NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

Using Aggregated Relational Data to Feasibly Identify Network Structure without Network Data

Emily Breza, Arun G. Chandrasekhar, Tyler H. McCormick, Mengjie Pan

NBER Working Paper No. 23491
Issued in June 2017
NBER Program(s):DEV, IO, PR, LS

Social network data is often prohibitively expensive to collect, limiting empirical network research. Typical economic network mapping requires (1) enumerating a census, (2) eliciting the names of all network links for each individual, (3) matching the list of social connections to the census, and (4) repeating (1)-(3) across many networks. In settings requiring field surveys, steps (2)-(3) can be very expensive. In other network populations such as financial intermediaries or high-risk groups, proprietary data and privacy concerns may render (2)-(3) impossible. Both restrict the accessibility of high-quality networks research to investigators with considerable resources.

We propose an inexpensive and feasible strategy for network elicitation using Aggregated Relational Data (ARD) – responses to questions of the form “How many of your social connections have trait k?” Our method uses ARD to recover the parameters of a general network formation model, which in turn, permits the estimation of any arbitrary node- or graph-level statistic. The method works well in simulations and in matching a range of network characteristics in real-world graphs from 75 Indian villages. Moreover, we replicate the results of two field experiments that involved collecting network data. We show that the researchers would have drawn similar conclusions using ARD alone. Finally, using calculations from J-PAL fieldwork, we show that in rural India, for example, ARD surveys are 80% cheaper than full network surveys.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w23491

 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us