥∥∥] < ∞ for Π0 some

neighborhood of π0, (iv) assume E[‖zi‖2
∥∥∥∂h̃(zi,vi(π))

∂vi

∥∥∥] is continuous at π = π0, and (v) π̂ →p

π0. If (1) holds then Z ′MV̂ H̃(Z, V̂ )/n→p 0 as n→∞.

Proof. We can rewrite as

Z ′MV̂ H̃(Z, V̂ )/n = Z ′(I − V̂ (V̂ ′V̂ )−1V̂ ′)H̃(Z, V̂ )/n = Z ′H̃(Z, V̂ )/n =
∑n

i=1
zih̃(zi, v̂i)/n

because Z ′V̂ = 0. Write
∑n

i=1 zih̃(zi, v̂i)/n =
∑n

i=1 zih̃(zi, vi)/n+
∑n

i=1 zi(h̃(zi, v̂i)−h̃(zi, vi))/n.
We have

∑n
i=1 zih̃(zi, vi)/n →p E[zih̃(zi, vi)] by the law of large numbers under (i). Obtain

||
∑n

i=1 zi(h̃(zi, v̂i) − h̃(zi, vi))/n|| ≤ ‖π̂∗ − π0‖
∑n

i=1 ‖zi‖
2 ||∂h̃(zi,vi(π̂

∗))
∂vi

||/n by applying the
mean-value expansion, where π̂∗ lies between π̂ and π0 and vi(π) = xi − z′iπ. Then the term∑n

i=1 zi(h̃(zi, v̂i)−h̃(zi, vi))/n→p 0 by the consistency of π̂ and
∑n

i=1 ‖zi‖
2
∥∥∥∂h̃(zi,vi(π̂

∗))
∂vi

∥∥∥ /n→p

E[‖zi‖2
∥∥∥∂h̃(zi,vi(π0))

∂vi

∥∥∥] <∞ under (iii) and (iv). Therefore
∑n

i=1 zih̃(zi, v̂i)/n→p E[zih̃(zi, vi)] =

0 by (1) and (4).

B Proof of convergence rates

We first introduce notation and prove Lemma L1 below that is useful to prove the convergence
rate results.

Define hL(z, v) = a′Lϕ̃
L(z, v) and ĥL(z, v) = a′L ˆ̃ϕL(z, v) where aL15 satisfies Assump-

tion L1 (iv). Define ψL
i (zi, vi) = (φ1(xi, z1i), . . . , φK(xi, z1i), ϕ̃

L(zi, vi)
′)′ where ϕ̃L(zi, vi) =

(ϕ̃1(zi, vi), . . . , ϕ̃L(zi, vi))
′ and ψ̂L

i (zi, vi) = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕL(zi, vi)
′)′ with ˆ̃ϕL(zi, vi) =

( ˆ̃ϕ1(zi, vi), . . . , ˆ̃ϕL(zi, vi))
′. We further let ˆ̂

ψL
i = ψ̂L(zi, v̂i), ψL

i = ψL(zi, vi), and ψ̂L
i =

ψ̂L(zi, vi). We further let ψL,n = (ψL
1 , . . . , ψ

L
n )′ , ψ̂L,n = (ψ̂L

1 , . . . , ψ̂
L
n )′, and ˆ̂

ψL,n = (
ˆ̂
ψL

1 , . . . ,
ˆ̂
ψL
n )′.

Let C (also C1,C2, and others) denote a generic positive constant and let C(Z, V ) or
C(X,Z1) (also C1(·), C2(·), and others) denote a generic bounded positive function of (Z, V )

or (X,Z1). We often write Ci = C(xi, z1i). Recall W = Z × V .
15With abuse of notation we write aL = (a1, . . . , aL)′.
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Assumption 6 (L1). (i) (X,Z, V ) is continuously distributed with bounded density; (ii) for
each k, L, and L = K + L there are nonsingular matrices B1, B2, and B such that for
pkB1

(z) = B1p
k(z), ϕ̃LB2

(z, v) = B2ϕ̃
L(z, v), and ψL

B(z, v) = BψL(z, v), E[pkB1
(Zi)p

k
B1

(Zi)
′],

E[ϕ̃LB2
(Zi, Vi)ϕ̃

L
B2

(Zi, Vi)
′], and E[ψL

B(Zi, Vi)ψ
L
B(Zi, Vi)

′] have smallest eigenvalues that are
bounded away from zero, uniformly in k, L, and L; (iii) for each integer δ > 0, there are
ζδ(L) and ξδ(k) such that |ψL(z, v)|δ ≤ ζδ(L) (this also implies that |ϕ̃L(z, v)|δ ≤ ζδ(L))
and |pk(z)|δ ≤ ξδ(k) ; (iv) There exist γ, γ1, γ2 > 0, and βL, aL, λ1

k, and λ2
l,k such that

|Π0(z)−λ1′
k p

k(z)|δ ≤ Ck−γ1, |ϕ̄0l(z)−λ2′
l,kp

k(z)|δ ≤ Ck−γ2 for all l, |h0(z, v)−a′Lϕ̃L(z, v)|δ ≤
CL−γ, and |g0(z, v)− β′LψL(z, v)|δ ≤ CL−γ; (v) both Z and X are compact.

Let 4n,1 = k
1/2
n /
√
n+ k−α1

n and 4n,2 = k
1/2
n /
√
n+ k−α2

n and 4n = max{4n,1,4n,2}.

Lemma 1 (L1). Suppose Assumptions L1 and Assumptions C1 (i), (vi), (v), (vi), and (vii)
hold. Further suppose L1/2(ζ1(L) + L1/2ξ0(k)

√
k/n + L1/2)4n → 0 , ξ0(k)2k/n → 0, and

ζ0(L)2L/n→ 0. Then,

(
∑n

i=1
(ĝ(zi, vi)− g0(zi, vi))

2 /n)1/2 = Op(
√

L/n+ Lξ0(k)4n,1

√
k/n+ L4n,2 + L−γ).

