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1. Introduction

This paper develops simple geometric methods for analyzing

dynamic models with intertemporally dependent consumer tastes. One

appealing feature of such preferences is that they relax the

widely used but restrictive assumption of time-additivity, thereby

allowing the marginal utility of consumption on a given date to

vary with consumption on other dates. Intertemporal dependence is

introduced through the presence of a variable individual rate of

time preference. This type of preference setup was introduced by

Uzawa (1968), and it has recently been extended and clarified by

Epstein (1987a).1

Mathematical convenience, rather than innate plausibility,

has always been the main rationale for assuming time-additive

preferences in economic modeling. A growing body of empirical

evidence suggests, however, that the assumption of intertemporal

independence may be inadequate in practice, even as an

approximation. Tests of the stochastic intertemporal Euler

equations implied by recursive time-additive preferences have

typically produced strong statistical rejections, leading a number

of researchers to posit some form of intertemporal dependence in

tastes (see, for example, Dunn and Singleton 1986, Hayashi 1985,

11n Obstfeld (1982), 1 applied Uzawa preferences to study a small
open economy's response to a permanent, unanticipated
terms-of-trade shock. Further applications include Nairay's (1984)
proof that an individual optimum exists, and Bergman's (1985)
study of capital-asset pricing in a stochastic environment.
Uzawa-Epstein preferences fall into the broader category of
general recursive preferences, as defined by Koopmans (1986).
Lucas and Stokey (1984) and Epstein (1987b) study the stability of
steady states under quite general recursive preferences. Epstein
and Hynes (1983) examine some well-known dynamic economic models
using a particular specification of recursive utility. Judd (1985)
uses a preference specification that includes Epstein's (1987a) as
a special case, but his focus is on steady-state results. Becker,
Boyd, and Sung (1989) provide a general existence theorem for
recursive-preference problems of the type explored below.
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and Heaton 1988). Intertemporal dependence has been invoked to

help explain phenomena as diverse as the high return to U.S.

equity investments over the last century (Constantinides 1988) and

drug addiction (Becker and Murphy 1988). Finally, certain

implications of time-additive preferences seem to clash with the

cross-sectional patterns of consumption and income growth actually

observed in the world economy (Sununers and Carroll 1989)!

In a deterministic setting with a fixed number of competitive

infinitely-lived households, constant time-preference rates fail

to produce a determinate steady state in which all households have

positive net worth and consumption (Becker 1980). Translated to a

world of small open economies, each inhabited by an immortal

representative decision-maker, the result implies either that the

long-run global distribution of wealth is indeterminate, or that

the economy with the lowest time-preference rate (if one exists)

eventually comes to own all the world's outside wealth. Whether

these stark and (for some purposes) analytically inconvenient

implications are reasonable is essentially an empirical matter.

They can be avoided by assuming an overlapping-generations

structure with disconnected cohort budget constraints, or by

introducing income uncertainty. In at least some applications,

however, such modifications may complicate analysis considerably

while being economically beside the point.2

Despite the strong empirical and theoretical cases for

21n a nonmonetary open-economy setting, Buiter (1981) shows that
models with finite overlapping lifetimes can produce a unique,
nondegenerate long-run distribution of wealth between countries.
Weil (1989) observes that Buiter's result survives generalization
to a world in which new infinitely-lived households are
continually born, provided the new households are not linked
altruistically to existing ones. Clarida (1989) examines the
stationary distribution of wealth in a stochastic model with
possibly different fixed national rates of time preference.
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dispensing with constant time-preference rates, convenient

analytical methods for studying alternative models have not

entered into general use. Important stability results for models

with endogenous discounting have been established, but these say

little or nothing about the effects on optimal consumption plans

of a wide variety of common economic events. Readers of the

literature in this area often are left with the impression that

the models studied are both analytically intractable and based on

restrictive assumptions
.

Contraryto this impression, however, the dynamic behavior

implied by variable time preference is easy to analyze and

interpret in many cases of interest. This paper supports this

claim in two ways. First, it offers an intuitive account of the

Uzawa-Epstein model, one that stresses the sense in which it

generalizes the standard intertemporal preference model. Second,

it develops the simple diagrammatic machinery needed to study how

such models respond to rather complicated disturbances, such as

transitory movements in fiscal variables or interest rates. Models

of endogenous time preference are no more difficult to analyze

than models of habit-forming consumption. Indeed, endogenous time

preference can be viewed as a particular special case of habit

formation.

From a formal point of view, the main dynamic complication

due to endogenous time preference is the nontrivial influence of

an additional costate variable equal, at an optimum, to the

maximized lifetime utility function. The extra costate can be

eliminated in interesting special cases, however; and even when

3Thus, Blanchard and Fischer (1989, p. 75) warn students that
endogenous time-preference models of the Uzawa variety are 'not
recommended for general use."
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this is impossible, it may be quite easy to account for its

effects. The behavior implied by endogenous time preference is

often strikingly similar, at least in quLalitative terms, to that

implied by the standard model. The main difference seems to be

that the sometimes troublesome nonconvergence and hysteresis

implied by constant time preference disappear.

The paper is organized as follows. Section 2 analyzes

individual optimization in an economy with discrete trading

periods, starting out with a two-period model and then

generalizing to an infinite horizon. Particular attention is

paid to the effect on time preference of current consumption. The

intuition gained in section 2 is applied in section 3, which

describes a continuous-time formulation more amenable to

diagrammatic methods. Section 4, which is the heart of the paper,

explores the geometry of the system of dynamic necessary

optimality conditions derived in section 3. This geometry is used

to derive the individual's responses to exogenous changes in the

parameters of the maximization problem. Section 5 presents a final

application, to the problem of optimal capital accumulation in a

closed economy.

2. A Discrete-Time Formulation

It is useful to begin with a discrete-time formulation of the

Uzawa-Epstein approach to modeling intertemporally dependent

preferences. The goal of this prologue is primarily expository. A

discrete-time exposition clarifies (i) the nature of time

preference; (ii) the role of certain regularity conditions in

assuring existence and uniqueness of optima; and (iii) the meaning

of the first-order necessary conditions for optimality that arise
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in the continuous-time case.

