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Abstract
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more about their home assets. A criticism of these theories is that asymmetry should disappear
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learn foreign information. Investors want to exploit increasing returns to specialization: The
bigger the home information advantage, the more desirable are home assets; but the more home
assets investors expect to own, the higher the value of additional home information. Even
with a tiny home information advantage, and even when foreign information is no harder to
learn, many investors will specialize in home assets, remain uninformed about foreign assets,
and amplify their initial information asymmetry. The model’s predictions are consistent with
observed patterns of local and foreign investment.
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Observed returns on national equity portfolios suggest substantial benefits from international

diversification, yet individuals and institutions in most countries hold modest amounts of foreign

equity. Many studies document such home bias (see French and Poterba (1991), Tesar and Werner

(1998) and Ahearne, Griever and Warnock (2004)). One hypothesis is that capital is internationally

immobile across countries, yet this is belied by the speed and volume of international capital flows

among both developed and developing countries. An American investor, for example, could have a

highly diversified portfolio simply by purchasing foreign stocks or ADRs on US exchanges. Another

hypothesis is that investors have superior access to information about local firms or economic

conditions (Brennan and Cao (1997), Hatchondo (2004)). But this seems to replace the assumption

of capital immobility with the equally implausible assumption of information immobility. For

example, if an American wished, she could presumably pay someone to divulge information about

foreign firms. Such trade in information could potentially undermine the home bias.

We nevertheless propose information as an explanation for home bias. The question to be

addressed, then, is why information does not flow freely across borders. We model an investor who

faces a choice about what to learn, before forming his portfolio. This investor will naturally build

on his existing advantage in local information because there are increasing returns to specializing

in learning about one asset. A small information advantage makes a local asset less risky to a local

investor. Therefore, he expects to hold slightly more local assets than a foreign investor would. But,

information has increasing returns in the value of the asset it pertains to: as the investor decides to

hold more of the asset, it becomes more valuable to learn about. So, the investor chooses to learn

more and hold more of the asset, until all his capacity to learn is exhausted on his home asset. The

initial small information advantage is magnified. The result is that information immobility persists

not because investors can’t learn what locals know, nor because it is too expensive, but because

they don’t choose to; capitalizing on what they already know is a more profitable strategy.

The model’s key mechanism is the interaction between information and investment choice. To

illustrate its importance, section 2 shuts down the increasing returns to specialization mechanism by

forcing investors to take their portfolios as given, when they choose what to learn. These investors

minimize investment risk by learning about risk factors that they are most uncertain about. With

sufficient capacity, learning undoes all initial information advantage, and therefore all home bias.

To generate a large home bias, the cost of processing foreign information would have to be larger

than what is implied by the data.
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Section 3 describes a general equilibrium, rational expectations model where investors choose

what home or foreign information to learn, and then choose what assets to hold. The interaction

of the information decision and the portfolio decision causes investors to learn information that

magnifies their initial advantage. Consider two possible learning and investment strategies. One

strategy would be to learn a small amount about every asset. Small changes in beliefs about every

asset’s payoff would cause small deviations from a diversified portfolio. Another strategy would be

to learn as much as possible about a small number of assets, and then take a large position in those

assets. A portfolio biased toward well-researched assets poses less risk, because a large fraction of

the portfolio has been made substantially less risky, through learning. Efficient learning dictates

that investors should specialize. They should learn about assets they already know well, amplify

their initial information differences, and increase their home bias.

It is not the information constraint that drives investors to specialize. The model in section 2

uses the same constraint, yet investors who take portfolios as given want to equalize uncertainty

across risks. Rather, it is the feedback of the learning choice and the portfolio choice on each other

that generates the increasing returns. The feedback arises from the unique properties of information

as a good: the more shares a piece of information can be applied to, the more benefit it provides.

This idea dates back to Wilson (1975), who found that information value is increasing in a firm’s

scale of operation. Because of this property, information has increasing returns in many settings

(Radner and Stiglitz 1984).

Calvo and Mendoza (2000) argue that more scope for diversification decreases the incentive

to learn. In contrast, our paper shows that when investors can choose what to learn about, the

incentive to diversify declines. Optimal portfolios contain a diversified component plus assets that

the investor learns about. As learning capacity increases, the share of the diversified component

declines. The model generates a long position in home assets, on average, because equilibrium

asset returns reflect the risk that the average investor bears. An investor who learns about home

assets reduces his uncertainty about their payoffs. Asset with less uncertain payoffs are less risky

investments. Since home investors bear less risk than the average investor, they earn excess risk-

adjusted home returns. To capture the excess return, investors take positive positions in their home

assets. Thus the ability to learn magnifies home bias.

A numerical example (section 3.4) shows that learning can magnify the home bias considerably.

When all home investors get a small initial advantage in all home assets, the home bias is between
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5 and 46%, depending on the magnitude of investors’ learning capacity. When each home investor

gets a local advantage, that is concentrated in one local asset, the home bias rises as high as the

76% home bias in U.S. portfolio data.

A variety of evidence supports the model’s predictions. First, locally-biased portfolios earn

higher abnormal returns on local stocks than more diversified ones (Coval and Moskowitz (2001),

Ivkovic, Sialm and Weisbenner (2005)). Section 4.1 shows that in a model where investors have

slightly more prior information about their region, they hold more local assets and earn abnormal

returns on those assets. Second, foreigners invest primarily in large stocks that are highly correlated

with the market (Kang and Stulz 1997) and often outperform locals in these assets (Seasholes 2004).

