Modeling and Forecasting Realized Volatility

Torben G. Andersen, Tim Bollerslev, Francis X. Diebold, Paul Labys

NBER Working Paper No. 8160
Issued in March 2001
NBER Program(s):   AP   IFM

This paper provides a general framework for integration of high-frequency intraday data into the measurement forecasting of daily and lower frequency volatility and return distributions. Most procedures for modeling and forecasting financial asset return volatilities, correlations, and distributions rely on restrictive and complicated parametric multivariate ARCH or stochastic volatility models, which often perform poorly at intraday frequencies. Use of realized volatility constructed from high-frequency intraday returns, in contrast, permits the use of traditional time series procedures for modeling and forecasting. Building on the theory of continuous-time arbitrage-free price processes and the theory of quadratic variation, we formally develop the links between the conditional covariancematrix and the concept of realized volatility. Next, using continuously recorded observations for the Deutschemark Dollar and Yen / Dollar spot exchange rates covering more than a decade, we find that forecasts from a simple long-memory Gaussian vector autoregression for the logarithmic daily realized volatilities perform admirably compared to popular daily ARCH and related models. Moreover, the vector autoregressive volatility forecast, coupled with a parametric lognormal-normal mixture distribution implied by the theoretically and empirically grounded assumption of normally distributed standardized returns, gives rise to well-calibrated density forecasts of future returns, and correspondingly accurate quantile estimates. Our results hold promise for practical modeling and forecasting of the large covariance matrices relevant in asset pricing, asset allocation and financial risk management applications.

download in pdf format
   (338 K)

email paper

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w8160

Published: Andersen, Torben G., Tim Bollerslev, Francis X. Diebold and Paul Labys. "Modeling And Forecasting Realized Volatility," Econometrica, 2003, v71(2,Mar), 579-625. citation courtesy of

Users who downloaded this paper also downloaded* these:
Andersen, Bollerslev, and Diebold w11775 Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility
Andersen and Bollerslev w6023 Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts
Andersen, Bollerslev, Diebold, and Ebens w7933 The Distribution of Stock Return Volatility
Andersen, Bollerslev, Christoffersen, and Diebold w11188 Volatility Forecasting
Andersen, Bollerslev, Christoffersen, and Diebold Practical Volatility and Correlation Modeling for Financial Market Risk Management
NBER Videos

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email:

Contact Us