Until section 5, which studies neoclassical growth, the

exposition is phrased in terms of an individual consumer's

maximization problem. The analysis applies equally well, however,

to a small open economy facing a given world interest rate, or to

a closed economy in which the marginal product of capital is a

technological constant.

2.1. A Two-Period Model

The simplest case arises when a consumer lives for two

periods and maximizes the lifetime utility from consumption,

(1) U(c1,c2) — u(c1) + u(c2)exp[-0(c1)].

Maximization is carried out over nonnegative consumption

levels, subject to the lifetime budget constraint

(2) c1 + c2exp(-r) � a1,

in which r is the instantaneous real interest rate and a1 the

consumer's total real wealth at the start of period 1.

The consumer discounts second-period felicity by the factor

exp[-0(c1)], which is allowed to depend on first-period

consumption.4 In the usual time-additive setup, 0(c) = 0, a

constant, so the discount factor for future felicities u(c) does

not depend on consumption choices.

Provided U(c1,c2) satisfies regularity conditions, a unique

The discussion follows the convention of Arrow and Kurz (1970) in
referring to the subutility functions u(c) appearing in (1) as
felicities. In contrast, the term "utility" always refers to the
consumer's intertemporal objective.
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interior solution to the consumer's problem exists and is

characterized by the familiar marginal equalities emphasized by

Irving Fisher (1930). Consistent with the infinite-horizon

perspective adopted later, regularity of the lifetime utility

function is achieved through conditions imposed on the

building-block functions u(c) and 0(c).5

First, there are some standard assumptions. Both u(c) and

0(c) are assumed to be twice continuously differentiable. The

discount rate 0(c) is taken to be strictly positive [0(c) > 0].

And u(c) is required to be strictly increasing [u' (c) > 0] and

strictly concave [u"(c) <

In addition, some more specialized conditions--which are

obviously much stronger than necessary- - suffice to deliver

Fisher's intertemporal optimum. One possible set of sufficient

conditions consists of the following inequalities:

(3) 0"(c) � 0;

(4) u'(c1) — 0'(c1)u(c2)exp[-0(c1)] > 0, V c1, c2;

(5) u(c)u"(c) — u' (c)2 0.

Condition (3) requires 0(c) to be concave. Condition (4) (as

shown in a moment) is the requirement that lifetime utility rise

with first-period consumption. Finally, condition (5), which

5As will be apparent, some of these conditions are cardinal in
nature. All predictions of the model, however, are invariant with
respect to affine transformations of the lifetime utility
function.

6Appropriate Inada conditions can be used to assure interior
solutions.
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restricts u(c) to be negative,

(6) u(c)<O

states that log[-u(c)J is a convex function of consumption.

The role of these assumptions is best appreciated by

examining first- and second-order conditions for an optimum. Let

be the Lagrange multiplier attached to constraint (2). Then the

first-order conditions are

(7) U1(c1,c2) — u' (c1) — 0' (c1)u(c2)exp[-0(c1)]
—

(8) U2(c1,c2) = u'(c2)exp[-0(c1)J — )1exp(-r).

Equation (7) equates the marginal utility of initial

consumption--a positive number, by (4)--to the shadow price of

wealth l Importantly, the marginal utility of initial

consumption is the sum of two components: first, the additional

first-period felicity from an increase in c1, and second, the

resulting change in the discounted value of second-period

felicity. (The second component would disappear with a constant

discount factor, 0' (c) 0). Equation (8) has the marginal present

utility of consumption falling over time at rate r.

Under the assumptions already made, the utility function

U(c1,c2) is strictly concave:

U11 u"(c1) + [(0' (c1)2 — 0"(c1)]u(c2)exp[-0(c1)} < 0;

U22 u"(c2)exp[-0(c1)J < 0;
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— — u"(c1)u"(c2)exp[-8(c1)J

+ 0' (c1)2[u(c2)u"(c2) — u' (c2)2jexp(-20(c1)J

— 8"(c1)u"(c2)u(c2)exp[-28(c1)J > 0.

The consumer's choice problem therefore has the unique optimum

shown at point A in figure 1, where (2) holds as an equality.

2.2. The Rate of Time Preference

So far, no direct stand has been taken on the sign of the

derivative 8'(c), that is, on the question of how initial

consumption influences the discount factor applied to future

felicity. A closely related question asks how the rate of time

preference changes as consumption changes; but the two questions

are not the same in general. Figure 1 is useful in illustrating

the distinction.

Conditions (7) and (8) together equate the marginal rate of

substitution of future for present consumption to the inverse

market discount factor:

MRS(c1,c2) U1(c1,c2)/U2(c1,c2) exp(r).

The pure subjective rate of time preference can be defined as the

natural logarithm of this marginal rate of substitution for a

constant consumption path, c1 c2 — c. In terms of figure 1,

rates of time preference depend on the slopes of the indifference

curves U and U' as they cross the 45° line. If the subjective

discount rate is a constant 8, the time-preference rate is fixed
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at 8 as well; but generally, 10gMRS(c,c) — log(exp[9(c)] —

8' (c)u(c)/u' (c)) depends on c.7 Figure 1 illustrates the utility

contours of an individual whose time-preference rate rises with

consumption. The interpretation is that the individual's

impatience to consume increases as actual consumption rises.

What determines whether time preference rises with

consumption, as in the figure, or falls? Define the elasticities

(9) E — -cu/u > 0 — -cu"/u' > 0, E9, — -c8"/9' 0,

and consider the total derivative

(10) dMRS(c,c)/dc 9'(c)(exp[9(c)] — 1
+ i11u' —

Notice that if 8' (c) < 0, then , < 0 and the time-preference

rate is necessarily decreasing in consumption. But if 0' (c) > 0,

the time preference rate can rise or (if e9, exceeds u' by a

sufficiently large amount) fall as consumption rises. Intuitively,

if 8' (c) falls very rapidly relative to u' (c) as c rises, U1(c,c)

can fall toward u1(c,c) so quickly that future consumption becomes

more valuable, at the margin, relative to present.