Section 4.2 shows that a foreigner with more learning capacity than locals may learn about a local

risk factor. The optimal risk to learn will be one that the largest assets load on. With more

information than the average investor, he will outperform the market for the assets which load on

the factor: large assets that covary highly with other large assets.

Magnifying information advantages generates effects that resemble a familiarity bias (Huberman

2001) or a loyalty effect (Cohen 2004). Massa and Simonov (2005) argue that familiarity effects

are information driven. They find that familiarity affects less-informed investors more, diminishes

when the profession or location of the investor changes, and generates higher returns.

Information advantages have been used to explain exchange rate fluctuations (Evans and Lyons

(2004), Bacchetta and van Wincoop (2004)), the international consumption correlation puzzle

(Coval 2000), international equity flows (Brennan and Cao 1997), a bias towards investing in

local stocks (Coval and Moskowitz 2001), and the own-company stock puzzle (Boyle, Uppal and

Wang 2003). All of these explanations are bolstered by our finding that information advantages

are not only sustainable when information is mobile, but that asymmetry is often amplified when

investors can choose what to learn.

1 A Model of Learning and Investing

Using tools from information theory (Sims 2003), we construct a general framework to think about

learning and investment choices. This framework adds a two-country structure to Van Nieuwer-

burgh and Veldkamp (2005). The added investor heterogeneity allows us to identify which investors

learn about and hold each asset. Without it, we could not explore cross-country portfolio differ-

ences. Section 2 examines the choice of what to learn when an investor takes his portfolio as given
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and only wants to reduce the risk of that portfolio. Section 3 describes how learning and investment

decisions are made jointly in a noisy rational expectations, general equilibrium model.

This is a static model which we break up into 3 periods. In period 1, investors choose the distri-

bution from which to draw signals about the payoff of the assets. The choice of signal distributions

is constrained by the investor’s information capacity, the total informativeness of the signals he

can observe. In period 2, each investor observes signals from the chosen distribution and makes his

investment. Prices are set such that the market clears. In period 3, he receives the asset payoffs

and consumes.

Preferences Investors, with absolute risk aversion parameter ρ, maximize their expected cer-

tainty equivalent wealth:

U = E1 {− log (E2[exp(−ρW )])} . (1)

Utility can instead be defined over consumption by assuming that all wealth is consumed at the end

of period 3. The term − log (E2[exp(−ρW )]) is the level of consumption that makes the investor

indifferent between consuming that amount for certain and investing in his optimal portfolio, in

period 2. This certainty equivalent consumption is conditional on the realization of the signals the

investor has chosen to see. Since these signals are not known in period 1, the investor maximizes

the expected period-2 certainty equivalent, conditioning on information in prior beliefs. We show

later this is equivalent to mean-variance preferences, commonly used in portfolio theory. Appendix

A.1 discusses the rationale for this utility formulation in more detail.

Budget Constraint Let r > 1 be the risk-free return and q and p be Nx1 vectors of the number

of shares the investor chooses to hold and the asset prices.1 Investor’s terminal wealth is then his

initial wealth W0, plus the profit he earns on his portfolio investments:

W = rW0 + q′(f − pr) (2)

Initial information We model two countries, home and foreign. Each has an equal-sized con-

tinuum of investors, whose preferences are identical. Home and foreign investors are endowed with
1The results do not depend on the existence of a risk-free asset. Suppose agents can consume c1 at the investment

date and c2 when asset payoffs are realized. If preferences are defined over r ∗ c1 + c2, where r is the rate of time
preference, the solution will be identical. The earlier consumption choice takes the place of the riskless investment
choice.
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prior beliefs about a vector of asset payoffs f . Each investor’s prior belief is an unbiased, indepen-

dent draw from a normal distribution, whose variance depends on where the investor resides. Home

prior beliefs are µ ∼ N(f,Σ). Foreign prior beliefs are distributed µ? ∼ N(f, Σ?). Home investors

have lower-variance prior beliefs for home assets and foreign investors have lower-variance beliefs

for foreign assets. We will call this difference in variances a group’s information advantage.

Information acquisition At time 1, investors choose how much to learn about each asset’s

payoff. When payoffs co-vary, learning about one asset’s payoff is informative about other payoffs.

To describe what a signal is about, it is useful to decompose asset payoff risk into orthogonal risk

factors and the risk of each factor. This decomposition breaks the prior variance-covariance matrix

Σ up into a diagonal eigenvalue matrix Λ, and an eigenvector matrix Γ: Σ = ΓΛΓ′. The Λi’s are

the variances of each risk factor i. The ith column of Γ (denoted by Γi) gives the loadings of each

asset on the ith risk factor. To make aggregation tractable, we assume that home and foreign prior

variances Σ and Σ? have the same eigenvectors, but different eigenvalues. In other words, home

and foreign investors use their capacity to reduce different initial levels of uncertainty about the

same set of risks.

