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Outline for Econometric Theory of “Big Data”

Part I.

1. High-Dimensional Sparse Models (HDSM)
◮ Models
◮ Motivating Examples

2. Estimation of Regression Functions via Penalization and
Selection Methods

◮ ℓ1-penalization or LASSO methods
◮ post-selection estimators or Post-Lasso methods

Part II.

3. Estimation and Inference in IV regression with Many Instruments

4. Estimation and Inference on Treatment Effects with Many
Controls in a Partially Linear Model.

5. Generalizations.
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Materials

1. A semi-review article:
◮ Belloni, Chernozhukov, and Hansen, ”Inference in

High-Dimensional Sparse Econometric Models”, 2010, Advances
in Economics and Econometrics, 10th World Congress.
http://arxiv.org/pdf/1201.0220v1.pdf

2. Research Articles Listed in References.

3. Stata and or Matlab codes are available for most empirical
examples via links to be posted at www.mit.edu/ ˜ vchern/ .
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1. High-Dimensional Sparse Econometric Model

HDSM. A response variable yi obeys

yi = x ′
i β0 + ǫi , ǫi ∼ (0, σ2), i = 1, ..., n

where xi are p-dimensional; w.l.o.g. we normalize each regressor:

xi = (xij , j = 1, ..., p)′,
1
n

n∑

i=1

x2
ij = 1.

p possibly much larger than n.
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1. High-Dimensional Sparse Econometric Model

HDSM. A response variable yi obeys

yi = x ′
i β0 + ǫi , ǫi ∼ (0, σ2), i = 1, ..., n

where xi are p-dimensional; w.l.o.g. we normalize each regressor:

xi = (xij , j = 1, ..., p)′,
1
n

n∑

i=1

x2
ij = 1.

p possibly much larger than n.

The key assumption is sparsity, the number of relevant regressors is
much smaller than the sample size:

s := ‖β0‖0 =

p∑

j=1

1{β0j 6= 0} ≪ n,

This generalizes the traditional parametric framework used in
empirical economics, by allowing the identity

T = {j ∈ {1, ..., p} : β0j = 0}
of the relevant s regressors be unknown.
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Motivation for high p

◮ transformations of basic regressors zi ,

xi = (P1(zi), ...,Pp(zi))
′,

◮ for example, in wage regressions, Pjs are polynomials or B-splines
in education and experience.

◮ and/or simply a very large list of regressors,
◮ a list of country characteristics in cross-country growth regressions

(Barro & Lee),
◮ housing characteristics in hedonic regressions (American Housing

Survey)
◮ price and product characteristics at the point of purchase (scanner

data, TNS).
◮ judge characteristics in the analysis of economic impacts of the

eminent domain
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From Sparsity to Approximate Sparsity

◮ The key assumption is that the number of non-zero regression
coefficients is smaller than the sample size:

s := ‖β0‖0 =

p∑

j=1

1{β0j 6= 0} ≪ n.

◮ The idea is that a low-dimensional (s-dimensional) submodel
accurately approximates the full p-dimensional model. The
approximation error is in fact zero.

◮ The approximately sparse model allows for a non-zero
approximation error

yi = x ′
i β0 + ri︸ ︷︷ ︸

regression function

+ǫi ,

that is not bigger than the size of estimation error, namely as
n → ∞

s log p
n

→ 0,

√√√√1
n

n∑

i=1

r2
i . σ

√
s
n
→ 0.
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◮ Example:

yi =

∞∑

j=1

θjxj + ǫi , |θj | . j−a, a > 1/2,

has s = σn1/2a, because we need only s regressors with largest
coefficients to have

√√√√1
n

n∑

i=1

r2
i . σ

√
s
n
.

◮ The approximately sparse model generalizes the exact sparse
model, by letting in approximation error.

◮ This model also generalizes the traditional series/sieve
regression model by letting the identity

T = {j ∈ {1, ..., p} : β0j = 0}

of the most important s series terms be unknown.
◮ All results we present are for the approximately sparse model .
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Example 1: Series Models of Wage Function

◮ In this example, abstract away from the estimation questions,
using population/census data. In order to visualize the idea of
the approximate sparsity, consider a contrived example.

◮ Consider a series expansion of the conditional expectation
E [yi |zi ] of wage yi given education zi .

◮ A conventional series approximation to the regression function is,
for example,

E [yi |zi ] = β1 + β2P1(zi) + β3P2(zi) + β4P3(zi) + ri

where P1, ...,P3 are low-order polynomials (or other terms).
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 using Polynomials

◮ In the figure, true regression function E [yi |zi ] computed using
U.S. Census data, year 2000, prime-age white men.
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◮ Can we a find a much better series approximation, with the same
number of parameters?

