NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

The Economics of Scale-Up

Jonathan M.V. Davis, Jonathan Guryan, Kelly Hallberg, Jens Ludwig

NBER Working Paper No. 23925
Issued in October 2017
NBER Program(s):CH, ED, LS

Most randomized controlled trials (RCT) of social programs test interventions at modest scale. While the hope is that promising programs will be scaled up, we have few successful examples of this scale-up process in practice. Ideally we would like to know which programs will work at large scale before we invest the resources to take them to scale. But it would seem that the only way to tell whether a program works at scale is to test it at scale. Our goal in this paper is to propose a way out of this Catch-22. We first develop a simple model that helps clarify the type of scale-up challenge for which our method is most relevant. Most social programs rely on labor as a key input (teachers, nurses, social workers, etc.). We know people vary greatly in their skill at these jobs. So social programs, like firms, confront a search problem in the labor market that can lead to inelastically-supplied human capital. The result is that as programs scale, either average costs must increase if program quality is to be held constant, or else program quality will decline if average costs are held fixed. Our proposed method for reducing the costs of estimating program impacts at large scale combines the fact that hiring inherently involves ranking inputs with the most powerful element of the social science toolkit: randomization. We show that it is possible to operate a program at modest scale n but learn about the input supply curves facing the firm at much larger scale (S × n) by randomly sampling the inputs the provider would have hired if they operated at scale (S × n). We build a simple two-period model of social-program decision making and use a model of Bayesian learning to develop heuristics for when scale-up experiments of the sort we propose are likely to be particularly valuable. We also present a series of results to illustrate the method, including one application to a real-world tutoring program that highlights an interesting observation: The noisier the program provider’s prediction of input quality, the less pronounced is the scale-up problem.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w23925

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us