B.1 Proof of Lemma L1

Without loss of generality, we will let pk(z) = pkB1
(z), ϕ̃L(z, v) = ϕ̃LB2

(z, v), and ψL(z, v) =

ψL
B(z, v). Let Π̂i = Π̂(zi) and Πi = Π0(zi). Let ˆ̄ϕl,i = ˆ̄ϕl(zi) and ϕ̄l,i = ϕ̄l(zi). Let ˆ̃̂ϕl,i =

ˆ̃ϕl(zi, v̂i) and ϕ̃l,i = ϕ̃l(zi, vi). Also let ˆ̃̂ϕLi = ˆ̃ϕL(zi, v̂i) and ϕ̃Li = ϕ̃L(zi, vi). Further define
˙̄ϕl(z) = pk(z)′(P ′P )−

∑n
i=1 p

k(zi)ϕl(zi, vi) where we have ˆ̄ϕl(z) = pk(z)′(P ′P )−
∑n

i=1 p
k(zi)ϕl(zi, v̂i).

Let ˙̄ϕL(z) = ( ˙̄ϕ1(z), . . . , ˙̄ϕL(z))′ and ϕ̄L(z) = (ϕ̄1(z), . . . , ϕ̄L(z))′. We also let
ϕL(zi, v̂i) = (ϕ1(zi, v̂i), . . . , ϕL(zi, v̂i))

′ and ϕL(zi, vi) = (ϕ1(zi, vi), . . . , ϕL(zi, vi))
′.

First note (P ′P )/n becomes nonsingular w.p.a.1 as ξ0(k)2k/n → 0 by Assumption L1
(ii) and the same proof in Theorem 1 of Newey (1997). Then by the same proof (A.3) of
Lemma A1 in Newey, Powell, and Vella (1999), we obtain∑n

i=1
||Π̂i − Πi||2/n = Op(42

n,1) and
∑n

i=1
|| ˙̄ϕl,i − ϕ̄l,i||2/n = Op(42

n,2) for all l. (18)

Also by Theorem 1 of Newey (1997), it follows that

max
i≤n
||Π̂i − Πi|| = Op(ξ0(k)4n,1) (19)

max
i≤n
|| ˙̄ϕl,i − ϕ̄l,i|| = Op(ξ0(k)4n,2) for all l.
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Define T̂ = (
ˆ̂
ψL,n)′

ˆ̂
ψL,n/n and Ṫ = (ψL,n)′ψL,n/n. Our goal is to show that T̂ is nonsin-

gular w.p.a.1. We first show that Ṫ is nonsingular w.p.a.1 and this is closely related with
the identification result of Theorem 1. Recall that (xi, z1i) and κ(zi, vi) has no additive
functional relationship for any κ(zi, vi) satisfying E[κ(Zi, Vi)|Zi] = 0 and E[ϕ̃Li ϕ̃

L′
i ] is non-

singular by Assumption L1 (ii). Therefore, Ṫ is nonsingular w.p.a.1 by Assumption L1 (ii)
as ζ0(L)2L/n → 0 by the same proof in Lemma A1 of Newey, Powell, and Vella (1999).
The same conclusion holds even when instead we take Ṫ =

∑n
i=1C(zi, vi)ψ

L
i ψ

L′
i /n for some

positive bounded function C(zi, vi) by the same proof in Lemma A1 of Newey, Powell, and
Vella (1999) and this helps to derive the consistency of the heteroskedasticity robust variance
estimator later.

For ease of notation along the proof, we will assume some rate conditions are satisfied.
Then we collect those rate conditions in Section B.2 and derive conditions under which all
of them are satisfied.

Next note that

∥∥ ˆ̃̂ϕLi − ϕ̃Li
∥∥ ≤ ∥∥ϕL(zi, v̂i)− ϕL(zi, vi)

∥∥+
∥∥ ˆ̄ϕL(zi)− ϕ̄L(zi)

∥∥ (20)

≤
∥∥ϕL(zi, v̂i)− ϕL(zi, vi)

∥∥+
∥∥ ˆ̄ϕL(zi)− ˙̄ϕL(zi)

∥∥+
∥∥ ˙̄ϕL(zi)− ϕ̄L(zi)

∥∥ .
We find

∥∥ϕL(zi, v̂i)− ϕL(zi, vi)
∥∥ ≤ Cζ1(L)||Π̂i − Πi|| applying a mean value expansion be-

cause ϕl(zi, vi) is Lipschitz in Πi for all l (Assumption C1 (vi)). Combined with (18), it
implies that ∑n

i=1

∥∥ϕL(zi, v̂i)− ϕL(zi, vi)
∥∥2
/n = Op(ζ1(L)242

n,1). (21)

Next let ω̂l = (ϕl(z1, v̂1)− ϕl(z1, v1), . . . , ϕl(zn, v̂n)− ϕl(zn, vn))′. Then we can write for any
l = 1, . . . , L,∑n

i=1

∥∥ ˆ̄ϕl(zi)− ˙̄ϕl(zi)
∥∥2
/n = tr

{∑n

i=1
pk(zi)

′(P ′P )−P ′ω̂lω̂
′
lP (P ′P )−pk(zi)

}
/n (22)

= tr

{
(P ′P )−P ′ω̂lω̂

′
lP (P ′P )−

n∑
i=1

pk(zi)p
k(zi)

′

}
/n

= tr
{

(P ′P )−P ′ω̂lω̂
′
lP
}
/n

≤ C max
i≤n
||Π̂i − Πi||2tr

{
(P ′P )−P ′P

}
/n ≤ Cξ0(k)242

n,1k/n

where the first inequality is obtained by (19) and applying a mean value expansion to ϕl(zi, vi)
which is Lipschitz in Πi for all l (Assumption C1 (vi)). From (18), (20), (21), and (22), we
conclude ∑n

i=1
|| ˆ̄ϕL(zi)− ϕ̄L(zi)||2/n = Op(Lξ0(k)242

n,1k/n) +Op(L42
n,2) = op(1) (23)
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and∑n

i=1

∥∥ ˆ̃̂ϕLi − ϕ̃Li
∥∥2
/n = Op(ζ1(L)242

n,1) +Op(Lξ0(k)242
n,1k/n) +Op(L42

n,2) = op(1).