◮ Yes, if we can capture the oscillatory behavior of E [yi |zi ] in some
regions.

◮ We consider a “very long” expansion

E [yi |zi ] =

p∑

j=1

β0jPj (zi) + r ′i ,

with polynomials and dummy variables, and shop around just for
a few terms that capture “oscillations”.

◮ We do this using the LASSO– which finds a parsimonious model
by minimizing squared errors, while penalizing the size of the
model through by the sum of absolute values of coefficients. In
this example we can also find the “right” terms by “eye-balling”.
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 using Polynomials and Dummies

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Estimation and Inference withThe Framework Two Examples

8 10 12 14 16 18 20

6.
0

6.
5

7.
0

education

wa
ge

Traditional vs Lasso Approximation 
 of Expected Wage Functions 

 with Equal Number of Parameters

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Estimation and Inference withThe Framework Two Examples

Errors of Traditional and Lasso-Based Sparse Approximatio ns
RMSE Max Error

Conventional Series Approximation 0.135 0.290
Lasso-Based Series Approximation 0.031 0.063

Notes.

1. Conventional approximation relies on low order polynomial with 4 parameters.

2. Sparse approximation relies on a combination of polynomials and dummy
variables and also has 4 parameters.

Conclusion. Examples show how the new framework nests and expands the
traditional parsimonious modelling framework used in empirical economics.
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2. Estimation of Regression Functions via
L1-Penalization and Selection

◮ When p is large, good idea to do selection or penalization to prevent
overfitting. Ideally, would like to try to minimize a BIC type criterion
function

1
n

n∑

i=1

[yi − x ′
i β]

2 + λ‖β‖0, ‖β‖0 =

p∑

j=1

1{β0j 6= 0}

but this is not computationally feasible – NP hard.

◮ A solution (Frank and Friedman, 94, Tibshirani, 96) is to replace the ℓ0

”norm” by a closest convex function – the ℓ1-norm. LASSO estimator β̂
then minimizes

1
n

n∑

i=1

[yi − x ′
i β]

2 + λ‖β‖1, ‖β‖1 =

p∑

j=1

|βj |.

Globally convex, computable in polynomial time. Kink in the penalty
induces the solution β̂ to have lots of zeroes, so often used as a model
selection device.
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The LASSO

◮ The rate-optimal choice of penalty level is

λ =σ · 2
√

2 log(pn)/n.

(Bickel, Ritov, Tsybakov, Annals of Statistics, 2009).

◮ The choice relies on knowing σ, which may be apriori hard to estimate
when p ≫ n.
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The LASSO

◮ The rate-optimal choice of penalty level is

λ =σ · 2
√

2 log(pn)/n.

(Bickel, Ritov, Tsybakov, Annals of Statistics, 2009).

◮ The choice relies on knowing σ, which may be apriori hard to estimate
when p ≫ n.

◮ Can estimate σ by iterating from a conservative starting value (standard
deviation around the sample mean) , see Belloni and Chernozhukov
(2009, Bernoulli). Very simple.

◮ Cross-validation is often used as well and performs well in Monte-Carlo,
but its theoretical validity is an open question in the settings p ≫ n.
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The
√

LASSO

◮ A way around is the
√

LASSOestimator minimizing (Belloni,
Chernozhukov, Wang, 2010, Biometrika)

√√√√1
n

n∑

i=1

[yi − x ′
i β]

2 + λ‖β‖1,

◮ The rate-optimal penalty level is pivotal – independent of σ:

λ =
√

2 log(pn)/n.

◮ Tuning-Free. Globally convex, polynomial time computable via
conic programming.
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Heuristics via Convex Geometry

A simple case: yi = x ′
i β0︸︷︷︸

=0

+ǫi

−5 −4 −3 −2 −1 0 1 2 3 4 5
β0 = 0

Q̂(β)

◮ Q̂(β) = 1
n

∑n
i=1[yi − x ′

i β]
2 for LASSO

◮ Q̂(β) =
√

1
n

∑n
i=1[yi − x ′

i β]
2 for

√
LASSO
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i β0︸︷︷︸
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Q̂(β)

Q̂(β0) +∇Q̂(β0)
′β

◮ Q̂(β) = 1
n
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◮ Q̂(β) =
√

1
n
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√
LASSO

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Estimation and Inference with

Heuristics via Convex Geometry

A simple case: yi = x ′
i β0︸︷︷︸

=0

+ǫi

−5 −4 −3 −2 −1 0 1 2 3 4 5
β0 = 0

Q̂(β)

