NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies

Eric Ghysels, Pedro Santa-Clara, Rossen Valkanov

NBER Working Paper No. 10914
Issued in November 2004
NBER Program(s):   AP

We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in the length of the past history included in the forecasts. The MIDAS framework allows us to compare models across all these dimensions in a very tightly parameterized fashion. Using equity return data, we find that daily realized power (involving 5-minute absolute returns) is the best predictor of future volatility (measured by increments in quadratic variation) and outperforms model based on realized volatility (i.e. past increments in quadratic variation). Surprisingly, the direct use of high-frequency (5-minute) data does not improve volatility predictions. Finally, daily lags of one to two months are sucient to capture the persistence in volatility. These findings hold both in- and out-of-sample.

download in pdf format
   (370 K)

email paper

This paper is available as PDF (370 K) or via email.

Machine-readable bibliographic record - MARC, RIS, BibTeX

Published: Ghysels, Eric, Pedro Santa-Clara and Rossen Valkanov. "Predicting Volatility: Getting The Most Our Of Return Data Sampled At Different Frequencies," Journal of Econometrics, 2006, v131(1-2,Mar-Apr), 59-95.

Users who downloaded this paper also downloaded these:
Ghysels, Santa-Clara, and Valkanov w10913 There is a Risk-Return Tradeoff After All
Burnside and Graveline w18646 Exchange Rate Determination, Risk Sharing and the Asset Market View
 
Publications
Activities
Meetings
Data
People
About

Support
National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us