There is considerable disagreement over whether impatience to

consume should increase or decrease as actual consumption rises.

Koopmans (1986, pp. 94-95) suggests that a majority of economists

would make an introspective argument in favor of decreasing

impatience; while Epstein (1987a, pp. 73-74), who surveys the

debate on this issue, offers several counter-arguments. Lucas and

Stokey (1984) point out that something like increasing

7Use (7) and (8) to derive the last expression.
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impatience- -a sort of diminishing private returns to saving- - is

needed to produce unique, stable, nondegenerate steady-state

wealth distributions in a deterministic infinite-horizon setting.8

In the present two-period setting, none of the results

derived above requires assumptions about the slopes of the

time-preference function 10gMRS(c,c) or the subjective

discount-rate function 0(c). (It is true, however, that if 0'(c) <

0 and 9(c) is concave, 9(c) turns negative at some finite

consumption level.)

Matters are different once the consumer's horizon is extended

indefinitely (as will become evident in section 4). In that case

the assumption 9' (c) > 0 is necessary for stability of the

long-run optimal consumption plan (and indeed, it may be necessary

for the existence of an individual optimum). While the rate of

time preference still need not equal 9(c), the two rates do

coincide in the steady state. Since it is necessary for stability,

the condition

(11) 9' (c) > 0

will generally be imposed from now on, although further arguments

in favor of this choice will be introduced in context.

Probably the best way of appreciating the meaning of

inequality (11) is to look at the cross-partial derivative of the

utility function,

(12) U12(c1,c2) — — 9' (c1)u' (c2)exp[-9(c1)J

8Svensson and Razin (1983) recognize a related point in the
setting of a small open economy, but they do not regard it as a
compelling argument in favor of a time preference rate that rises
with consumption.

10



If 6' (c) > 0, U12 is negative and consumptions in the two periods

are Edgeworth substitutes: higher consumption in period 1, say,

lowers the marginal utility of period-2 consumption by raising the

discount rate for second-period felicity. Edgeworth

substitutability is behind the infinite-horizon stability result

mentioned above. The wealth accumulation process converges

when 6' (c) > 0 because, as wealth and consumption rise, the

marginal private return to further saving, which depends on the

marginal utility of future consumption, falls.

If 9' (c) < 0, however, consumptions in different periods are

Edgeworth complements, not substitutes, and a rise in present

consumption raises the marginal utility of future consumption.

An intertemporal complementarity assumption might well be

plausible in a model where goods are habit forming, but it seems

rather unlikely applied to consumption in general. This is an

additional, introspective argument in favor of the assumption that

the subjective discounting of future felicity rises with

consumption. As argued in the next subsection, the argument

becomes even more compelling in an infinite-horizon setting.

2.3. The Infinite-Horizon Case

For a consumer with an infinite planning horizon, the

analogue of utility function (1) is

(13) U(C1) Xu(ct)exP[;E16(cs)},

which is maximized subject to the constraint
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(14) cexp[r.(t-1)] � a1.

In (13), C1 stands for the consumption path c1, c2, c3 To

ensure convergence of the sum (13), the conditions that u(c) be

bounded below and that 0(c) be bounded away from zero can be

assumed (Epstein 1987a, p. 75).

Introducing again the Lagrange multiplier A1, one obtains the

first-order necessary conditions

(15) u'(c)exp[E10(c5)] — O'(c) u(c)exp[-E10(c5)]
v—t+l

— A1exp[-r.(t-1)], Vt � 1.

The conditions in (15) are completely analogous to (7) and (8),

and they have the same interpretation. The present marginal

utility due to an increase in consumption on date t equals the

marginal felicity that results, plus the induced effects on the

weights attached to felicities accruing after date t. (Naturally,

this total is subjectively discounted to date 1.) As before, the

marginal utility of consumption is planned to fall at rate r.

For future reference, it is helpful to introduce two

definitions. Denote the current-value marginal utility of

consumption by

t-1

(16) — A1exp[ E10(c5) — r.(t-l)],

and the current value of utility from date t+l onward by

12



(17) - u(c)exp[E0(c5)].
vt+l

With the help of these definitions, (15) can be rewritten as

(18) u' (Ct) — 0' (ct)t —

which expresses (15) in current-value terms. The multiperiod

analogue of (4),

(19) u' (ct) 0' (ct)t � 0 V t, C1,

is assumed from now on.

Before going on to pursue dynamic analysis in a

continuous-time framework, it is useful to look briefly at the

implications of (13) about the complementarity/substitutability of

consumption in different periods. The cross-partial derivative of

U(C1) with respect to consumption on two dates t and v is

v-i

Utv(C1) — — 0' (ct)[u' (cv) — ' (c)]exp[-E10(c)]

Given assumption (19), the condition 0' (c) > 0 is necessary and

sufficient for consuznptions on different dates to be Edgeworth

substitutes. Further, the expression above suggests that as v — t
9 , the cross-partial's current value goes to zero (at least for

consumption paths bounded away from zero).

The utility specification with 0' (c) > 0 therefore has the

intuitive implication that consumption on any given date lowers
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the marginal utility of consumption on successive dates, but with

a strength that declines as those dates become more distant. The

implication seems most attractive when decision intervals are

short, because it is then more likely that a higher level of

consumption in one period lowers the marginal utility from

consuming in the next.

3. The Model in Continuous Time

A continuous-time formulation of the model greatly eases the

study of its dynamic behavior. Differential equations

describing first-order necessary conditions are derived below

using optimal control theory, and in a way that brings out the

analogy between the present model and other models with

time-nonseparabilities.