λ‖β‖1

λ = ‖∇Q̂(β0)‖∞

◮ Q̂(β) = 1
n

∑n
i=1[yi − x ′

i β]
2 for LASSO

◮ Q̂(β) =
√

1
n

∑n
i=1[yi − x ′

i β]
2 for

√
LASSO

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Estimation and Inference with
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A simple case: yi = x ′
i β0︸︷︷︸

=0

+ǫi
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β0 = 0

Q̂(β)

λ‖β‖1

λ > ‖∇Q̂(β0)‖∞

◮ Q̂(β) = 1
n
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2 for LASSO

◮ Q̂(β) =
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Heuristics via Convex Geometry

A simple case: yi = x ′
i β0︸︷︷︸

=0

+ǫi

−5 −4 −3 −2 −1 0 1 2 3 4 5
β0 = 0

Q̂(β)
λ > ‖∇Q̂(β0)‖∞

Q̂(β) + λ‖β‖1

◮ Q̂(β) = 1
n

∑n
i=1[yi − x ′

i β]
2 for LASSO

◮ Q̂(β) =
√

1
n

∑n
i=1[yi − x ′

i β]
2 for

√
LASSO
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Heuristics

◮ LASSO (and variants) will successfully “zero out” lots of irrelevant
regressors, but it won’t be perfect, (no procedure can distinguish
β0j = C/

√
n from 0, and so model selection mistakes are bound

to happen).
◮ λ is chosen to dominate the norm of the subgradient:

P(λ > ‖∇Q̂(β0)‖∞) → 1,

and the choices of λ mentioned precisely implement that.
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Heuristics

◮ LASSO (and variants) will successfully “zero out” lots of irrelevant
regressors, but it won’t be perfect, (no procedure can distinguish
β0j = C/

√
n from 0, and so model selection mistakes are bound

to happen).
◮ λ is chosen to dominate the norm of the subgradient:

P(λ > ‖∇Q̂(β0)‖∞) → 1,

and the choices of λ mentioned precisely implement that.
◮ In the case of

√
LASSO,

∥∥∥∇Q̂(β0)
∥∥∥
∞

= max
1≤j≤p

| 1
n

∑n
i=1 ǫixij |√

1
n

∑n
i=1 ǫ

2
i

does not depend on σ.
◮ Hence for

√
LASSOλ does not depend on σ.
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Dealing with Heteroscedasticity∗

Heteroscedastic Model:

yi = x ′
i β0 + ri + ǫi , ǫi ∼ (0, σ2

i ).

◮ Heteroscedastic forms of Lasso – Belloni, Chen, Chernozhukov, Hansen
(Econometrica, 2012). Fully data-driven.

β̂ ∈ arg min
β∈Rp

1
n

n∑

i=1

[yi − x ′
i β]

2 + λ‖Ψ̂β‖1, λ = 2
√

2 log(pn)/n

Ψ̂ = diag[(n−1
n∑

i=1

[x2
ij ǫ

2
i ])

1/2 + op(1), j = 1, ..., p]
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Dealing with Heteroscedasticity∗

Heteroscedastic Model:

yi = x ′
i β0 + ri + ǫi , ǫi ∼ (0, σ2

i ).

◮ Heteroscedastic forms of Lasso – Belloni, Chen, Chernozhukov, Hansen
(Econometrica, 2012). Fully data-driven.

β̂ ∈ arg min
β∈Rp

1
n

n∑

i=1

[yi − x ′
i β]

2 + λ‖Ψ̂β‖1, λ = 2
√

2 log(pn)/n

Ψ̂ = diag[(n−1
n∑

i=1

[x2
ij ǫ

2
i ])

1/2 + op(1), j = 1, ..., p]

◮ Penalty loadings Ψ are estimated iteratively:
1. initialize, e.g., ǫ̂i = yi − ȳ , Ψ̂ = diag[(n−1∑n

i=1[x
2
ij ǫ̂

2
i ])

1/2, j = 1, ..., p]

2. obtain β̂, update
ǫ̂i = yi − x ′

i β̂, Ψ̂ = diag[(n−1∑n
i=1[x

2
ij ǫ̂

2
i ])

1/2, j = 1, ..., p]
3. iterate on the previous step.

◮ For Heteroscedastic forms of
√

LASSO, see Belloni, Chernozhukov,
Wang (Annals of Statistics, R & R, 2011).
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Probabilistic intuition for the latter construction ∗

Construction makes the ”noise” in Kuhn-Tucker conditions self-normalized,
and λ dominates the ”noise”.
Union bounds and the moderate deviation theory for self-normalized sums
(Jing, Shao, Wang, Ann. Prob., 2005) imply that:

P

(

max
1≤j≤p

2| 1
n

∑n
i=1[ǫi xij ]|√

1
n

∑n
i=1 ǫ

2
i x2

ij
︸ ︷︷ ︸

”max norm of gradient”

≤ λ︸︷︷︸
penalty level

)

= 1 − O(1/n).

under the condition that
log p = o(n1/3)

if for all i ≤ n, j ≤ p
E[x3

ij ǫ
3
i ] ≤ K .