This also implies that by the triangle inequality and the Markov inequality,

∑n

i=1
|| ˆ̃̂ϕLi ||2/n ≤ 2

n∑
i=1

|| ˆ̃̂ϕLi − ϕ̃Li ||2/n+ 2
n∑
i=1

||ϕ̃Li ||2/n = op(1) +Op(L). (24)

Let 4ϕ
n = (ζ1(L) + L1/2ξ(k)

√
k/n+ L1/2)4n. It also follows that

∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n ≤
∑n

i=1

∥∥∥ ˆ̃̂ϕLi − ϕ̃Li
∥∥∥2

/n = Op((4ϕ
n)2) = op(1). (25)

This also implies ∑n

i=1

∥∥∥ ˆ̂
ψL
i

∥∥∥2

/n = Op(L)

because
∑n

i=1

∥∥∥ ˆ̂
ψL
i

∥∥∥2

/n ≤ 2
∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n+ 2
∑n

i=1

∥∥ψL
i

∥∥2
/n = Op(L).

Then applying (25) and applying the triangle inequality and Cauchy-Schwarz inequality
and by Assumption L1 (iii) , we obtain

||T̂ − Ṫ || ≤
∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n+ 2
∑n

i=1

∥∥ψL
i

∥∥ ∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥ /n (26)

≤ Op((4ϕ
n)2) + 2

(∑n

i=1

∥∥ψL
i

∥∥2
/n
)1/2

(∑n

i=1

∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

/n

)1/2

= Op((4ϕ
n)2) +Op(L

1/24ϕ
n) = op(1).

It follows that

||T̂ − T || ≤ ||T̂ − Ṫ ||+ ||Ṫ − T ||

= Op((4ϕ
n)2 + L1/24ϕ

n + ζ0(L)
√

L/n) ≡ Op(4T ) = op(1) (27)

where we obtain ||Ṫ − T || = Op(ζ0(L)
√

L/n) by the same proof in Lemma A1 of Newey,
Powell, and Vella (1999).

Therefore we conclude T̂ is also nonsingular w.p.a.1. The same conclusion holds even
when instead we take T̂ =

∑n
i=1C(zi, vi)

ˆ̂
ψL
i

ˆ̂
ψL′
i /n and Ṫ =

∑n
i=1C(zi, vi)ψ

L
i ψ

L′
i /n for

some positive bounded function C(zi, vi) and this helps to derive the consistency of the
heteroskedasticity robust variance estimator later.

Let ηi = yi − g0(zi, vi) and let η = (η1, . . . , ηn)′. Let (Z,V) = ((Z1, V1), . . . , (Zn, Vn)).
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Then we have E[ηi|Z,V] = 0 and by the independence assumption of the observations, we
have E[ηiηj|Z,V] = 0 for i 6= j. We also have E[η2

i |Z,V] < ∞. Then by (25) and the
triangle inequality, we bound

E
[
||( ˆ̂
ψL,n − ψL,n)′η/n||2|Z,V

]
≤ Cn−2

∑n

i=1
E[η2

i |Z,V]
∥∥∥ ˆ̂
ψL
i − ψL

i

∥∥∥2

≤ n−1Op(L(4ϕ
n)2) = op(n

−1).

Then from the standard result (see Newey (1997) or Newey, Powell, and Vella (1999)) that
the bound of a term in the conditional mean implies the bound of the term itself, we obtain
||( ˆ̂
ψL,n − ψL,n)′η/n||2 = op(n

−1). Also note that E[
∥∥(ψL,n)′η/n

∥∥2
] = CL/n (see proof of

Lemma A1 in Newey, Powell, and Vella (1999)). Therefore, by the triangle inequality

||( ˆ̂
ψL,n)′η/n||2 ≤ 2||( ˆ̂

ψL,n − ψL,n)′η/n||2 + 2||(ψL,n)′η/n||2. (28)

= op(1) +Op(L/n) = Op(L/n).

Define

ĝi = f̂(xi, z1i) + ĥ(zi, v̂i), ˆ̂gLi = fK(xi, z1i) + ĥL(zi, v̂i), g̃Li = fK(xi, z1i) + hL(zi, v̂i),

g̃0i = f0(xi, z1i)+h0(zi, v̂i), and g0i = f0(xi, z1i)+h0(zi, vi) where fK(xi, z1i) =
∑K

l=1 βlφl(xi, z1i),
ĥ(zi, v̂i) = â′L ˆ̃ϕ(zi, v̂i), ĥL(zi, v̂i) = a′L ˆ̃ϕ(zi, v̂i), and hL(zi, v̂i) = a′L(ϕ(zi, v̂i) − ϕ̄L(zi)) and
let ĝ, ˆ̂gL, g̃L, and g̃0 stack the n observations of ĝi, ˆ̂gLi, g̃Li, and g̃0i, respectively. Recall
βL = (β1, . . . , βK , a

′
L)′ and let this βL satisfies Assumption L1 (iv). From the first order

condition of the last step least squares we obtain

0 =
ˆ̂
ψL,n′(y − ĝ)/n (29)

=
ˆ̂
ψL,n′(η − (ĝ − ˆ̂gL)− (ˆ̂gL − g̃L)− (g̃L − g̃0))/n

=
ˆ̂
ψL,n′(η − ˆ̂

ψL,n(β̂ − βL)− (ˆ̂gL − g̃L)− (g̃L − g̃0)− (g̃0 − g0))/n.

