NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH
loading...

Rethinking Performance Evaluation

Campbell R. Harvey, Yan Liu

NBER Working Paper No. 22134
Issued in March 2016
NBER Program(s):Asset Pricing

We show that the standard equation-by-equation OLS used in performance evaluation ignores information in the alpha population and leads to severely biased estimates for the alpha population. We propose a new framework that treats fund alphas as random effects. Our framework allows us to make inference on the alpha population while controlling for various sources of estimation risk. At the individual fund level, our method pools information from the entire alpha distribution to make density forecast for the fund's alpha, offering a new way to think about performance evaluation. In simulations, we show that our method generates parameter estimates that universally dominate the OLS estimates, both at the population and at the individual fund level. While it is generally accepted that few if any mutual funds outperform, we find that the fraction of funds that generate positive alphas is accurately estimated at over 10%. An out-of-sample forecasting exercise also shows that our method generates superior alpha forecasts.

download in pdf format
   (526 K)

email paper

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w22134

Users who downloaded this paper also downloaded* these:
Harvey, Liu, and Zhu w20592 . . . and the Cross-Section of Expected Returns
Moreira and Muir w22208 Volatility Managed Portfolios
Dynarski and Scott-Clayton w22127 Tax Benefits for College Attendance
Brunnermeier and Sannikov w22133 On the Optimal Inflation Rate
Creal and Wu w22183 Bond Risk Premia in Consumption-based Models
 
Publications
Activities
Meetings
NBER Videos
Themes
Data
People
About

National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us