A Test of Efficiency for the S&P Index Option Market Using Variance Forecasts

Jaesun Noh, Robert F. Engle, Alex Kane

NBER Working Paper No. 4520
Issued in November 1993
NBER Program(s):   AP

To forecast future option prices, autoregressive models of implied volatility derived from observed option prices are commonly employed [see Day and Lewis (1990), and Harvey and Whaley (1992)]. In contrast, the ARCH model proposed by Engle (1982) models the dynamic behavior in volatility, forecasting future volatility using only the return series of an asset. We assess the performance of these two volatility prediction models from S&P 500 index options market data over the period from September 1986 to December 1991 by employing two agents who trade straddles, each using one of the two different methods of forecast. Straddle trading is employed since a straddle does not need to be hedged. Each agent prices options according to her chosen method of forecast, buying (selling) straddles when her forecast price for tomorrow is higher (lower) than today's market closing price, and at the end of each day the rates of return are computed. We find that the agent using the GARCH forecast method earns greater profit than the agent who uses the implied volatility regression (IVR) forecast model. In particular, the agent using the GARCH forecast method earns a profit in excess of a cost of $0.25 per straddle with the near-the-money straddle trading.

download in pdf format
   (314 K)

email paper

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w4520

Published: (Published as "Forecasting Volatility and Option Prices of the S & P 500 Index") Journal of Derivatives, Vol. 2 (1994): 17-30.

Users who downloaded this paper also downloaded* these:
Engle, Kane, and Noh w4519 Index-Option Pricing with Stochastic Volatility and the Value of Accurate Variance Forecasts
Engle, Hong, and Kane w3350 Valuation of Variance Forecast with Simulated Option Markets
Bollerslev and Hodrick w4108 Financial Market Efficiency Tests
Gorton, Huang, and Kang w14944 The Limitations of Stock Market Efficiency: Price Informativeness and CEO Turnover
Andersen, Bollerslev, Christoffersen, and Diebold w11188 Volatility Forecasting
NBER Videos

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email:

Contact Us