Note that by ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent and by Assumption L1 (iv),

||T̂ −1 ˆ̂
ψL,n′(g̃L − g̃0)/n|| ≤ Op(1){(g̃L − g̃0)′

ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′(g̃L − g̃0)/n}1/2 (30)

≤ Op(1){(g̃L − g̃0)′(g̃L − g̃0)/n}1/2 = Op(L
−γ).

28



Similarly we obtain by ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent, Assumption L1 (iv), and (23),

||T̂ −1 ˆ̂
ψL,n′(ˆ̂gL − g̃L)/n|| = Op(1){(ˆ̂gL − g̃L)′(ˆ̂gL − g̃L)/n}1/2 (31)

≤ Op(1)(
n∑
i=1

||ĥL(zi, v̂i)− h̃L(zi, v̂i)||2/n)1/2

≤ Op(1)(
n∑
i=1

||aL||2|| ˆ̄ϕL(zi)− ϕ̄L(zi)||2/n)1/2 = Op(Lξ0(k)4n,1

√
k/n+ L4n,2).

Similarly also by ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent and (18) and applying the mean value
expansion to h0(zi, vi), we have

||T̂ −1 ˆ̂
ψL,n′(g̃0 − g0)/n|| = Op(1)(

n∑
i=1

||h0(zi, v̂i)− h0(zi, vi)||2/n)1/2 (32)

≤ Op(1)(
∑n

i=1
||Π̂i − Πi||2/n)1/2 = Op(4n,1) = op(1).

Combining (28), (29), (30), (31), (32) and by T̂ is nonsingular w.p.a.1, we obtain

||β̂ − βL|| ≤ ||T̂ −1 ˆ̂
ψL,n′η/n||+ ||T̂ −1 ˆ̂

ψL,n′(ˆ̂gL − g̃L)/n||+ ||T̂ −1 ˆ̂
ψL,n′(g̃L − g̃0)/n||+ op(1)

= Op(1){
√

L/n+ Lξ0(k)4n,1

√
k/n+ L4n,2 + L−γ} ≡ Op(4n,β). (33)

Define g∗Li = fK(xi, z1i) +h∗L(zi, vi) where h∗L(zi, vi) = a′L(ϕL(zi, vi)− ˆ̄ϕL(zi)). Then applying
the triangle inequality, by (23), (33), the Markov inequality, Assumption L1 (iv), and T̂ is
nonsingular w.p.a.1 (by Assumption L1 (ii) and (27)), we conclude∑n

i=1
(ĝ(zi, vi)− g0(zi, vi))

2 /n

≤ 3
∑n

i=1
(ĝ(zi, vi)− g∗Li)

2 /n+ 3
∑n

i=1
(g∗Li − gLi)

2 /n+ 3
∑n

i=1
(gLi − g0(zi, vi))

2 /n

≤ Op(1)||β̂ − βL||2

+C1

∑n

i=1
||aL||2|| ˆ̄ϕL(zi)− ϕ̄L(zi)||2/n+ C2 sup

W
||β′LψL(z, v)− g0(z, v)||2

≤ Op(42
n,β) + LOp(Lξ0(k)242

n,1k/n+ L42
n,2) +Op(L

−2γ) = Op(42
n,β).

This also implies that by a similar proof to Theorem 1 of Newey (1997)

max
i≤n
|ĝi − g0i| = Op(ζ0(L)4n,β). (34)

29



B.2 Proof of Theorem 2

Under Assumptions C1, all the assumptions in Assumption L1 are satisfied. For the consis-
tency, we require the following rate conditions: R(i) L1/24ϕ

n → 0 from (26), R(ii) ζ0(L)2L/n→
0 (such that Ṫ is nonsingular w.p.a.1), and R(iii) ξ0(k)2k/n→ 0 (such that P ′P/n is nonsin-
gular w.p.a.1). The other rate conditions are dominated by these three. From the definition
of 4ϕ

n = (ζ1(L) + L1/2ξ0(k)
√
k/n + L1/2)4n, we have R(i) : L1/2(ζ1(L) + L1/2ξ0(k)

√
k/n +

L1/2)4n.

For the polynomial approximations, we have ζδ(L) ≤ CL1+2δ and ξ0(k) ≤ Ck and for
the spline approximations, we have ζδ(L) ≤ CL0.5+δ and ξ0(k) ≤ Ck0.5. Therefore for
the polynomial approximations, the rate condition becomes (i) L1/2(L3 + L1/2k3/2/

√
n +

L1/2)4n → 0, (ii) L3/n → 0, and (iii) k3/n → 0 and for the spline approximations, it
becomes R(i) L1/2(L3/2 +L1/2k/

√
n+L1/2)4n → 0, (ii) L2/n→ 0, and (iii) k2/n→ 0. Also

note that

4n,β ≡
√

L/n+ Lξ0(k)4n,1

√
k/n+ L4n,2 + L−γ

=
√

L/n+ L4n + L−γ

since ξ0(k)
√
k/n = o(1). We take γ = s/d because f0 and h0 belong to the Hölder class

and we can apply the approximation theorems (e.g., see Timan (1963), Schumaker (1981),
Newey (1997), and Chen (2007)).

Therefore, the conclusion of Theorem C1 follows from Lemma L1 applying the dominated
convergence theorem by ĝi and g0i are bounded.

C Proof of asymptotic normality

Along the proof, we will obtain a series of convergence rate conditions. We collect them
here. First define

4ϕ
n = (ζ1(L) + L1/2ξ0(k)

√
k/n+ L1/2)4n

4n,β =
√

L/n+ L4n + L−γ

4T = (4ϕ
n)2 + L1/24ϕ

n + ζ0(L)
√

L/n,4T1 = ξ0(k)
√
k/n

4H = ζ0(L)k1/2/
√
n+ k1/24ϕ

n + L−γζ0(L)
√
k

4dϕ = ζ0(L)L1/24n,2,4g = ζ0(L)4n,β

4Σ = ∆T + ζ0(L)2L/n,4Ĥ = (ζ1(L)4n,β + ξ0(k)4n,1)L1/2ξ0(k)
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and we need the following rate conditions for the
√
n-consistency and the consistency of the

variance matrix estimator Ω̂:

√
nL−γ → 0,

√
nk1/2L−γ → 0,

√
nk−γ1 → 0,

√
nk−γ2 → 0

k1/2(4T1 +4H) + L1/24T → 0, n−1(ζ0(L)2L + ξ0(k)2k + ξ0(k)2kL4)→ 0,

k1/2(4T1 +4H) + L1/24T +4dϕ → 0,4g → 0,4Σ → 0,4Ĥ → 0.