Investors observe signals about risk factor payoffs (Γ′f). Nothing prevents them from learning

about many risk factors. The only thing this rules out is signals with correlated information about

independent risks. Learning about risk factors (principal components analysis) has long been used

in financial research and among practitioners. It approximates risk categories investors might

study: business cycle risk, industry, regional, and firm-specific risk. We also assume that signals

are normally distributed and that each investor’s signal is independent of the signals drawn by

other investors.

Choosing how much to learn about each risk factor is equivalent to choosing the variance of

each entry of the N-dimensional signal Γ′η. Since the signal is unbiased, its mean is Γ′f . Learning

more about risk i means lowering the variance (increasing the precision) of the ith entry: Γ′iη. The

variance of a principal component is its eigenvalue. So, reducing uncertainty about the ith risk factor

means choosing a smaller ith eigenvalue of the signal variance-covariance matrix Ση. Signals about

the payoffs of all assets that load on risk factor i become more accurate. With Bayesian updating,

each Ση results in a unique posterior variance matrix that measures the investor’s uncertainty

about asset payoffs, after incorporating what he learned. Since the mapping between signal choices

and posteriors is unique, information choice is the same as choosing posterior variance, without
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loss of generality.2 Since sums, products and inverses of prior and signal variance matrices have

eigenvectors Γ, posterior beliefs will as well. Denoting posterior beliefs with a hat, Σ̂ = ΓΛ̂Γ′, where

Γ is given and the diagonal eigenvalue matrix Λ̂ is the choice variable. The decrease in risk factor

i’s posterior variance (Λi − Λ̂i) measures the decrease in uncertainty achieved through learning.

There are 2 constraints governing how the investor can choose his signals about risk factors. The

first is the capacity constraint ; it limits the quantity of information investors can observe. Grossman

and Stiglitz (1980) used the ratio of variances of prior and posterior beliefs to measure the ‘quality of

information’ about one risky asset. We generalize the metric to a multi-signal setting by bounding

the ratio of the generalized prior variance to the generalized posterior variance, |Σ̂| ≥ e−2K |Σ|,
where generalized variance refers to the determinant of the variance-covariance matrix. Capacity

K measures how much an investor can decrease the uncertainty he faces. For now, K is the same

for all investors. Since determinants are a product of eigenvalues, the capacity constraint is

∏

i

Λ̂i ≥ e−2K
∏

i

Λi. (3)

The second constraint is the no negative learning constraint : the investor cannot choose to

increase uncertainty (forget information) about some risks to free up more capacity to decrease

uncertainty about other risks. We rule this out by requiring the variance-covariance matrix of the

signal vector η, Ση, to be positive semi-definite. Since a matrix is positive semi-definite when all

its eigenvalues are positive, the constraint is:

Ληi ≥ 0 ∀ i. (4)

Comments on the learning technology The structure we put on the learning problem keeps

it as simple as possible. But many of these assumptions can be relaxed. First, our results do not

hinge on the assumption that investors learn about principal components of asset payoffs. Appendix

A.2 shows that agents specialize in what they know well, for any risk factor structure. Second,

our framework can incorporate heterogeneous capacity. This extension helps explain patterns of

foreign investment (section 4.2). Third, endogenizing capacity does not change how that capacity

is optimally allocated. When cost is any increasing function of K, there is a capacity endowment
2To see why learning more reduces posterior variance, think of each investor as an econometrician. He is trying

to estimate the end-of-period payoffs of all assets, subject to a constraint on the total amount of data he can collect.
Collecting more data on one asset reduces the standard error of his estimate for that asset’s payoff. The posterior
variance is that standard error, squared.
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that produces identical outcomes.3 Finally, a learning technology with diminishing returns and

un-learnable risk will moderate, but not overturn, our results. Instead of specializing in one risk,

investors may learn about a limited set of risks. But it does not change the conclusion that

investors prefer to learn about what they already have an advantage in. (See Van Nieuwerburgh

and Veldkamp (2005) for a proof.)

While we can relax many assumptions, it is not true that every capacity constraint preserves

specialization. We use this one because it is a common distance measure in econometrics (a log

likelihood ratio) and in statistics (a Kullback-Liebler distance); it is a bound on entropy reduc-

tion, an information measure with a long history in information theory (Shannon 1948); it can

be interpreted as a technology for reducing measurement error (Hansen and Sargent 2001); it is

a measure of information complexity (Cover and Thomas 1991), and it has been used to describe

limited information processing ability in economic settings by (Sims 2003).4

Updating beliefs When investors’ portfolios are fixed (section 2), what investors learn does not

affect the market price. But when asset demand responds to observed information (section 3), the

market price is an additional noisy signal of this aggregated information. Using their prior beliefs,

their chosen signals, and information contained in prices, investors form posterior beliefs about

asset payoffs, using Bayes’ law.

Since prices are equilibrium objects, the information they contain depends on the solution to

the model. For now, we conjecture that prices are linear functions of the true asset payoffs such

that (rp−A) ∼ N(f, Σp), for some constant A. This conjecture is verified in proposition 2.

An investor j’s posterior belief about the asset payoff f , conditional on a prior belief µj , signal

ηj ∼ N(f, Σj
η), and prices, is formed using Bayesian updating:

µ̂j ≡ E[f |µj , ηj , p] =
(
(Σj)−1 + (Σj

η)
−1 + Σ−1

p

)−1 (
(Σj)−1µj + (Σj

η)
−1ηj + Σ−1

p (rp−A)
)

(5)

3Endogenizing capacity can produce other insights. Turmuhambetova (2005) shows that modeling capacity choice
can explain some features of the relationship between income and investment patterns. But that problem can be
neatly decomposed from our capacity allocation problem.