3.1. First-Order Conditions

To place the model in a form amenable to solution by

optimal-control methods, assume that the consumer maximizes

(20) U[C(0)J fu[c(t)]exp{-f O[c(s)]ds)dt

0

subject to

(21) (t) — ra(t) — c(t), a(0) > 0 given.9

In (20), C[(0)] is a (piecewise differentiable) consumption path

originating at t — 0. Define the cumulated "excess" subjective

91t is assumed that the implicit constraint a(t) � 0 never binds
at an optimum.
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discount rate10 by

(22) 8(t) 5(G[c(s)J — r}ds.

Then the consumer's problem can be given the alternative

formulation: maximize

(23) IJ[C(0)] — 5u[c(t)]exp[-8(t)]exp(-rt)dt

subject to (21) and

(24) (t) = G[c(t)] — r, 8(0) 0.

Since the felicity function u(c)exp(-8) is strictly concave

in c and e under the assumptions made in the last section, the

above problem is of the same general form as some others in which

marginal consumption utilities are intertemporally dependent, for

example, the addiction problem analyzed by Becker and Murphy

(1988). The essential feature of the latter model is that felicity

directly depends on a stock variable whose rate of accumulation

depends, in turn, on consumption of some of the available goods.

Here the relevant stock is 8, an indicator of accumulated

impatience.

10tJzawa (1968) uses a similar transformation to change variables
from t to a cumulated time-preference measure in equations (20)
and (21); he then analyzes the individual's optimal-control
problem as one involving a single state variable, assets. As
pointed out by Kompas and Abdel-Razeq (1987), however, this
procedure is invalid when the transition equation (21) is

nonautonomous. Since I will want to study anticipated disturbances
below, and these shift equation (21) over time, a more general
solution approach involving the two state variables a(t) and e(t)
is used below.

15



Necessary conditions for an optimum are derived by

introducing the costate variables, (t) and (t), and the current-

value Hamiltonian

(25) H[c(t),a(t),8(t),(t),(t)] — u[c(t)]exp(-8(t)}

+ (t)[ra(t) — c(t)J — (t)(6[c(t)J — r}.

The conditions can be expressed as

ii' [c(t)Jexp[-8(t)J — 6' [c(t)J(t) —

(t) — 0,

(t) - r(t) — u[c(t)Jexp[-8(t)J.

(See Arrow and Kurz 1970, pp. 48-49.) To simplify the dynamic

analysis, it is convenient to rescale the costate variables so as

to eliminate 8(t) from the above equations. Let q(t)

(t)exp[8(t)J and (t) — (t)exp[8(t)J. Then the necessary

conditions take the form

(26) u' [c(t)J — 6' [c(t)J(t) — q(t),

(27) 4(t) — q(t)(6[c(t)J — r},

(28) (t) — 6[c(t)J(t) — u[c(t)J.

Notice that when (t) converges to some definite long-run
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value, as will be assumed below, differential-equation (28) has

the solution

(29) (t) - Ju[c(v)]exp(-f O[c(s)]ds)dv;

t
t

in words, (t)--just as in equation (17)--is the discounted

present value of the future felicity stream from the standpoint of

time t. Since the costate transition equation (27) is the

continuous-time version of (16), (29) implies that condition (26)

above has the same basic interpretation as did (18), to which it

is formally identical.

The interpretation is as follows. Consider the term

u' [c(t)] — 0' [c(t)]Ju[c(v)]exp(-f O[c(s)]ds}dv

t
t

on the left-hand side of (26). If U[C(t)] is the lifetime utility

function maximized at time t, the preceding expression measures

the increase in U[C(t)] caused by a small increase in the

consumption path at and near its starting point- - a generalized

notion of the marginal utility of consumption at time t. In

technical terms, the relevant notion of derivative here is the

Volterra derivative of U[C(t)} with respect to c(t),11 denoted

Dv(U[C(t)],c(t)}. Just as the marginal felicity of consumption

rises at rate B — r in the standard model, here the Volterra

derivative of utility with respect to initial consumption rises at

rate 9[c(t)] — r.

11 .

See Epstein and Hynes (1983) and Epstein (1987). An early
application of Volterra derivatives to intertemporal choice
problems is Wan (1970).
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3.2. The Role of the Time-Preference Rate

The quantity

(30) D(u[c(t)],c(tflexp[-e(t) — rt] —

u'[c(t)] — 9'[c(t)](t) exp[-e(t) — rt],

which is the t — 0 present value (in utility terms) of the

left-hand side of (26), measures the increase in U[C(0)] due to an

upward perturbation of the consumption path at time t � 0. It is

the Volterra derivative Dv(U[C(O)] ,c(t)).

Expression (30) can be used to calculate the rate of time

preference in this continuous-time model. In analogy with the

definition adopted in section 2, it is reasonable to associate a

time-preference rate with the rate of decrease in the marginal

utility of consumption along a locally constant consumption path.

Clearly, the rate of time preference associated with any locally

constant c(t) on a consumption path C(0) generally will vary with

c(t) (as before), as well as with subsequent consumption on C(0).

Epstein and Hynes (1983) and Epstein (1987a) suggest this

local approach to defining time preference.'2 They consider a

consumption path C(0) and a point c(t) on it such that (t) 0.

The rate of time preference at that point, denoted p, is (minus)

the logarithmic time derivative of

p — — —. logD(U[C(0)],c(t))I.()Ø.

Application of this formula and of (28) to (30) shows that p

'21n contrast, Koopmans' (1986) definition assumes a globally
constant consumption path.
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depends only on c(t) and

(31) p = p(c,) - O(c){l
+

O'(c)} >0.

In a stationary state with constant consumption , =

u(a)/O(), 50 (31) implies that p(c,) 0(c) in this case. More

generally, however, (31) shows that the time-preference rate

exceeds the discount rate 0(c) when consumption is rising toward a

stationary state, and is below the discount rate in the opposite

case.14 Formally, equation (30) shows why this is so: a rise in

the rate of increase of S, other things the same, causes the

marginal utility of consumption to fall more quickly over time.

This property of the model captures some of the intuition behind

the "introspective" finding that people with lower consumption

levels discount the future more heavily.