Dropping the dominated ones and assuming
√
nL−γ,

√
nk−γ1 , and

√
nk−γ2 are small enough,

under the following all the rate conditions are satisfied:

ζ0(L)k + ζ1(L)k3/2 + ζ0(L)L + Lζ1(L)ξ0(k) + L1/2ζ1(L)Lξ0(k)k1/2 + L1/2ξ0(k)2k1/2

√
n

→ 0

for the polynomial approximations it becomes L2+LL3k+L1/2(L4k3/2+k5/2)√
n

→ 0 and for the spline

approximations it becomes L3/2+LL3/2k1/2+L1/2(L5/2k+k3/2)+L3/2k3/2
√
n

→ 0.
Let pki = pk(Zi). We start with introducing additional notation:

Σ = E[ψL
i ψ

L′
i var(Yi|Zi, Vi)], T = E[ψL

i ψ
L′
i ], T1 = E[pki p

k′
i ], (35)

Σ1 = E[V 2
i p

k
i p
k′
i ],Σ2,l = E[(ϕl(Zi, Vi)− ϕ̄l(Zi))2pki p

k′
i ],

H11 = E[
∂h0i

∂Vi
ψL
i p

k′
i ], H̄11 =

n∑
i=1

∂h0i

∂Vi
ψL
i p

k′
i /n

H12 = E[E[
∂h0i

∂Vi
|Zi]ψL

i p
k′
i ], H̄12 =

n∑
i=1

E[
∂h0i

∂Vi
|Zi]ψL

i p
k′
i /n

H2,l = E[alψ
L
i p

k′
i ], H̄2,l =

n∑
i=1

alψ
L
i p

k′
i /n,H1 = H11 −H12, H̄1 = H̄11 − H̄12

Ω̄ = AT −1[Σ +H1T −1
1 Σ1T −1

1 H ′1 +
∑L

l=1
H2,lT −1

1 Σ2,lT −1
1 H ′2,l]T −1A′.

We let T1 = E[pki p
k′
i ] = I and E[ϕ̃i

Lϕ̃i
L′] = I without loss of generality.

Then Ω̄ = AT −1
[
Σ +H1Σ1H

′
1 +

∑L
l=1H2,lΣ2,lH

′
2,l

]
T −1A′. Let Γ be a symmetric square

root of Ω̄. Because T is nonsingular and var(Yi|Zi, Vi) is bounded away from zero, Σ − CI
is positive semidefinite for some positive constant C. It follows that

||ΓAT −1|| = {tr(ΓAT −1T −1A′T ′)}1/2 ≤ C{tr(ΓAT −1ΣT −1A′Γ′)}1/2

≤ {tr(CΓΩ̄Γ′)}1/2 ≤ C.

Next we show Ω̄ → Ω. Under Assumption R1, we have A = E[ν∗(Z, V )ψL′
i ]. Take

ν∗L(Z, V ) = AT −1ψL
i . Then note E[||ν∗(Z, V ) − ν∗L(Z, V )||2] → 0 because (i) ν∗L(Z, V ) =
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E[ν∗(Z, V )ψL′
i ]T −1ψL

i is a mean-squared projection of ν∗(zi, vi) on ψL
i ; (ii) ν∗(zi, vi) is smooth

and the second moment of ν∗(zi, vi) is bounded, so it is well-approximated in the mean-
squared error as assumed in Assumption R1. Let ν∗i = ν∗(Zi, Vi) and ν∗Li = ν∗L(Zi, Vi). It
follows that

E[ν∗Livar(Yi|Zi, Vi)ν∗′Li] = AT −1E[ψL
i var(Yi|Zi, Vi)ψL′

i ]T −1A′

→ E[ν∗i var(Yi|Zi, Vi)ν∗′i ].

It concludes that AT −1ΣT −1A′ converges to E[ν∗i var(Yi|Zi, Vi)ν∗i ′] (the first term in Ω) as
k,K,L→∞. Let

bLi = E[ν∗Li

(
∂h0i

∂Vi
− E[

∂h0i

∂Vi
|Zi]
)
pk′i ]pki

and bi = E
[
ν∗i

(
∂h0i

∂Vi
− E[∂h0i

∂Vi
|Zi]
)
pk′i

]
pki . Then E[||bLi−bi||2] ≤ CE[||ν∗Li−ν∗i ||2]→ 0 where

the first inequality holds because the mean square error of a least squares projection cannot
be larger than the MSE of the variable being projected. Also note that E[||ρv(Zi)−bi||2]→ 0

as k → ∞ because bi is a least squares projection of ν∗i
(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi
])

on pki and it
converges to the conditional mean as k →∞. Finally note that

E[bLivar(Vi|Zi)b′Li]

= AT −1E

[
ψL
i

(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi
])

pk′i

]
E[var(Vi|Zi)pki pk′i ]

×E
[
pki

(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi
])

ψL′
i

]
T −1A′

= AT −1H1Σ1H
′
1T −1A′

and this conclude that AT −1H1Σ1H
′
1T −1A′ converges to E[ρv(Z)var(X|Z)ρv(Z)′] (the sec-

ond term in Ω). Similarly we can show that for all l

AT −1H2,lΣ2,lH
′
2,lT −1A′ → E[ρϕ̄l

(Z)var(ϕl(Z, V )|Z)ρϕ̄l
(Z)′].

Therefore we conclude Ω̄ → Ω as k,K,L → ∞. This also implies that Γ → Ω−1/2 and Γ is
bounded.