4This learning technology is also used in models of rational inattention. However, that work has focused on
time-series phenomena in representative agent models such as delayed response to shocks, inertia, time to digest, and
consumption smoothing. See e.g. Sims (2003) and Moscarini (2004). Instead, we focus on the strategic interactions
and heterogeneity of individuals’ learning choices.
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with variance that is a harmonic mean of the prior, signal, and price variances:

Σ̂j ≡ V [f |µj , ηj , p] =
(
(Σj)−1 + (Σj

η)
−1 + Σ−1

p

)−1
. (6)

Market clearing Asset prices p are determined by market clearing. The per-capita supply of

the risky asset is x̄ + x, a positive constant (x̄ > 0) plus a random (n× 1) vector with known mean

and variance, and zero covariance across assets: x ∼ N(0, σ2
xI). The reason for having a risky asset

supply is to create some noise in the price level that prevents investors from being able to perfectly

infer the private information of others. Without this noise, no information would be private, and

no incentive to learn would exist. We interpret this extra source of randomness in prices as due to

liquidity or life-cycle needs of traders. The market clears if investors’ portfolios qj sum to the asset

supply:
∫ 1
0 qjdj = x̄ + x.

Definition of Equilibrium An equilibrium is a set of asset demands, asset prices and informa-

tion choices, such that

1. Given prior information about asset payoffs f ∼ N(µ,Σ), each investor’s information choice

Λ̂ maximizes (1), subject to the capacity and no-negative-learning constraints, (3) and (4);

2. Given posterior beliefs about asset payoffs f ∼ N(µ̂, Σ̂), each investor’s portfolio choice q

maximizes (1), subject to the budget constraint (2);

3. Asset prices are set such that the asset market clears;

4. Beliefs are updated, using Bayes’ law: (5) and (6);

5. Rational expectations hold: Period-1 beliefs about the portfolio q are consistent with the true

distribution of the optimal q.

We rewrite period-2 expected utility to eliminate the period-2 expectation operator. In period 2,

the only random variable is f ∼ N(µ̂, Σ̂). Using the formula for a mean of a log normal, substituting

in the budget constraint (2), and substituting ΓΛ̂Γ for Σ̂, we can restate the optimal learning and

investment problem as choosing portfolios and posterior risk factor variances to maximize the

expectation of a standard mean-variance objective:

max
q,Λ̂

E

[
ρq′(µ̂− rp)− ρ2

2
q′ΓΛ̂Γ′q|µ,Σ

]
s.t. (3) and (4). (7)
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2 Why Might Information Advantages Disappear?

Returns to specialization come from the interaction of the investment choice and the learning choice.

To highlight the importance of this interaction, we first explore a model where it is shut down. The

only difference with the model in section 3 is that these investors do not account for the fact that

what they learn will influence the portfolio they hold. They choose what to learn, in order to

minimize the risk of a portfolio that they take as given. In this setting, investors learn exclusively

about the most uncertain assets until either they run out of capacity, or are equally uncertain

about all assets. Learning undoes information asymmetry and reduces or eliminates home bias. As

Karen Lewis (1999) put it, “Greater uncertainty about foreign returns may induce the investor to

pay more attention to the data and allocate more of his wealth to foreign equities.” This section

explains the basis for her criticism. The next section exposes its logical flaw.

2.1 A Model without Increasing Returns to Information

In order to shut down the investment-learning interaction, suppose the investor takes q as given,

when choosing what to learn. Define the amount of risk factor i that an investor holds in his

portfolio as q̃i = Γ′iq. Then the objective (7) collapses to choosing Λ̂i’s to minimize
∑

i q̃
2
i Λ̂i,

subject to the capacity constraint (3) and the no-forgetting constraint Λi − Λ̂i ≥ 0 ∀i. Appendix

B.1 derives the following optimal learning rule and its corollary.

Proposition 1. Learning Undoes Information Advantages. Optimal learning about principal

components Γ produces a posterior belief Σ̂ = ΓΛ̂Γ with eigenvalues Λ̂i = min(Λi,
1
q̃2
i
M), where M

is a constant, common to all assets.

The investor has a target posterior variance for each risk ( 1
q̃2
i
M), that does not depend on prior

variance. With sufficient capacity, he can fully compensate for any initial information advantage,

by devoting capacity to more uncertain risks. If this is the case, then no matter what information

the investor starts with, he will end up with the same posterior beliefs, after learning. Any home

bias that might result from the information advantage disappears when investors can learn.

Corollary 1. If an investor has an informational advantage in one risk factor Λi < Λj ∀j, then

with sufficient information capacity K ≥ K∗, the investor will choose the same posterior variance

that he would choose if his advantage was in any other risk factor: Λk < Λj ∀j for some k 6= i.
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Figure 1: Allocation of information capacity for a low and high-capacity investor.
The lightly shaded area represents the amount of capacity allocated to the factor. The dark area represents the size of the
information advantage. The unfilled part of each bin represents the posterior variance of the risk factor Λ̂i. With high capacity,
adding the dark block to either bin would result in the ’water level’ Λ̂ being the same for both risk factors. This is the case
where initial information advantages are undone by learning.