By combining equations (26)-(28), we obtain a dynamic

equation for consumption that clarifies the role of the

time-preference rate defined above. Time-differentiation of (26)

shows that [u"(c) — 0"(c).]c — 0'(c) 4. Use (28) to eliminate

and (27) to eliminate 4; then apply (26) to eliminate q.

After some manipulation, the solution for that emerges is

(32) - [u'(c) - 8'(c)} [p(c - r]
[u"(c) —

which states that consumption is optimally falling when the

13Explicit time-indexation is dropped from now on except when there
is a risk of confusion.
14 -Notice that although (31) has been calculated along a path with
locally constant consumption, the formula can be applied to any
path. The function p(c,4) simply measures the rate at which
marginal utility would fall with time, given c and , if c were to
remain momentarily fixed.
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time-preference rate exceeds the interest rate, rising in the

opposite case, but stationary when c c and

p(c,) — r — 0(c).

Of course, when 0(c) is a constant 0, (32) reduces to the familiar

— [u'(c)/u"(c)](O — r).

One final characterization of an optimal program is noted.

Denote by V[a(O)] the maximized value of (23) (under the

constraints). If the optimal costate (O) has the convergent

representation given in (29), then the value function V[a(O)] and

(O) are the equal. Furthermore, by analogy with standard results,

we would expect that V[a(O)] is differentiable and that its

derivative satisfies V' [a(O)] — Dv(U[C(O)] ,c(O)) = u' [c(O)] —

V[a(O)]0' [c(O)] for the optimal consumption path. Since the

foregoing relationships will continue to hold for t > 0, (26)

and (28) imply that

V' [a(t)]i(t) - q(t)i(t) - 0[c(t)] V[a(t)] - u[c(t)]
L

O[c(t)]

An analogous expression holds in the constant time-preference

model. It implies that the value of saving (in utility terms)

equals the annuity flow of the discrepancy between maximized

utility and the utility obtained by maintaining the current

consumption level permanently. The "interest rate" used to

calculate this flow is the subjective discount rate.15

'5A key assumption used in deriving this relation is that all
exogenous factors impinging on the system are constant over time.
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3.3. Relationship to Uzawa's (1968) Formulation

It is easily shown that intertemporal preferences of the form

suggested by Uzawa (1968) are within the class studied by Epstein

(1987a). The basic argument follows quite closely one that Nairay

(1984) used to prove that the Uzawa problem has a solution.

TJzawa assumed that utility is given by the functional

(33) U[C(O)] = $u[c(t)]exp(- 0[c(s)]ds)dt,

0

where 0(c) 8(u(c)) for some function 8:(R - R. The functions u(c)

and 8(u) are assumed to satisfy the restrictions

(34) u(0) 0, u(c) > 0, u'(c) >0, u"(c) < 0,

(35) 8(u) > 0, 8' (u) > 0, 8"(u) > 0, 8(u) — u8' (u) > 0.

Notice that the discount rate is increasing in consumption,

because 0' (c) 8' [u(c)]u' (c) > 0 [see (11)]. To obtain Epstein's

formulation, one must add to Uzawa's conditions (34) and (35) the

requirement that 0(c) be concave, 0"(c) 6' [u(c)]u"(c) +

8"[u(c)]u'(c)2 � 0.

Under the preceding specification, it is easy to see that

u(c)/0(c) = u(c)/8[u(c)] is strictly increasing in c but remains

bounded as c 4 , even if u(c) doesn't.'6 Define -y suptu(c)/0(c))
c>O

and use this definition to create a new felicity function, u(c) —

u(c) — iO(c).

16Under (35), one can always find a linear function a + bu, a 0,

b > 0, such that 8(u) a + bu for u 0. Then u/8(u) � u/(a +
bu), so even if limu(e) — , limu/(a + bu) — 1/b �
lim,u/8(u).
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The point of defining u(c) is that

U[C(O)] - f u[c(t)]exp(-f O[c(s)Jds)dt - U[C(O)] -

0

so maximization of U[C(O)] leads to the same optimal consumption

path as maximization of U[C(O)]. However, u(c) not only is

negative [see (6)], it also is increasing and strictly concave in

c.11 Thus u(c) satisfies conditions sufficient to yield Epstein's

formulation, with the possible exception of log-convexity [see

(5)]. Log-convexity is not, however, an essential property for

most purposes.

4. The Geometry of Dynamic Adjustment

The dynamics implied by an optimal plan can be described in

terms of three variables. Two of these, consumption and wealth,

are present in the standard time-additive setup. In the

time-nonadditive case, however, it is also necessary to keep track

of the present discounted value of future utility, since that

variable influences the marginal utility of current consumption.

This section analyzes the properties of the resulting

three-variable dynai4c system. It is useful to analyze first a

two-variable subsystem of the full system within which the full

system's essential properties are apparent. The extension to three

dimensions is then straightforward. Concluding the section are

"Proof: u'(c) — u'(c) — O'(c) — u'(c)(l — 8'[u(c)]) and u"(c) —

u"(c) — iO"(c) — — 8"[u(c) ]u' (c)2 + u"(c) (1 — 8' [u(c) J

Therefore, by (34) and (35), u'(c) >0 and u"(c) < 0 if 1 — 8'(u)
> 0 Vu. To establish this last inequality, observe that by (35), 1

> [u/8(u)]8'(u) Vu; but since 8(u) >0, 1 > [limuu/S(u)JS'(u) —
y6' (u)
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some applications of the model to anticipated disturbances.

4.1 Dynamics of Lifetime Utility and Consumption

The dynamic behavior of optimal plans is described by three

equations, (21), (28), and (32). They are reproduced below for

easy reference:

(21) 'ra—c

(28) 9(c) — u(c)

(32)
[u' (c) — 9' (c)J - r].
[u"(c) — 9"(c)4]

Three-variable systems typically are difficult to analyze. That

this will not be the case here is due to the block-recursive

nature of the equations of motion. Assets a enter the system only

through equation (21); (28) and (32) form a separate subsystem in

and c. Thus, while consumption drives asset accumulation, the

level of assets affects lifetime utility and consumption only by

determining the initial optimal choices of those variables, Once

these initial choices are made, and c evolve autonomously.