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Estimation and Inference with

Some properties

◮ Due to kink in the penalty, LASSO(and variants) will successfully
“zero out” lots of irrelevant regressors (but don’t expect it to be
perfect).

◮ Lasso procedures bias/shrink the non-zero coefficient estimates
towards zero.

◮ The latter property motivates the use of Least squares after
Lasso, or Post-Lasso .
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Post-Model Selection Estimator, or Post-LASSO

Define the post-selection, e.g., post-LASSOestimator as follows:

1. In step one, select the model using the LASSOor
√

LASSO.

2. In step two, apply ordinary LS to the selected model.
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Regularity Condition on X ∗

◮ A simple sufficient condition is as follows.
Condition RSE. Take any C > 1. With probability approaching 1, matrix

M =
1
n

n∑

i=1

xi x
′
i ,

obeys

0 < K ≤ min
‖δ‖0≤sC

δ′Mδ

δ′δ
≤ max

‖δ‖0≤sC

δ′Mδ

δ′δ
≤ K ′ < ∞. (1)

◮ This holds under i.i.d. sampling if E [xi x ′
i ] has eigenvalues bounded

away from zero and above, and:
– xi has light tails (i.e., log-concave) and s log p = o(n);
– or bounded regressors maxij |xij | ≤ K and s(log p)5 = o(n).
Ref. Rudelson and Vershynin (2009).
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Result 1: Rates for LASSO/
√

LASSO

Theorem (Rates)
Under practical regularity conditions– including errors having 4 + δ bounded
moments and log p = o(n1/3) – with probability approaching 1,

‖β̂ − β0‖ .

√√√√1
n

n∑

i=1

[x ′
i β̂ − x ′

i β0]2 . σ

√
s log(n ∨ p)

n

◮ The rate is close to the “oracle” rate
√

s/n, obtainable when we know
the “true” model T ; p shows up only through log p.

◮ References.
- LASSO— Bickel, Ritov, Tsybakov (Annals of Statistics 2009), Gaussian

errors.
- heteroscedastic LASSO– Belloni, Chen, Chernozhukov, Hansen

(Econometrica 2012), non-Gaussian errors.
-
√

LASSO– Belloni, Chernozhukov and Wang (Biometrika, 2010),
non-Gaussian errors.

- heteroscedastic
√

LASSO– Belloni, Chernozhukov and Wang (Annals R
&R , 2010), non-Gaussian errors.

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Estimation and Inference with

Result 2: Post-Model Selection Estimator

In the rest of the talk LASSOmeans all of its variants, especially their
heteroscedastic versions.

Recall that the post-LASSOestimator is defined as follows:

1. In step one, select the model using the LASSO.

2. In step two, apply ordinary LS to the selected model.

◮ Lasso (or any other method) is not perfect at model selection –
might include “junk”, exclude some relevant regressors.

◮ Analysis of all post-selection methods in this lecture accounts for
imperfect model selection .
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Result 2: Post-Selection Estimator

Theorem (Rate for Post-Selection Estimator)
Under practical conditions, with probability approaching 1,

‖β̂PL − β0‖ .

√√√√1
n

n∑

i=1

[x ′
i β̂PL − x ′

i β0]2 . σ

√
s
n

log(n ∨ p),

Under some further exceptional cases faster, up to σ
√

s
n .

◮ Even though LASSOdoes not in general perfectly select the
relevant regressors, Post-LASSOperforms at least as well.

◮ This result was first derived for least squares by
◮ Belloni and Chernozhukov (Bernoulli, 2009).

◮ Extended to heteroscedastic, non-Gaussian case in
◮ Belloni, Chen, Chernozhukov, Hansen (Econometrica, 2012).
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Monte Carlo

◮ In this simulation we used

s = 6, p = 500, n = 100

yi = x ′
i β0 + ǫi , ǫi ∼ N(0, σ2),

β0 = (1, 1, 1/2, 1/3, 1/4, 1/5, 0, . . . , 0)′

xi ∼ N(0,Σ), Σij = (1/2)|i−j|, σ2 = 1

◮ Ideal benchmark: Oracle estimator which runs OLS of yi on
xi1, ..., xi6. This estimator is not feasible outside Monte-Carlo.
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Monte Carlo Results: Prediction Error