The top two panels of figure 1 illustrate this corollary. The brick and water picture is a metaphor

for how information capacity (the water) is diverted to other risks when an investors have an initial

information advantage (the brick). There is a home and foreign risk factor (h, f); the two bins are

equally deep because both risks are equally valuable to learn about (q̃h = q̃f ). Giving an investor a

home (foreign) information advantage is like placing a brick in the left (right) side of the box. When

capacity is high, a brick placed on either side will raise the water level on both sides equally. Having

an initial advantage in home or foreign risk will result in the same the same posterior variances

for both assets. Learning choices compensate for initial information advantage in such a way as to

render the nature of the initial advantage irrelevant.

The bottom panels of figure 1 illustrate low-capacity allocations. The investor would like the

water level (his posterior precision) to be the same in both bins, but there is insufficient water

(capacity). The no-forgetting constraint prevents him from breaking up the brick to level the

water. He cannot equalize home and foreign uncertainty. The constrained optimum is to devote

all capacity to the most uncertain risk.

2.2 Mechanisms to Preserve Information Advantages

Initial information advantages could persist if capacity were low relative to the initial advantage

(as in the bottom panels of figure 1). However, if this explanation were true, then individuals

would never choose to learn about home assets; they would devote what little information capacity

10



they had entirely to learning about foreign assets. This implication is inconsistent with the multi-

billion-dollar industry that analyzes U.S. stocks, produces reports on the U.S. economy, manages

portfolios of U.S. assets, and then sells their products to American investors.

A second candidate explanation is that investors have a harder time processing information

about foreign assets. Consider a setting with one home and one foreign asset, with prior vari-

ances σ2
h and σ2

f , posterior variances σ̂2
h and σ̂2

f , and zero covariance. Replace (3) with a ca-

pacity constraint that requires ψ times more capacity to process foreign than home information:
1
2 [log(σh)− log(σ̂h)] + ψ

2 [log(σf )− log(σ̂f )] ≤ K. The optimal learning choice is described by the

σ̂2
h and σ̂2

f first order conditions. Capacity permitting, an investor sets the ratio of posterior vari-

ances to σ̂2
f/σ̂2

h = ψq2
h/q2

f . This implies that an investor, who initially expects to hold a balanced

portfolio (qh = qf ) but ends up holding 7.3 times more home assets (as in the data), must have

ψ = 7.3.5 Adding an initial home advantage does not alter this required processing cost, unless

the advantage alone can account for the home bias. Of course, home bias could arise if an investor

anticipated holding lots of home assets: qh > qf . But then home bias comes not from processing

costs, but from portfolio expectations. This is the mechanism explored in section 3.

The shadow price of foreign information required to explain home bias (ψ = 7.3) seems out of

line with the market price of foreign information. First, English versions of financial newspapers

from Germany, France, Spain, Italy and the UK are inexpensive and easy to access. Second,

average salaries for translators are typically 25% less than for financial analysts.6 If producing

home information required one analyst, and producing foreign information required one analyst

and one translator, then the translator’s salary would have to be 6.3 times the analyst’s. Agency

problems and legal/accounting differences could add costs, but the costs must be large. This

explanation is also inconsistent with local bias and patterns of foreign investment (section 4.1, 4.2).

3 Main Results

The previous section showed that sustaining information asymmetry, without considering the inter-

action between learning and investment choices, is an uphill battle. This section analyzes a model

where small asymmetries in investors’ information not only persist, but are magnified. The only

5The investor’s optimal portfolio is: q? = 1/ρΣ̂−1(µ̂−pr). If home and foreign expected returns (µ̂−pr) are equal
and covariance is zero, then q?

h/q?
f = σ̂2

f/σ̂2
h.

6Average salary figures from PayScale.com for New York state. In other states such as Illinois, Florida and Texas,
translators are paid only 40-60% of the salary of financial analysts.
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change in the model is that investors do not take their asset demand, or the asset demand of other

investors, to be fixed. Instead, we apply rational expectations: every investor takes into account

that every portfolio in the market depends on what each investor learns. We conclude that the

assumption of information immobility is a defensible one. It is not that home investors can’t learn

foreign information; they choose not to. They make more profit from specializing in what they

already know.

3.1 The Period-2 Portfolio Problem

We solve the model using backward induction, starting with the optimal portfolio decision, taking

information choices as given. Given posterior mean µ̂j and variance Σ̂j of asset payoffs, the portfolio

for investor j, from either country, is

qj =
1
ρ
(Σ̂j)−1(µ̂j − pr). (8)

Aggregating these asset demand across investors and imposing the market clearing condition de-

livers a solution for the equilibrium asset price level. Proof is in appendix B.3, along with the

formulas for A and C.

Proposition 2. Asset prices are a linear function of the asset payoff and the unexpected component

of asset supply: p = 1
r (A + f + Cx).

3.2 The Optimal Learning Problem

In period 1, the investor chooses information to maximize expected utility. In order to impose

rational expectations, we substitute the equilibrium asset demand (8), into expected utility (7).