Figures 2 and 3 show two possible configurations of the phase

diagram described by equations (28) and (32). Along the — 0

schedule, future lifetime utility equals the current felicity

level divided by the current subjective discount rate: =

u(c)/9(c). Along the — 0 schedule, the time preference and

interest rates coincide: p(c,) — r. The shape of the latter

schedule is derived by observing that
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(36) p=r — [c€u €e)] [ —

[ce' — eu']

where cO' (c)/9(c) and the other elasticities are defined in

(9) above. Since — u()/9() at the stationary state A, the =

O schedule has a zero slope there. Where > u(c)/9(c), the

schedule has a positive slope if
— u' > 0 and a negative

slope in the opposite case; where < u(c)/9(c), this dependence

is reversed.

The two possible patterns of dynamics in the figures reflect

the ambiguity in the sign of p1— 8p/8c. As in the two-period model

of section 2, the sign depends on that of u' — Specifically,

sign(8p/3c) sign( — u/O)(€u, —
€9,'8 This ambiguity does not

arise if the subjective discount rate is of the Uzawa form, 9(c) =

2,6[u(c)], because €, — — cS (u ) /6 u < u' Thus, Epstein s

formulation does enrich the class of behaviors consistent with the

endogenous time-preference model.

In either case, the stationary state A is a saddlepoint.

Lifetime utility and consumption rise or fall together along the

unique path ss converging to this position. The rate of time

preference p(c,) falls toward the discount rate 9(c) as c

increases along ss, and rises toward it in the opposite case; both

rates equal the interest rate r in the long run. Notice that the

181t is straightforward to establish that the — 0 locus is

strictly concave, as drawn. Notice also that in the case shown in

figure 2, the — 0 locus can never intersect the 0 locus from

below, a situation that would produce a second stationary point.

The reason is that the 0 locus has a strictly positive

slope--equal to [u'(c) — 9'(c)]/9(c)--while the —0 locus has a

slope of zero whenever — 0 [see equation (36)].
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convergence pattern in the figures implies a positive correlation

between anticipated consumption growth and anticipated income

growth, contrary to the simplest permanent-income model of

consumption. Intertemporally dependent preferences therefore have

the potential to rationalize the patterns of consumption and

income comovement noted by Summers and Carroll (1989).

How should one interpret figures 2 and 3, which in

themselves provide no way of determining the initial choices (O)

and c(O)? Remember that the dynamics of and c are embedded in a

larger system involving the stock of assets, a, which is a

predetermined state variable. It is the initial value of assets,

a(O), relative to the long-run value = i/p, that determines the

initial position. As the next subsection shows figures like 2 and

3 can be thought of as projections of the full, three-variable

system onto the two-dimensional (c,) plane. The stable path in

that plane is just the projection of a unique stable path

converging to in the full three-dimensional system.

The critical implication of the full system's block-recursive

structure is that, given the parameters of the differential

equations governing and c, system dynamics depend only on the

current values of and c. As a result, figures 2 and 3 represent

utility and consumption dynamics in any situation where the and

t equations are expected to remain constant over time.

Importantly, such situations include those in which certain

changes are anticipated to occur in the future, provided these

changes do not affect the parameters appearing in (28) or (32).

Before discussing this feature of the model in detail, I note

the relation between the saddlepoint-stability of the model and

the assumption that the discount rate increases with current
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consumption. Linear approximation of the two-variable system

around point A yields two positive characteristic roots when 0' (c)

< 0. Since the addition of equation (21) entails one more positive

root, r, the full system can have the two-positive, one-negative

root pattern needed for saddlepoint stability only if 9' (c) > 0.

4.2. The System in Three Dimensions

A complete, three-dimensional view of the system requires the

inclusion of the asset accumulation equation, (21). Figure 4

illustrates the dynamics of convergence to this long-run

equilibrium, which is labeled A and corresponds to the point A in

figures 2 and 3. The (c,) plane in figure 4 reproduces the

subsystem dynamics shown in those figures. The — 0 locus in the

(c,a) plane is the line along which c — ra; assets rise to the

right of this line and fall to its left, at rates independent of

the value of . An optimal path that converges to A from an

initial asset stock of a(0) < a, say, must entail an initial

consumption level c(0) < ra(0), so that assets are increasing, as

well as an initial lifetime utility level (O) < . The subsystem

saddlepath ss is the projection onto the (c,fl plane of the

full-system saddlepath SS.

To see how at least one convergent path SS can be

constructed, let c[t;c(O),c] be a consumption path satisfying the

subsystem consisting of (28) and (32), as well as the boundary

conditions c[O;c(O),c] — c(0), lim,c[t;c(O),c] — c. In words,

c[t;c(O),1 is just the portion of the stable path in figure 2 or

3 originating at c(0). Then if c(0) in figure 4 is chosen so that

the intertemporal budget constraint fc[t;c(O),]exp(-rt)dt — a0

holds, the path starting at [c(O),(O),a(O)] converges to point A.
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That SS describes optimal plans, given initial asset stocks,

follows from the sufficiency theorem for optimal controls (Arrow

and Kurz 1970, p. 49). Under assumption (5), the strict concavity

of u(c) ensures that the maximand u(c)exp(-8) in (23) is strictly

concave in c and 8; at the same time, (21) is linear while the

right-hand side of (24) is strictly concave in c. It follows that

the maximized Hamiltonian (25) is strictly concave in a and 8.

Optimality now follows from the conditions lim(t)exp(rt) � 0,

1im,-(t)exp(-rt) 0, and lim÷(t)a(t)exp(-rt) =

lim÷,,-(t)9(t)exp(-rt) — 0, which evidently are valid along SS.'9

Figures 2 and 3 make it clear that corresponding to any

initial a(0) is a unique [c(O),(O)] pair placing the economy on a

convergent path to A. If there were another such, ic(O)' ,(O)']

say, we would have to have (O) — (0)' , since there can be at

most one maximized level of utility corresponding to a given

initial asset stock; and this equality implies that c(O) must

equal c(0)' if the consumer's program converges.