RMSE: [E [x ′
i (β̂ − β0)]

2]1/2

n = 100, p = 500
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Estimation Risk

Lasso is not perfect at model selection, but does find good models, allowing
Lasso and Post-Lasso to perform at the near-Oracle level.
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Monte Carlo Results: Bias

Norm of the Bias E β̂ − β0

n = 100, p = 500
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Post-Lasso often outperforms Lasso due to removal of shrinkage bias.
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Part II.
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3. Estimation and Inference with Many Instruments

Focus discussion on a simple IV model:

yi = diα+ ǫi ,
di = g(zi) + vi , (first stage)

(
ǫi

vi

)
| zi ∼

(
0,
(

σ2
ǫ σǫv

σǫv σ2
v

))

◮ can have additional controls wi entering both equations –
assume these have been partialled out; also can have multiple
endogenous variables; see references for details

◮ the main target is α, and g is the unspecified regression function
= “optimal instrument”

◮ We have either
◮ Many instruments. xi = zi , or
◮ Many technical insturments. xi = P(zi), e.g. polynomials,

trigonometric terms.

◮ where the number of instruments

p is large, possibly much larger than n

.
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3. Inference in the Instrumental Variable Model

◮ Assume approximate sparsity:

g(zi) = E[di |zi ] = x ′
i β0︸︷︷︸

sparse approximation

+ ri︸︷︷︸
approx error

that is, optimal instrument is approximated by s (unknown)
instruments, such that

s := ‖β0‖0 ≪ n,

√√√√ 1
n

n∑

i=1

r2
i ≤ σv

√
s
n

◮ We shall find these ”effective” instruments amongst xi by Lasso,
and estimate the optimal instrument by Post-Lasso,
ĝ(zi) = x ′

i β̂PL.
◮ Estimate α using the estimated optimal instrument via 2SLS.
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Example 2: Instrument Selection in Angrist-Krueger
Data

◮ yi = wage
◮ di = education (endogenous)
◮ α = returns to schooling
◮ zi= quarter of birth and controls (50 state of birth dummies and 7

year of birth dummies)
◮ xi = P(zi), includes zi and all interactions
◮ a very large list, p = 1530

Using few instruments (3 quarters of birth) or many instruments
(1530) gives big standard errors. So it seems a good idea to use
instrument selection to see if can improve.
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AK Example

Estimator Instruments Schooling Coef Rob Std Error

2SLS (3 IVs) 3 .10 .020
2SLS (All IVs) 1530 .10 .042
2SLS (LASSO IVs) 12 .10 .014

Notes:

◮ About 12 constructed instruments contain nearly all information.
◮ Fuller’s form of 2SLS is used due to robustness.
◮ The Lasso selection of instruments and standard errors are fully

justified theoretically below
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2SLS with Post-LASSO estimated Optimal IV

2SLS with Post-LASSO estimated Optimal IV

◮ In step one, estimate optimal instrument ĝ(zi) = x ′
i β̂ using

Post-LASSOestimator.
◮ In step two, compute the 2SLS using optimal instrument as IV,

α̂ = [
1
n

n∑

i=1

[di ĝ(zi)
′]]−1 1

n

n∑

i=1

[ĝ(zi)yi ]
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IV Selection: Theoretical Justification

Theorem (Result 3: 2SLS with LASSO-selected IV)
Under practical regularity conditions, if the optimal instrument is
sufficient sparse, namely s2 log2 p = o(n), and is strong, namely
|E[dig(zi )]| is bounded away from zero, we have that

σ−1
n

√
n(α̂− α) →d N(0, 1),

where σ2
n is the standard White’s robust formula for the variance of

2SLS. The estimator is semi-parametrically efficient under
homoscedasticity.

◮ Ref: Belloni, Chen, Chernozhukov, and Hansen (Econometrica, 2012)
for a general statement.

◮ A weak-instrument robust procedure is also available – the sup-score
test; see Ref.

◮ Key point: “Selection mistakes” are asymptotically negligible due to
”low-bias” property of the estimating equations, which we shall discuss
later.
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IV Selection: Monte Carlo Justification

A representative example: Everything Gaussian, with

di =

100∑

j=1

xij · µj + vi , |µ| < 1

This is an approximately sparse model where most of information is
contained in a few instruments.
Case 1. p = 100 < n = 250, first stage E [F ] = 40

Estimator RMSE 5% Rej Prob
(Fuller’s) 2SLS ( All IVs) 0.13 5.6%
2SLS (LASSO IVs) 0.08 6%

Remark. Fuller’s 2SLS is a consistent under many instruments, and is a state of the art
method.
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IV Selection: Monte Carlo Justification

A representative example: Everything Gaussian, with

di =

100∑

j=1

xij · µj + vi , |µ| < 1

This is an approximately sparse model where most of information is
contained in a few instruments.
Case 2. p = 100 = n = 100, first stage E [F ] = 40

Estimator RMSE 5% Rej Prob
(Fuller’s) 2SLS (Alls IVs) 5.05 8%
2SLS (LASSO IVs) 0.13 6%

◮ Conclusion. Performance of the new method is quite reassuring.
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4. Estimation & Inference on Treatment Effects in a
Partially Linear Model

Example 3: (Exogenous) Cross-Country Growth Regression.