Next we derive the asymptotic normality of
√
n(θ̂−θ0). After we establish the asymptotic

normality, we will show the convergence of the each term in (17) to the corresponding
terms in (35). We show some of them first, which will be useful to derive the asymptotic
normality. Note ||T̂ − T || = Op(4T ) = op(1) and ||T̂1 − T1|| = Op(4T1) = op(1) . We
also have ||ΓA(T̂ −1 − T −1)|| = op(1) and ||ΓAT̂ −1/2||2 = Op(1) (see proof in Lemma A1
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of Newey, Powell, and Vella (1999)). We next show ||H̄11 − H11|| = op(1). Let H11L =

E[
∑L

l=1 al
∂ϕl(Zi,Vi)

∂Vi
ψL
i p

k′
i ] and H̄11L =

∑n
i=1

∑L
l=1 al

∂ϕl(Zi,Vi)
∂Vi

ψL
i p

k′
i /n. Similarly define H12L

and H̄12L and let H1L = H11L −H12L. By Assumption N1 (i), Assumption L1 (iii), and the
Cauchy-Schwarz inequality,

||H1 −H1L||2

≤ CE[||{(∂h0i

∂Vi
− E[

∂h0i

∂Vi
|Zi])−

∑
l

al(
∂ϕl(Zi, Vi)

∂Vi
− E[

∂ϕl(Zi, Vi)

∂Vi
|Zi])}ψL

i p
k′
i ||2]

≤ CL−2γE[||ψL
i ||2

∑
k

p2
ki] = O(L−2γζ0(L)2k).

Next consider that by Assumption L1 (iii) and the Cauchy-Schwarz inequality,

E[
√
n||H̄11L −H11L||] ≤ C(E[(

L∑
l=1

al
∂ϕl(Zi, Vi)

∂Vi
)2||ψL

i ||2
∑
k

p2
ki])

1/2

= C(E[(
∂hLi
∂Vi

)2||ψL
i ||2

∑
k

p2
ki])

1/2 ≤ Cζ0(L)k1/2

where the first equality holds because ∂hLi

∂Vi
=
∑L

l=1 al
∂ϕ̃l(Zi,Vi)

∂Vi
=
∑L

l=1 al
∂ϕl(Zi,Vi)

∂Vi
and the last

result holds because hLi ∈ Hn (i.e. |hLi|1 is bounded). Similarly by (25), the Cauchy-Schwarz
inequality, and the Markov inequality, we obtain

∥∥H̄11 − H̄11L

∥∥ ≤ Cn−1
∑n

i=1
|
L∑
l=1

al
∂ϕl(Zi, Vi)

∂Vi
| · || ˆ̂ψL

i − ψL
i || · ||pki ||

≤ C
(∑n

i=1
Ci|| ˆ̂ψL

i − ψL
i ||2/n

)1/2

·
(∑n

i=1
||pki ||2/n

)1/2

≤ Op(k
1/24ϕ

n).

Therefore, we have ||H̄11−H11|| = Op(ζ0(L)k1/2/
√
n+ k1/24ϕ

n +L−γζ0(L)
√
k) ≡ Op(4H) =

op(1). Similarly we can show that ||H̄12 −H12|| = op(1) and ||H̄2,l −H2,l|| = op(1) for all l.
Now we derive the asymptotic expansion to obtain the influence functions. Further

define ĝLi = fK(xi, z1i) + h̃L(zi, v̂i) where h̃L(zi, v̂i) = a′L(ϕL(zi, v̂i) − E[ϕL(Zi, V̂i)|zi]) and
gLi = fK(xi, z1i) +hL(zi, vi). From the first order condition, we obtain the expansion similar
to (29). Recall βL = (β1, . . . , βK , a

′
L)′ and let this βL satisfy Assumption N1 (i).

0 =
ˆ̂
ψL,n′(y − ĝ)/

√
n (36)

=
ˆ̂
ψL,n′(η − (ĝ − ˆ̂gL)− (ˆ̂gL − ĝL)− (ĝL − gL)− (gL − g0))/

√
n

=
ˆ̂
ψL,n′(η − ˆ̂

ψL,n(β̂ − βL)− (ˆ̂gL − ĝL)− (ĝL − gL)− (gL − g0))/
√
n.
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Similar to (30), we obtain

||T̂ −1 ˆ̂
ψL,n′(gL − g0)/

√
n|| = Op(

√
nL−γ). (37)

Also note that

√
n||Γ(α(gL)− α(g0))|| =

√
n||Γ|| · ||α(gL − g0)|| ≤ C

√
n ‖Γ‖ · |ψL′(·)βL − g0(·)|δ (38)

= Op(
√
nL−γ) = op(1)

because α(·) is a linear functional and by Assumption N1 (i).
From the linearity of α(·), (36), (37), and (38) we have

√
nΓ(θ̂ − θ0) =

√
nΓ(α(ĝ)− α(g0)) =

√
nΓ(α(ĝ)− α(gL)) +

√
nΓ(α(gL)− α(g0)) (39)

=
√
nΓA(β̂ − βL) +

√
nΓ{a(gL)− a(g0)}

= ΓAT̂ −1 ˆ̂
ψL,n′(η − (ˆ̂gL − ĝL)− (ĝL − gL))/

√
n+ op(1).

