NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

Inference on Risk Premia in the Presence of Omitted Factors

Stefano Giglio, Dacheng Xiu

NBER Working Paper No. 23527
Issued in June 2017
NBER Program(s):   AP

We propose a three-pass method to estimate the risk premia of observable factors in a linear asset pricing model, which is valid even when the observed factors are just a subset of the true factors that drive asset prices or they are measured with error. We show that the risk premium of a factor can be identified in a linear factor model regardless of the rotation of the other control factors as long as they together span the space of true factors. Motivated by this rotation invariance result, our approach uses principal components to recover the factor space and combines the estimated principal components with each observed factor to obtain a consistent estimate of its risk premium. Our methodology also accounts for potential measurement error in the observed factors and detects when such factors are spurious or even useless. The methodology exploits the blessings of dimensionality, and we therefore apply it to a large panel of equity portfolios to estimate risk premia for several workhorse linear models. The estimates are robust to the choice of test portfolios within equities as well as across many asset classes.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w23527

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us