◮ Relation between growth rate and initial per capita GDP,
conditional on covariates, describing institutions and
technological factors:

GrowthRate︸ ︷︷ ︸
yi

= β0 + α︸︷︷︸
ATE

log(GDP)︸ ︷︷ ︸
di

+

p∑

j=1

βjxij + ǫi

where the model is exogenous,

E[ǫi |di , xi ] = 0.

◮ Test the convergence hypothesis – α < 0 – poor countries catch
up with richer countries, conditional on similar institutions etc.
Prediction from the classical Solow growth model.

◮ In Barro-Lee data, we have p = 60 covariates, n = 90
observations. Need to do selection.
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How to perform selection?

◮ (Don’t do it! ) Naive/Textbook selection
1. Drop all x ′

ij s that have small coefficients, using model selection
devices (classical such as t-tests or modern)

2. Run OLS of yi on di and selected regressors.

Does not work because fails to control omitted variable bias.
(Leeb and Pötscher, 2009).

◮ We propose Double Selection approach:

1. Select controls xij ’s that predict yi .
2. Select controls xij ’s that predict di .
3. Run OLS of yi on di and the union of controls selected in steps 1

and 2.

◮ The additional selection step controls the omitted variable bias.
◮ We find that the coefficient on lagged GDP is negative, and the

confidence intervals exclude zero.
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Real GDP per capita (log)
Method Effect Std. Err.

Barro-Lee (Economic Reasoning) −0.02 0.005
All Controls (n = 90, p = 60) −0.02 0.031
Post-Naive Selection −0.01 0.004
Post-Double-Selection −0.03 0.011

◮ Double-Selection finds 8 controls, including trade-openness and
several education variables.

◮ Our findings support the conclusions reached in Barro and Lee
and Barro and Sala-i-Martin.

◮ Using all controls is very imprecise.
◮ Using naive selection gives a biased estimate for the speed of

convergence.
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TE in a Partially Linear Model

Partially linear regression model (exogenous)

yi = diα0 + g(zi ) + ζi , E[ζi | zi , di ] = 0,

◮ yi is the outcome variable
◮ di is the policy/treatment variable whose impact is α0

◮ zi represents confounding factors on which we need to condition

For us the auxilliary equation will be important:

di = m(zi) + vi , E[vi | zi ] = 0,

◮ m summarizes the counfounding effect and creates omitted
variable biases.
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TE in a Partially Linear Model

Use many control terms xi = P(zi) ∈ IRp to approximate g and m

yi = diα0 + x ′
i βg0 + rgi︸ ︷︷ ︸

g(zi )

+ζi , di = x ′
i βm0 + rmi︸ ︷︷ ︸

m(zi )

+vi

◮ Many controls. xi = zi .
◮ Many technical controls. xi = P(zi), e.g. polynomials,

trigonometric terms.

Key assumption: g and m are approximately sparse
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The Inference Problem and Caveats

yi = diα0 + x ′
i βg0 + ri + ζi , E[ζi | zi , di ] = 0,

Naive/Textbook Inference:

1. Select controls terms by running Lasso (or variants) of yi on di

and xi

2. Estimate α0 by least squares of yi on di and selected controls,
apply standard inference

However, this naive approach has caveats:
◮ Relies on perfect model selection and exact sparsity. Extremely

unrealistic.
◮ Easily and badly breaks down both theoretically (Leeb and

Pötscher, 2009) and practically.
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Monte Carlo

◮ In this simulation we used: p = 200, n = 100, α0 = .5

yi = diα0 + x ′
i (cyθ0) + ζi , ζi ∼ N(0, 1)

di = x ′
i (cdθ0) + vi , vi ∼ N(0, 1)

◮ approximately sparse model:

θ0j = 1/j2

◮ let cy and cd vary to vary R2 in each equation
◮ regressors are correlated Gaussians:

x ∼ N(0,Σ), Σkj = (0.5)|j−k |.
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Distribution of Naive Post Selection Estimator

R2
d = .5 and R2

y = .5

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

=⇒ badly biased, misleading confidence intervals;
predicted by theorems in Leeb and Pötscher (2009)
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Inference Quality After Model Selection

Look at the rejection probabilities of a true hypothesis.

yi = diα0 + x ′
i (

=⇒ R2
y︷︸︸︷

cy θ0) + ζi

di = x ′
i ( cd︸︷︷︸

=⇒ R2
d

θ0) + vi

Ideal Rejection Rate
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Inference Quality of Naive Selection

Look at the rejection probabilities of a true hypothesis.