Now we derive the stochastic expansion of ΓAT̂ −1 ˆ̂
ψL,n′(ĝL− gL)/

√
n. Note that by a second

order mean-value expansion of each h̃Li around vi,

ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i (ĝLi − gLi)/

√
n = ΓAT̂ −1

∑n

i=1

ˆ̂
ψL
i (h̃Li − hLi)/

√
n

= ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i (
dhLi
dvi
− E[

dhLi
dVi
|Zi])(Π̂i − Πi)/

√
n+ ς̂

= ΓAT̂ −1H̄1T̂ −1
1

∑n

i=1
pki vi/

√
n+ ΓAT̂ −1H̄1T̂ −1

1

∑n

i=1
pki (Πi − pk′i λ1

k)/
√
n

+ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i (
dhLi
dvi
− E[

dhLi
dVi
|Zi])(pk′i λ1

k − Πi)/
√
n+ ς̂ .

and the remainder term ||ς̂|| ≤ C
√
n||ΓAT̂ −1/2||ζ0(L)

∑n
i=1Ci||Π̂i−Πi||2/n = Op(

√
nζ0(L)42

n,1) =

op(1). Then by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey, Powell,
and Vella (1999), under

√
nk−s1/dz → 0 and k1/2(4T1 +4H) + L1/24T → 0 (so that we can

replace T̂1 with T1, H̄1 with H1, and T̂ with T respectively), we obtain

ΓAT̂ −1 ˆ̂
ψL,n′(ĝL − gL)/

√
n = ΓAT −1H1

∑n

i=1
pki vi/

√
n+ op(1). (40)

This derives the influence function that comes from estimating vi in the first step.
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Next we derive the stochastic expansion of ΓAT̂ −1 ˆ̂
ψL,n′(ˆ̂gL − ĝL)/

√
n:

ΓAT̂ −1

n∑
i=1

ˆ̂
ψL
i (ˆ̂gLi − ĝLi)/

√
n = ΓAT̂ −1

n∑
i=1

ˆ̂
ψL
i a
′
L( ˆ̄ϕL(zi)− E[ϕL(Zi, V̂i)|zi])/

√
n

= ΓAT̂ −1{
∑

l
H̄2,lT̂ −1

1

∑n

i=1
pki ϕ̃li/

√
n+

∑
l
H̄2,lT̂ −1

1

∑n

i=1
pki (ϕ̄l(zi)− pk′i λ2

l,k)/
√
n}

+ΓAT̂ −1
∑n

i=1

ˆ̂
ψL
i

∑
l
al(p

k′
i λ

2
l,k − ϕ̄l(zi))/

√
n+ ΓAT̂ −1

∑n

i=1

ˆ̂
ψL
i ρi/
√
n (41)

where ρi = pk′i T̂ −1
1

∑n
i=1 p

k
i

∑
l al{(ϕl(zi, v̂i)−ϕl(zi, vi))−(E[ϕl(Zi, V̂i)|zi]−ϕ̄l(zi))}.We focus

on the last term in (41). Note that pk′i T̂ −1
1

∑n
i=1 p

k
i (ϕl(zi, v̂i) − ϕl(zi, vi)) is a projection of

ϕl(zi, v̂i)− ϕl(zi, vi) on pki and it converges to the conditional mean E[ϕl(Zi, V̂i)|zi]− ϕ̄l(zi).
Note that E[ρi|Z1, . . . , Zn] = 0 and therefore E[||ρi||2|Z1, . . . , Zn] ≤ LOp(42

n,2) by a similar
proof to (18). It follows that by Assumption L1 (iii) and the Cauchy-Schwarz inequality,

E[
∥∥ n∑
i=1

ˆ̂
ψL
i ρi/
√
n
∥∥|Z1, . . . , Zn] ≤ (E[|| ˆ̂ψL

i ||2||ρi||2|Z1, . . . , Zn])1/2 ≤ Cζ0(L)L1/24n,2.

This implies that
∑n

i=1
ˆ̂
ψL
i ρi/
√
n = Op(ζ0(L)L1/24n,2) ≡ Op(4dϕ) = op(1).

Then again by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey,
Powell, and Vella (1999), under

√
nk−s2/dz → 0,

√
nk1/2L−s/d → 0, and k1/2(4T1 +4H) +

L1/24T + 4dϕ → 0 (so that we can replace T̂1 with T1, H̄2,l with H2,l, and T̂ with T
respectively and we can ignore the last term in (41)), we obtain

ΓAT̂ −1 ˆ̂
ψL,n′(ˆ̂gL − ĝL)/

√
n = ΓAT −1

∑
l
H2,l

∑n

i=1
pki ϕ̃li/

√
n+ op(1). (42)

This derives the influence function that comes from estimating E[ϕli|Zi]’s in the middle step.
We can also show that replacing ˆ̂

ψL
i with ψL

i does not influence the stochastic expansion
by (25). Therefore by (39), (40), and (42), we obtain the stochastic expansion,

√
nΓ(θ̂ − θ0) = ΓAT −1(ψL,n′η −H1

∑n

i=1
pki vi/

√
n−

∑
l
H2,l

∑n

i=1
pki ϕ̃li/

√
n) + op(1).

To apply the Lindeberg-Feller theorem, we check the Lindeberg condition. For any vector
q with ||q|| = 1, let Win = q′ΓAT −1(ψL

i ηi − H1p
k
i vi −

∑
lH2,lp

k
i ϕ̃li)/

√
n. Note that Win

is i.i.d, given n and by construction, E[Win] = 0 and var(Win) = 1/n. Also note that
||ΓAT −1|| ≤ C, ||ΓAT −1Hj|| ≤ C||ΓAT −1|| ≤ C by CI −HjH

′
j being positive semidefinite

for j = 1, (2, 1), . . . , (2, L). Also note that (
∑L

l=1 ϕ̃li)
4 ≤ L2(

∑L
l=1 ϕ̃

2
li)

2 ≤ L3
∑L

l=1 ϕ̃
4
li. It
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follows that for any ε > 0,

nE[1(|Win| > ε)W 2
in] = nε2E[1(|Win| > ε)(Win/ε)

2] ≤ nε−2E[|Win|4]

≤ Cnε−2{E[||ψL
i ||4E[η4

i |Zi, Vi]] + E[||pki ||4E[V 4
i |Zi]] + L3

∑
l

E[||pki ||4E[ϕ̃4
li|Zi]]}/n2

≤ Cn−1(ζ0(L)2L + ξ0(k)2k + ξ0(k)2kL4) = o(1).