In summary, it has been argued that convergent solutions (i)

exist, (ii) are optimal, and (iii) are unique. It is assumed from

now on that only convergent solutions are optimal solutions.

4.3. Disturbances that Do Not Affect the or Equations

Disturbances that do not affect equations (28) or (32) are

the easiest to analyze. Such disturbances- -whether permanent,

anticipated, or transitory in nature- -obviously do not alter

figures 2 or 3 at all, and in particular do not affect the

19As mentioned in footnote 1, the existence of an optimum for
variable time-preference problems is established by Becker, Boyd,

and Sung (1989) in a general setting. Their results show that the

regularity conditions that I imposed above are considerably

stronger than necessary.
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long-run values and . Because these types of disturbances must

operate through the accumulation equation (21), the long-run asset

level does change, as does the relation between asset holdings

and optimal consuniption levels.

Dynamics are comparatively easy to analyze when (28) and (32)

are autonomous (i.e., time-independent) because in this case, the

system's motion is confined to a two-dimensional submanifold of

Euclidean three-space, R3, and therefore is easy to visualize.

These two-dimensional dynamics follow from the block-recursivity

of the full system. Changes in c and depend only on their

current levels, and not on the current asset stock a. If the

equations of motion for c and are autonomous, however, then c

and must always evolve along ss in equilibrium, independently of

the current value of a. But the set of points (c,,a) such that

(c,) E ss is a two-dimensional submanifold of R3. The upper

shaded area in figure 5 shows a section of this submanifold, 20

While c - and - 3 along all trajectories lying on M--and,

conversely, all such paths lie on ii- -paths other than SS imply

divergent asset stocks. Indeed, the perpendicular joining

E SS and E ss describes an unstable eigenvector of the

dynamic system "trapped" on ii.

The laws of motion governing paths on M are simple to

describe algebraically. Denote the functional relationship between

c and along ss by

(37) — '(c), "(c) > 0.

20More formally, let P( ):R3 - R2 be the projection map

— (c,). Then M — (x E R31 P()(x) E ss).
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Figure 5: Dynamics of consumption and assets
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Then the joint motion of c and a on M described by equation (21)

and the equation that results from combining (32) and (37),

(38)
[u'(c) - 8'(c)(c)] p[c(cfl - r
[u"(c) — 8"(c)(c)]

The phase portrait for system described by (21) and (38) is

obtained by projecting M onto the (c,a) plane, as figure 5 shows.

This projection can be used to analyze any disturbance that shifts

the asset-accumulation equation alone.2' The image of SS, denoted

aa, is the convergent path of the simplified system.

As an illustration, let r(t) be a lump-sum tax levied by the

government, so that asset accumulation is given by

(39) (t) — ra(t) — c(t) — r(t).

Suppose that initially the tax is set at r — 0, but that it is

unexpectedly and permanently raised to r' > 0. Figure 6, which

shows dynamics in the (c,a) plane of figure 5, indicates the

adjustment process from an initial long-run equilibrium (point A).

The rise in taxes causes the 0 locus to shift

rightward, but it does not affect equation (38), which defines the

21Disturbances that shift (28) or (32) would generally invalidate
the optimality of the relationship = i(c), and therefore would
invalidate (38) above. An alternative way of reducing the system
consisting of (21), (28), and (32) to one in c and a only is to
use the value function defined in section 3.2. Since — V(a)
along a convergent path [equation (29fl, this function of a may be
substituted for in (32) to yield [with (21)] a system in c and
a. This method is, however, even less versatile than the one
described in the text. The reason is that in many interesting
cases, the value function depends on factors other than a. For
example, an anticipated future income increase clearly makes
calendar time an additional argument of the value function. In
contrast, such a shock does not alter the relation between c and '
described by ss.
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— 0 locus. Long-run consumption is still determined by 0(c) — r;

however, the long-run asset stock consistent with c after the

shock is ' — ( + r' )/r > i. This long-run position can be

reached only if saving rises immediately. Accordingly, figure 6

shows that consumption drops to the level given by point B on the

new saddlepath a'a' converging to A' Subsequently c rises back to

its original level, a result in sharp contrast to the

once-and-for-all, permanent drop in consumption predicted by the

constant time-preference model with B — r.

It is simple to extend this analysis to the case of a

temporary tax increase. Key to this extension is the observation

that consumption will not take a discontinuous jump when the

anticipated fall in taxes is implemented. Points C and D

in figure 6 show the initial reactions to temporary tax increases

of different duration, with point C corresponding to the

longer- lived increase.

In both cases, there is an immediate drop in consumption, a

reflection of the fall in lifetime income; and in both cases,

consumption subsequently rises as the consumer returns to point A.

The disturbance pushing the individual to point D leads him to run

down his assets while the higher tax is on, as in models with

constant time preference. The move to point C, however, is caused

by a reduction in lifetime income so large that initially the

consumer's saving rises. This makes intuitive sense: the longer

the duration of the shock, the closer it is to being permanent.

Clearly, the degree of consumption smoothing predicted by the

endogenous time preference model is lower than that predicted by

traditional permanent-income type models. Other things equal,

the consumers described above prefer stronger initial reactions to



income shocks, a response pattern that allows them to return

eventually to habitual consumption levels.

4.4. Interest-Rate Disturbances

The interest rate enters directly into the dynamic equations

for consumption and lifetime utility, so the mode of analysis used

so far does not automatically apply to all types of interest-rate

disturbance. Permanent, unanticipated interest-rate changes remain

easy to analyze, however, using the preceding framework.

The long-run relationship between assets and the interest

rate is determined by 9(ra) r. While long-run consumption rises

if r does, long-run assets can rise or fall. If the initial

position is one of long-run equilibrium, a small increase in r

raises long-run assets if the elasticity e9 exceeds 1, and lowers

them in the opposite case. Figure 7 shows how the economy adjusts

in a case where < 1 at the initial equilibrium. In the case

pictured, consumption falls initially to produce the required rise

in saving (point B); but it is possible, for different parameter

choices, that consumption rises when the disturbance occurs.

