NATIONAL BUREAU OF ECONOMIC RESEARCH
NATIONAL BUREAU OF ECONOMIC RESEARCH

Asymptotic Properties of Quasi-Maximum Likelihood Estimators and Test Statistics

Thomas E. MaCurdy

NBER Technical Working Paper No. 14
Issued in June 1981
NBER Program(s):   LS

We examine the implications of arbitrage in a market with many assets. The absence of arbitrage opportunities implies that the linear functionals that give the mean and cost of a portfolio are continuous; hence there exist unique portfolios that represent these functionals. The mean variance efficient set is a cone generated by these portfolios. Ross [16, 18J showed that if there is a factor structure, then the distance between the vector or mean returns and the space spanned by the factor loadings is bounded as the number of assets increases. We show that if the covariance matrix of asset returns has only K unbounded eigenvalues, then the corresponding K eigenvectors converge and play the role of factor loadings in Ross' result. Hence only a principal components analysis is needed to test the arbitrage pricing theory. Our eigenvalue conditional can hold even though conventional measures of the approximation error in a K factor model are unbounded. We also resolve the question of when a market with many assets permits so much diversification that risk-free investment opportunities are available.

download in pdf format
   (1364 K)

download in djvu format
   (300 K)

email paper

This paper is available as PDF (1364 K) or DjVu (300 K) (Download viewer) or via email.

Machine-readable bibliographic record - MARC, RIS, BibTeX

Document Object Identifier (DOI): 10.3386/t0014

 
Publications
Activities
Meetings
NBER Videos
Data
People
About

Support
National Bureau of Economic Research, 1050 Massachusetts Ave., Cambridge, MA 02138; 617-868-3900; email: info@nber.org

Contact Us