Therefore,
√
nΓ(θ̂ − θ0)→d N(0, I) by the Lindeberg-Feller central limit theorem. We have

shown that Ω̄→ Ω and Γ is bounded. We therefore also conclude
√
n(θ̂− θ0)→d N(0,Ω−1).

Now we show the convergence of the each term in (17) to the corresponding terms in
(35). Let η̂i = yi − ĝ(zi, v̂i). Note that η̂∗i ≡ η̂2

i − η2
i = −2ηi(ĝi − g0i) + (ĝi − g0i)

2 and that
maxi≤n |ĝi−g0i| = Op(ζ0(L)4n,β) = op(1) by (34). Let D̂ = ΓAT̂ −1 ˆ̂

ψL,n′diag{1+ |ηi|, . . . , 1+

|ηn|} ˆ̂
ψL,nT̂ −1A′Γ′ and note that ˆ̂

ψL,n and T̂ only depend on (Z1, V1), . . . , (Zn, Vn) and thus
E[D̂|(Z1, V1), . . . , (Zn, Vn)] ≤ CΓAT̂ −1A′Γ′ = Op(1). Therefore, ||D̂|| = Op(1) as well. Next

let Σ̃ =
∑n

i=1
ˆ̂
ψL
i

ˆ̂
ψL′
i η

2
i /n. Then,

||ΓAT̂ −1(Σ̂− Σ̃)T̂ −1A′Γ′|| = ||ΓAT̂ −1 ˆ̂
ψL,n′diag{η̂∗1, . . . , η̂∗n}

ˆ̂
ψL,nT̂ −1A′Γ′|| (43)

≤ Ctr(D̂) max
i≤n
|ĝi − g0i| = Op(1)op(1).

Then, by the essentially same proof in Lemma A2 of Newey, Powell, and Vella (1999), we
obtain

||Σ̃− Σ|| = Op(∆T + ζ0(L)2L/n) ≡ Op(4Σ) = op(1), (44)

||ΓAT̂ −1(Σ̂− Σ)T̂ −1A′Γ′|| = op(1),

||ΓA(T̂ −1ΣT̂ −1 − T −1ΣT −1)A′Γ′|| = op(1).

Then, by (43), (44), and the triangle ineq., we conclude ||ΓAT̂ −1Σ̂T̂ −1A′Γ′−ΓAT −1ΣT −1A′Γ′|| =
op(1). It remains to show that for j = 1, (2, 1), . . . , (2, L),

ΓA(T̂ −1ĤjT̂ −1
1 Σ̂jT̂ −1

1 Ĥ ′jT̂ −1 − T −1HjΣjH
′
jT −1)A′Γ′ = op(1). (45)

As we have shown ||Σ̂ − Σ|| = op(1), similarly we can show ||Σ̂j − Σj|| = op(1), j =

1, (2, 1), . . . , (2, L).
We focus on showing ||Ĥj − H̄j|| = op(1) for j = 1, (2, 1), . . . , (2, L). First note that

||Ĥ11 − H̄11|| = ||
∑n

i=1
(
∑L

l=1
âl
∂ϕl(zi, v̂i)

∂vi
− al

∂ϕl(zi, vi)

∂vi
)

ˆ̂
ψL
i p

k(zi)
′/n||

36



By the Cauchy-Schwarz inequality, (24), and Assumption L1 (iii), we have
∑n

i=1 ||
ˆ̂
ψL
i p

k′
i ||2/n ≤∑n

i=1 ||
ˆ̂
ψL
i ||2||pki ||2/n = Op(Lξ0(k)2). Also note that by the triangle inequality, the Cauchy-

Schwarz inequality, and by Assumption C1 (vi) and (19), applying a mean value expansion
to ∂ϕl(zi,vi)

∂vi
w.r.t vi,

∑n

i=1
||
∑L

l=1
(âl
∂ϕl(zi, v̂i)

∂vi
− al

∂ϕl(zi, vi)

∂vi
)||2/n

≤ 2
∑n

i=1
||
∑L

l=1
(âl − al)

∂ϕl(zi, vi)

∂vi
||2/n+ 2

∑n

i=1
||
∑L

l=1
âl(
∂ϕl(zi, v̂i)

∂vi
− ∂ϕl(zi, vi)

∂vi
)||2/n

≤ C||â− aL||2
∑n

i=1
||∂ϕ̃

L(zi, vi)

∂vi
||2/n+ C1

∑n

i=1
||
∑L

l=1
âl
∂2ϕl(zi, ṽi)

∂v2
i

(Π̂i − Πi)||2/n

≤ C||â− aL||2
∑n

i=1
||∂ϕ̃

L(zi, vi)

∂vi
||2/n+ C1 max

1≤i≤n
||Π̂i − Πi||2 ·

∑n

i=1
||
∑L

l=1
âl
∂2ϕl(zi, ṽi)

∂v2
i

||2/n

= Op(ζ
2
1 (L)42

n,β + ξ2
0(k)42

n,1)

where ṽi lies between v̂i and vi, which may depend on l. We therefore conclude by the
triangle inequality and the Cauchy-Schwarz inequality, ||Ĥ11 − H̄11|| ≤ Op((ζ1(L)4n,β +

ξ0(k)4n,1)L1/2ξ0(k)) = Op(4Ĥ) = op(1). Similarly we can show that ||Ĥ12 − H̄12|| = op(1)

and ||Ĥ2,l − H̄2,l|| = op(1) l = 1, . . . , L. We have shown that ||H̄j − Hj|| = op(1) for
j = 1, (2, 1), . . . , (2, L) previously. Therefore, ||Ĥj −Hj|| = op(1) for j = 1, (2, 1), . . . , (2, L).
Then by the similar proof like (43) and (44), the conclusion (45) follows. From (45) finally
note that by Γ is bounded, ||Ω̂− Ω̄|| ≤ C||ΓΩ̂Γ′ − ΓΩ̄Γ′|| = op(1).
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