Combining terms yields

U = E

[
1
2
(µ̂j − pr)′(Σ̂j)−1(µ̂j − pr)|µ,Σ

]
. (9)

At time 1, (µ̂j − pr) is a normal variable, with mean (−A) and variance Σp − Σ̂j .7 Thus, expected

utility is the mean of a chi-square. Using the fact that the choice variable Λ̂ is a diagonal matrix,

that Σ̂ = ΓΛ̂Γ′, the formula for A (equation 21), and the formula for the mean of a chi-square, we

7To derive this variance, note that var(µ̂|µ) = Σ− Σ̂, that var(pr|µ) = Σ + Σp, and that cov(µ̂, pr) = Σ.
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can rewrite the period-1 objective as:

max
Λ̂j

∑

i

(
Λpi + (ρΓ′ix̄Λ̂a

i )
2
)

(Λ̂j
i )
−1 s.t. (3) and (4) (10)

where Λpi is the ith eigenvalue of Σp, and Λ̂a
i = (

∫
j(Λ̂

j)−1)−1 is the posterior variance of risk factor

i of a hypothetical investor whose posterior belief precision is the average of all investors’ precisions.

The key feature of the learning problem (10) is its convexity in the posterior variance (Λ̂j). In

a 2-risk factor setting, the objective is U = L1/Λ̂1 + L2/Λ̂2, for positive scalars L1, L2. Thus, an

indifference curve is Λ̂2 = L2Λ̂1/(U Λ̂1 − L1), which asymptotes to ∞ at Λ̂1 = L1/U > 0. The

capacity constraint is Λ̂2 = e2K/Λ̂1, which asymptotes to ∞ at Λ̂1 = 0. Because the indifference

curve is always crossing the capacity constraint from below, the solution is always a corner solution.

Figure 2 plots the indifference curve for a case where L1 = L2, the capacity constraint, and the

no-negative learning bounds for our model (left panel) and the exogenous-portfolio model in section

2 (right panel).
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Figure 2: Objective and constraints in the optimal learning problem with 2 risk factors.

Utility increases as the indifference curve (dark line) moves toward the origin (variance falls). All

feasible learning choices must lie on or above the capacity constraint (lighter line). The no-negative

learning constraint further prohibits posterior variances from exceeding prior variances (dashed

lines). The set of learning choices that satisfy both constraints is the shaded set. Whenever foreign

prior variance is higher than home prior variance, the solution in our model (the large dot in the left

panel) is to devote all capacity to reducing home asset risk. In the section 2 model (right panel),

the objective is linear and the optimum is to reduce variance on home and foreign assets. The right

panel shows why shutting down the information-portfolio interaction reverses our main conclusion.
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Proposition 3. Optimal Information Acquisition. In general equilibrium with a continuum of

investors, each investor j’s optimal information portfolio uses all capacity to learn about one linear

combination of asset payoffs. The linear combination is the payoff of risk factor i f ′Γi associated

with the highest value of the learning index: Λ̂a
i

Λj
i

ρ2(Γ′ix̄)2Λ̂a
i + Λpi

Λj
i

.

Proof in appendix B.4. Three features make a risk factor desirable to learn about. First,

since information has increasing returns, the investor gains more from learning about a risk that

is abundant (high (Γ′ix̄)2). Second, the investor should learn about a risk factor that the average

investor is uncertain about (high Λ̂a
i ). These risks have prices that reveal less information (high Λpi),

and higher returns: Γ′iE[f − pr] = ρΛ̂a
i Γ
′
ix̄. (See appendix B.3.) Third, and most importantly for

the point of the paper, the investor should learn about risk factors that he had an initial advantage

in, relative to the average investor (high Λ̂a
i /Λi). Since these are the assets he will expect to hold

more of, these are more valuable to learn about.

The feedback effects of learning and investing can be seen in the learning index. The amount

of a risk factor that an investor expects to hold, based on his prior information, is the factor’s

expected return, divided by its variance: Λ−1
i ρΛ̂a

i Γ
′
ix̄. This expected portfolio holding shows up in

the learning index formula, indicating that a higher expected portfolio share increases the value of

learning about the risk. Expecting to learn more about the risk decreases its expected posterior

variance Λ̂i. Re-computing the expected portfolio with variance Λ̂, instead of Λ, further increases

i’s portfolio share, and feeds back to increase i’s learning index. This interaction between the

learning choice and the portfolio choice, an endogenous feature of the model, is what generates the

increasing returns to specialization.

Aggregate Learning Patterns Learning is a strategic substitute. Because other investors’

learning lowers the Λ̂a
i and Λpi for the risks they learn about, each investor prefers to learn about

risks that others do not learn. Consider constructing this Nash equilibrium by an iterative choice

process. The first investor will begin by learning about the risk with the highest learning index.

Suppose there is another risk factor j whose learning index is not far below that of i. Then the fall

in Λ̂a
i , brought on by some investors learning about i will cause other investors to prefer learning

about j. Ex-ante identical investors will learn about different risks. All home investors will be

indifferent between learning about any of the risks that any home investor learns about. Foreign

investors will also be indifferent between any of the foreign risks that are learned about.

Although investors may be indifferent between specializing in any one of many risk factors, the
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aggregate allocation of capacity is unique. The number of home and foreign risk factors learned

about in each country will depend on the country-wide capacity. Despite the fact that many risk

factors are potentially being learned about in equilibrium, it remains true that each investor learns

about one of these factors.

