NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

A Big Data Approach to Optimal Sales Taxation

Christian Baker, Jeremy Bejarano, Richard W. Evans, Kenneth L. Judd, Kerk L. Phillips

NBER Working Paper No. 20130
Issued in May 2014
NBER Program(s):   PE

We characterize and demonstrate a solution method for an optimal commodity (sales) tax problem consisting of multiple goods, heterogeneous agents, and a nonconvex policy maker optimization problem. Our approach allows for more dimensions of heterogeneity than has been previously possible, incorporates potential model uncertainty and policy objective uncertainty, and relaxes some of the assumptions in the previous literature that were necessary to generate a convex optimization problem for the policy maker. Our solution technique involves creating a large database of optimal responses by different individuals for different policy parameters and using "Big Data" techniques to compute policy maker objective values over these individuals. We calibrate our model to the United States and test the effects of a differentiated optimal commodity tax versus a flat tax and the effect of exempting a broad class of goods (services) from commodity taxation. We find that only a potentially small amount of tax revenue is lost for a given societal welfare level by departing from an optimal differentiated sales tax schedule to a uniform flat tax and that there is only a small loss in revenue from exempting a class of goods such as services in the United States.

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Information about Free Papers

You should expect a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Acknowledgments

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/w20130

 
Publications
Activities
Meetings
Data
People
About

Support
National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us