Naive/Textbook Selection
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actual rejection probability (LEFT) is far off the nominal rejection probability (RIGHT)
consistent with results of Leeb and Pötscher (2009)
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Our Proposal: Post Double Selection Method

To define the method, write the reduced form (substitute out di )

yi = x ′
i β̄0 + r̄i + ζ̄i ,

di = x ′
i βm0 + rmi + vi ,

1. (Direct) Let Î1 be controls selected by Lasso of yi on xi .
2. (Indirect) Let Î2 be controls selected by Lasso of di on xi .
3. (Final) Run least squares of yi on di and union of selected controls:

(α̌, β̌) = argmin
α∈R,β∈Rp

{1
n

n∑

i=1

[(yi − diα− x ′
i β)

2] : βj = 0, ∀j 6∈ Î = Î1 ∪ Î2}.

The post-double-selection estimator.

◮ Belloni, Chernozhukov, Hansen (World Congress, 2010).
◮ Belloni, Chernozhukov, Hansen (ReStud, 2011, R &R)

VC and CH Econometrics of High-Dimensional Sparse Models



Plan 1. High-Dimensional Sparse Framework 2. Estimation of Regression Functions via Penalization and Selection 3. Est imation and Inference with

Distributions of Post Double Selection Estimator

R2
d = .5 and R2

y = .5

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

=⇒ low bias, accurate confidence intervals

Belloni, Chernozhukov, Hansen (2011)
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Inference Quality After Model Selection

Double Selection
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the left plot is rejection frequency of the t-test based on the post-double-selection

estimator

Belloni, Chernozhukov, Hansen (2011)
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Intuition

◮ The double selection method is robust to moderate selection
mistakes.

◮ The Indirect Lasso step — the selection among the controls xi

that predict di – creates this robustness. It finds controls whose
omission would lead to a ”large” omitted variable bias, and
includes them in the regression.

◮ In essence the procedure is a selection version of Frisch-Waugh
procedure for estimating linear regression.
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More Intuition
Think about omitted variables bias in case with one treatment (d) and one
regressor (x):

yi = αdi + βxi + ζi ; di = γxi + vi

If we drop xi , the short regression of yi on di gives
√

n(α̂− α) = good term +
√

n (D′D/n)−1(X ′X/n)(γβ)
︸ ︷︷ ︸

OMVB

.

◮ the good term is asymptotically normal, and we want
√

nγβ → 0.
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More Intuition
Think about omitted variables bias in case with one treatment (d) and one
regressor (x):

yi = αdi + βxi + ζi ; di = γxi + vi

If we drop xi , the short regression of yi on di gives
√

n(α̂− α) = good term +
√

n (D′D/n)−1(X ′X/n)(γβ)
︸ ︷︷ ︸

OMVB

.

◮ the good term is asymptotically normal, and we want
√

nγβ → 0.

◮ naive selection drops xi if β = O(
√

log n/n), but
√

nγ
√

log n/n → ∞

◮ double selection drops xi only if both β = O(
√

log n/n) and
γ = O(

√
log n/n), that is, if

√
nγβ = O((log n)/

√
n) → 0.
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Main Result

Theorem (Result 4: Inference on a Coefficient in
Regression)
Uniformly within a rich class of models, in which g and m admit a
sparse approximation with s2 log2(p ∨ n)/n → 0 and other practical
conditions holding,

σ−1
n

√
n(α̌− α0) →d N(0, 1),

where σ2
n is Robinoson’s formula for variance of LS in a partially linear

model. Under homoscedasticity, semi-parametrically efficient.

◮ Model selection mistakes are asymptotically negligible due to
double selection.
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Bonus Track: Generalizations.∗

◮ The double selection (DS) procedure implicitly identifies α0 implicitly off
the moment condition:

E[Mi(α0, g0,m0)] = 0,

where
Mi(α, g,m) = (yi − diα− g(zi))(di − m(zi))

where g0 and m0 are (implicitly) estimated by the post-selection
estimators.
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Bonus Track: Generalizations.∗

◮ The double selection (DS) procedure implicitly identifies α0 implicitly off
the moment condition:

E[Mi(α0, g0,m0)] = 0,

where
Mi(α, g,m) = (yi − diα− g(zi))(di − m(zi))

where g0 and m0 are (implicitly) estimated by the post-selection
estimators.