Learning and Information Asymmetry Let Λh, Λf , Λ̂h and Λ̂f be N/2-by-N/2 diagonal ma-

trices that lie on the diagonal quadrants of the prior and posterior belief matrices: Λ = [Λh0; 0Λf ]

and Λ̂ = [Λ̂h0; 0Λ̂f ]. And, let the ? superscript on each of these matrices denotes foreign belief

counterparts. Then, for example, Λf represents home investors’ prior uncertainty about foreign

risk factors and Λ̂?
h represents foreigners’ posterior uncertainty about home risks. Appendix B.5

proves the following two corollaries.

Corollary 2. Learning Amplifies Information Asymmetry: symmetric markets. If for

every home factor hi, there is a foreign factor fi such that Λhi = Λ?
fi and Γhix̄ = Γfix̄, then home

investors will learn exclusively about home risks and foreign investors will learn exclusively about

foreign risks.

When risk factors are symmetric, an investor with no information advantage would be indifferent

between learning about home and foreign risks. A slight advantage in home risk delivers a strict

preference for specializing in that risk. This effect can be seen in the learning index: an information

advantage in risk i implies that the variance of prior beliefs Λj
i is low. A low Λj

i increases the value

of the learning index and makes learning about risk i more desirable. Since investors with no

information advantage are indifferent, any size initial advantage tilts preferences toward learning

more about home risks and amplifies the initial advantage.

Corollary 3. Learning Amplifies Information Asymmetry: general case. Learning will

amplify initial differences in prior beliefs for every pair of home and foreign investors: |Λ̂?
h|

|Λ̂h|
≥ |Λ?

h|
|Λh|

and |Λ̂f |
|Λ̂?

f |
≥ |Λf |

|Λ?
f | .

The effect of an initial information advantage on a learning is similar to the effect of a compara-

tive advantage on trade. Home investors always have a higher learning index than foreigners do for

home risks. Likewise, foreigners have a higher index for foreign risks. If home risks are particularly

valuable to learn about, for example because those risks are large (high Γ′ix̄), some foreigners may

choose to learn about them. But, if home risks are valuable to learn about, all home investors will
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specialize in them. Likewise, if some home investors learn about foreign risks, then all foreigners

must be specializing in foreign risks as well. The one pattern the model rules out is that home

investors learn about foreign risk and foreigners learn about home risk. This is like the principle of

comparative advantage: If country A has an advantage in apples and country B an advantage in

bananas, the only production pattern that is not possible is that country A produces bananas and

B apples. Investors never make up for their initial information asymmetry by each learning about

the others’ advantage. Instead, posterior beliefs diverge, relative to priors; information asymmetry

is amplified.

The more asymmetric the markets, the less learning will amplify information asymmetry. In

the most extreme asymmetric case, the initial advantage will just be preserved. For example, if the

home market is much smaller than foreign, then all investors might learn about foreign risk factors;

the ratio of home and foreign investors’ posterior precisions will then be the same as the ratio of

their prior precisions.

3.3 Home Bias in Investors’ Portfolios

To explore the implications of the theory for home bias, we first need to define a benchmark

diversified portfolio. We consider two benchmarks. The first portfolio is one with no information

advantage and no capacity to learn. If home investors and foreign investors have identical posterior

beliefs, they hold identical portfolios. Actual portfolios depend on the realization of the asset supply

shock. The expected portfolio as of time 1 for each investor is equal to the per capita expected

supply x̄.

E[qno adv] = x̄ (11)

A second natural benchmark portfolio is one where investors have initial information advantages,

but no capacity (K = 0) to acquire signals and do not learn through prices. This is the kind of

information advantage that Ahearne et al. (2004) capture when they estimate the home bias that

uncertainty about foreign accounting standards could generate.

E[qno learn] = ΓΛ−1ΛaΓ′x̄, (12)

where Λa is the average investor’s prior variance.

Specialization in learning does not imply that the investors hold exclusively home assets. They
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still exploit gains from diversification. Each investor’s portfolio takes the world market portfolio

(x̄ in equation (13)) and tilts it towards the assets i that he knows more about than the average

investor (high Λ̂−1
i Λ̂a

i ). The optimal expected portfolio with an initial information advantage and

capacity to learn K > 0 is:

E[q] = ΓΛ̂−1Λ̂aΓ′x̄ (13)

Learning has two effects on an investors’ portfolio. The first is that it magnifies the position he

decides to take, and the second is that it tilts the portfolio towards the assets learned about. The

first effect can be seen from equation (8): The entries of Σ̂−1 corresponding to home risks are higher.

Lower risk makes investors want to take larger positions, positive or negative, in the asset. But

why should the position in home assets be a large long position, rather than a large short one? The

second effect, a general equilibrium effect, makes home investors want to hold a positive quantity of

their home assets. The return on an asset compensates the average investor for the amount of risk

he bears Λ̂a
i . The fact that foreign investors are investing in home assets without knowing much

about them, raises Λ̂a and thus the asset’s return. Home investors are being compensated for more

risk than they bear (Λ̂a
i > Λ̂j

i in equation 13). Based on their information, this asset delivers high

risk-adjusted returns. High returns make a long position optimal, on average. Both the magnitude

and the general equilibrium effect increase home bias.8

The next two propositions (proven in appendix B.6) formalize the difference between the optimal

portfolio (13), and the benchmark portfolios (12) and (11). Let Γh be a sum of the eigenvectors in

Γ which correspond to the home risk factors. Then Γ′hq quantifies how much total home risk an

investor is holding in their portfolio.

