NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

Diagnostic Expectations and Stock Returns

Pedro Bordalo, Nicola Gennaioli, Rafael La Porta, Andrei Shleifer

NBER Working Paper No. 23863
Issued in September 2017
NBER Program(s):   AP

We revisit La Porta’s (1996) finding that returns on stocks with the most optimistic analyst long term earnings growth forecasts are substantially lower than those for stocks with the most pessimistic forecasts. We document that this finding still holds, and present several further facts about the joint dynamics of fundamentals, expectations, and returns for these portfolios. We explain these facts using a new model of belief formation based on a portable formalization of the representativeness heuristic. In this model, analysts forecast future fundamentals from the history of earnings growth, but they over-react to news by exaggerating the probability of states that have become objectively more likely. Intuitively, fast earnings growth predicts future Googles but not as many as analysts believe. We test predictions that distinguish this mechanism from both Bayesian learning and adaptive expectations, and find supportive evidence. A calibration of the model offers a satisfactory account of the key patterns in fundamentals, expectations, and returns.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w23863

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us