When > 1, long-run assets must fall, and consumption must

therefore rise on impact. Consumption overshoots its eventual

level in the short run, a result impossible when the subjective

discount rate is relatively inelastic with respect to consumption.

Since the assumption e < 1 leads to preferences more comparable

with time-additive preferences (e = 0), I focus on the inelastic

case in discussing the effects of transitory interest-rate

movements.

Transitory changes in interest rates are most easily studied

in a diagram like figure 8. The figure is drawn on the assumption
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that consumption initially falls when the interest rises

temporarily to r' from r. A permanent rise in r would shift ss

upward to 5's' , producing a new long-run equilibrium (point A')

with higher consumption and higher lifetime utility than at the

original long-run equilibrium (point A). An optimal consumption

plan necessarily follows the Euler equations of the

high-interest-rate system while the interest rate is high; after

the rate falls, the optimal plan follows ss. Neither consumption

nor future lifetime utility can jump at the moment of transition.

These conditions lead to the path shown.

Why does figure 8 show * initially rising when the economy

moves from point A to point B? If & is the initial asset level, it

is feasible for the consumer to raise consumption immediately to

r' and lower it back to r when the interest rate falls. This

plan raises lifetime utility above , and an optimal plan

necessarily does even better.22

The diagram makes clear why the analysis applied to previous

disturbances, which assumed a time-invariant consumption-utility

relationship of the form — *(c), is now inapplicable. During the

period before the interest rate reverts to its initial level,

consumption must evolve along an unstable path of the system in

the (c,) plane. In terms of figure 5, this means that the optimal

program involves points off the submanifold M. It is therefore no

longer legitimate to analyze the comovement of consumption and

assets using the two-dimensional projection of M.

The optimal response to the disturbance calls for an initial

22Let T be the length of the time interval over which the interest
rate is at r' > r. The feasible plan described (which merely holds
saving steady at zero) ha! a utility value of exp[— O(r'a)TJ +

(1 - exp[— O(r')T]) u(r'a) > — u(ra)
O(r'a) O(ra)



rise in saving. Saving then declines over time, turning negative by

the time of the anticipated fall in the interest rate. Notice that

over part of the transitional period, is falling even though

consumption is rising, contrary to the positive correlation of

these variables along a saddlepath. Lifetime utility is falling

despite rising current consumption because the drop in the

interest rate is approaching, and consumption is expected to

follow a declining path after that event.

It is instructive to compare the above scenario with the

response that would occur were the time-preference rate constant

at 8 r. Once again, consumption can rise or fall when the

interest rate temporarily rises Co r' in the case of logarithmic

utility, for example, consumption would remain constant at Oa on

impact. After the initial instant, however, consumption rises

according to the equation t — (— u'/u")(r' — 0). This rising

transitional consumption path agrees with the result shown in

figure 8 for variable time preference. There are two main

differences. With a constant 8, assets remain at a new, higher

level once r' falls back to r, rather than returning to their

original level. (That is, the shock has hysteretic effects.) In

addition, the constant-U case does not admit the possibility of

initial consumption overshooting or initial dissaving (which

occurs above when > 1).

5. Neoclassical Growth in a Closed Economy

A final example applies the above framework to the

neoclassical growth problem of Ramsey (1928), Cass (1965), and

Koopmans (1965). For this purpose, the maximization problem is

interpreted as a planning problem, and net output is assumed to be
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a function f(k) of the capital stock k. As usual, f(k) is assumed

to be twice continuously differentiable, with f' (k) 0 over an

initial range of capital stocks, and f"(k) < 0 everywhere.

Proceeding as before, one derives the necessary conditions

(40)
[u' (c) - 0' (c)J [p(c,) - f' (k)]
[u"(c) —

(41) — f(k) — c,

and (28). Notice that, provided no parameters are expected to

change, the dynamic system described by these equations is fully

autonomous. Since the value function V(k) is therefore independent

of time, it is legitimate to eliminate (28) by imposing the

equality — V(k) valid along convergent paths. Substitution

transforms (40) into an equation involving c and k only,

(42) - [u' (c) - 0' (c)V(k)1 p[c,V(k)] — f' (k)

[u"(c) — O"(c)V(k)]
L

Figure 9 shows a possible configuration of the system

described by (41) and (42). Given the convergence assumption made

to obtain (42), only the convergent path aa has economic

significance. The steady-state values of consumption and capital

are uniquely determined by the conditions

(43) — f(i),

(44) 0(c) f'(i).

When 0' (c) > 0, optimal growth has the same essential

characteristics as in the standard model.23 Consumption and capital

231f 0' (c) could be negative, the possibility of multiple steady
states would arise
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rise or fall together to a steady state A described by a modified

golden rule.

6. Concluding Remarks

This exploration of endogenous time-preference models has

illustrated the straightforward methods available for

understanding the consumption behavior they predict. Models with

variable time-preference rates typically yield the more intuitive

economic implications of constant-rate models, for example, that

consumption should rise during a period of temporarily high

interest rates. The main difference is that variable time-

preference models imply a well-defined long-run target wealth

level. This determinacy is not only empirically plausible, it is

also an analytical advantage in many cases.

The assumption of constant time-preference rates has been

useful in some recent models of sustained endogenous growth in per

capita consumption (see Romer 1989 for a survey). It should be

noted, therefore, that the formulation of endogenous time

preference described above is fully consistent with those models.

An assumption that the concave, increasing discount-rate function

0(c) is bounded from above would be enough in principle to open

the door to unbounded individual consumption growth.

The stability of this paper's models is closely linked to the

hypothesis that subjective discount rates are increasing functions

of consumption. This hypothesis does not command widespread

agreement. It appears, however, to yield more reasonable economic

predictions than the alternative view, that people become more

willing to defer consumption as consumption possibilities rise.
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