◮ The DS procedure works because Mi is ”immunized” against
perturbations in g0 and m0:

∂

∂g
E[Mi(α0, g,m0)]|g=g0 = 0,

∂

∂m
E[Mi(α0, g0,m)]|m=m0 = 0.

◮ Moderate selection errors translate into moderate estimation errors,
which have asymptotically negligible effects on large sample distribution
of estimators of α0 based on the sample analogs of equations above.
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Can this be generalized? Yes. Generally want to create moment
equations such that target parameter α0 is identified via moment
condition:

E[Mi(α0, h0)] = 0,

where α0 is the main parameter, and h0 is a nuisance function (e.g.
h0 = (g0,m0)), with Mi ”immunized” against perturbations in h0:

∂

∂h
E[Mi(α0, h)]|h=h0 = 0

◮ This property allows for ”non-regular” estimation of h, via
post-selection or other regularization methods, with rates that are
slower than 1/

√
n.

◮ It allows for moderate selection mistakes in estimation.
◮ In absence of the immunization property, the post-selection

inference breaks down.
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Bonus Track: Generalizations.∗

Examples in this Framework:

1. IV model
Mi(α, g) = (yi − diα)g(zi)

has immunization property (since E[(yi − diα0)g̃(zi)] = 0 for any g̃), and this
=⇒ validity of inference after selection-based estimation of g)

2. Partially linear model

Mi(α, g,m) = (yi − diα− g(zi))(di − m(zi))

has immunization property, which =⇒ validity of post-selection inference,
where we do double selection – controls that explain g and m.

3. Logistic, Quantile regression

◮ Belloni, Chernozhukov, Kato (2013, ArXiv)

◮ Belloni, Chernozhukov, Ying (2013, ArXiv)
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5. Heterogeneous Treatment Effects∗

◮ Here di is binary, indicating the receipt of the treatment,
◮ Drop partially linear structure; instead assume di is fully

interacted with all other control variables:

yi = dig(1, zi) + (1 − di)g(0, zi )︸ ︷︷ ︸
g(di ,zi )

+ζi , E[ζi | di , zi ] = 0

di = m(zi) + ui , E[ui |zi ] = 0 (as before)

◮ Target parameter. Average Treatment Effect:

α0 = E[g(1, zi)− g(0, zi)].

◮ Example . di = 401(k) eligibility, zi= characteristics of the
worker/firm, yi= net savings or total wealth, α0 = the average
impact of 401(k) eligibility on savings.
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5. Heterogeneous Treatment Effects ∗

An appropriate Mi is given by Hahn’s (1998) efficient score

Mi (α, g,m) =

(
di (yi − g(1, zi ))

m(zi )
−

(1 − di)(yi − g(0, zi ))

1 − m(zi )
+ g(1, zi )− g(0, zi )

)
− α.

which is ”immunized” against perturbations in g0 and m0:

∂

∂g
E[Mi(α0, g,m0)]|g=g0 = 0,

∂

∂m
E[Mi(α0, g0,m)]|m=m0 = 0.

Hence the post-double selection estimator for α is given by

α̌ =
1

N

N∑

i=1

(
di(yi − ĝ(1, zi))

m̂(zi )
−

(1 − di )(yi − ĝ(0, zi))

1 − m̂(zi )
+ ĝ(1, zi)− ĝ(0, zi )

)
,

where we estimate g and m via post- selection (Post-Lasso)
methods.
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Theorem (Result 5: Inference on ATE)
Uniformly within a rich class of models, in which g and m admit a
sparse approximation with s2 log2(p ∨ n)/n → 0 and other practical
conditions holding,

σ−1
n

√
n(α̌− α0) →d N(0, 1),

where σ2
n = E[M2

i (α0, g0,m0)].
Moreover, α̌ is semi-parametrically efficient for α0.

◮ Model selection mistakes are asymptotically negligible due to the
use of ”immunizing” moment equations.

◮ Ref. Belloni, Chernozhukov, Hansen “Inference on TE after selection amongst
high-dimensional controls” (2013 version, available via CEMMAP).
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Conclusion

◮ Approximately sparse model
◮ Corresponds to the usual ”parsimonious” approach, but

specification searches are put on rigorous footing
◮ Useful for predicting regression functions
◮ Useful for selection of instruments
◮ Useful for selection of controls, but avoid naive/textbook

selection
◮ Use double selection that protects against omitted variable bias
◮ Use “immunized” moment equations more generally
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