Proposition 4. Information Mobility Increases Home Bias: symmetric markets. If for

every home factor hi, there is a foreign factor fi such that Λhi = Λ?
fi and Γhix̄ = Γfix̄, then every

home investor’s expected portfolio contains more of assets that load on home risk when he can learn

(K > 0), than when he cannot (K = 0): Γ′hE[q] > Γ′hE[qno learn] > Γ′hE[qno adv].

When asset markets are symmetric, every investor learns exclusively about their home risk fac-

tors (corollary 2). Because of the information and general equilibrium effects, learning (information
8It is still possible that a very negative signal realization would make some home investors want to short home

assets, but short selling is very unlikely to occur on a large scale, in general equilibrium. The dramatic fall in
prices from widespread shorting would signal the bad news to foreign investors, making them unwilling to take the
corresponding large long positions; low prices would also make home investors more willing to hold home assets,
despite their low payoffs.
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mobility) increases the expected home asset position. The extent of the home bias depends on what

this investor knows relative to the average investor. When K = 0, the posterior variance Λ̂ is the

same as the prior variance Λ, and equal to the average variance (Λ̂a = Λa). The optimal portfolio

is the no-learning portfolio (q = qno learn). As capacity K rises, the posterior variance falls on

the assets the investor learns about (Λ̂−1
i rises), and those assets become more heavily weighted in

the portfolio. The more capacity an investor has, the more their portfolio is tilted away from the

diversified portfolio and toward the assets they learn about.

Proposition 5. Information Mobility Increases Home Bias: general case. The average

home investor’s portfolio contains at least as much of assets that load on home risk when he can

learn (K > 0), than when he cannot (K = 0): Γ′hE[q] ≥ Γ′hE[qno learn] > Γ′hE[qno adv].

When market size is different across countries, no home investor will learn more about foreign

risks than any foreign investor will, and vice versa (corollary 3). Therefore, the average home

investor still knows more about home risks, and tilts his portfolio to create home bias. When home

risk factors are small, home investors are more likely to learn about larger foreign risks, and reduce

their home bias. This prediction fits with cross-country data. Small countries such as Belgium,

The Netherlands, and Scandinavian countries all have less home bias than the U.S., Japan or larger

European countries (Morse and Shive 2003). In the most extreme case, all investors learn about

one risk. The ratio of home investors’ and the average investor’s posterior variance is the same

whether investors learn or not: E[q] = E[qno learn]. In this extreme case, learning does not amplify

the home bias, but it doesn’t undo it as it did in section 2.

The next proposition (proven in appendix B.7) shows that home investors earn higher returns

on home assets. This is consistent with evidence found by Hau (2001). Following Admati (1985),

we define the return on asset i as (fi − pir).

Proposition 6. Better-Informed Investors Earn Higher Returns. As capacity K rises,

the expected return an investor earns on the component of his portfolio that he learns about, rises:

∂E[(Γ′iq)(Γ
′
i(f − pr))]/∂K > 0.

Most foreigners don’t learn about home assets, but hold them as part of their diversified port-

folio. Home investors use superior information on home assets to take advantage of foreigners. The

more learning capacity the home investor has, the stronger the more profitable this strategy is.

It is not the case that an investor raises his return (fi − pir) on any one share of asset i by

learning. Payoffs f are exogenous and prices p are determined by the average investor. Rather, a
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better-informed investor takes a larger position in the assets that he learns about, and increases

the correlation of his asset demand q with asset payoffs (f − pr). He holds a long position in the

asset when high returns are likely, and shorts the asset when very low returns are likely.

The declining home bias At first glance, these results seem to suggest that home bias should

increase over time, as information becomes easier to acquire (capacity increases). This would be

inconsistent with the modest decline in the U.S. home bias. However, that conclusion relies on

home and foreign investors having the same capacity. If home investors’ capacity increases more,

returns on home assets decline. Relatively higher foreign returns may induce some home investors

to specialize in learning about and holding foreign equity. Thus, asymmetric increases in capacity

could reduce the average investor’s home bias. Section 4.2 elaborates on this effect.

Furthermore, capital flow liberalization and increases in equity listings in the last 30 years has

created more investible foreign risk factors. Model investors would add these assets to the ‘no

advantage’ part of their portfolio (x̄). This effect would contribute to the increase in foreign equity

investment, and also reduce home bias.

3.4 A Numerical Example

A numerical example quantifies the potential home bias in the model. We start from the symmetric

setup of proposition 3. There are two countries, home and foreign, with 1000 investors in each. Risk

aversion is ρ = 2. There are 5 home and 5 foreign assets. Information advantages are symmetric:

Foreigners start out α times more uncertain about home risks (1 +α)Λh = Λ?
h, and home investors

are α times more uncertain about foreign risks Λf = (1 + α)Λ?
f . We consider a 10% information

advantage (α = 0.1). The supply of each asset has mean (x̄ =100) and standard deviation 10.

Expected payoffs for home and foreign assets are equal. They are equally spaced between 1 and

2. The mean of the average investor’s prior belief is equal to true asset payoffs. The standard

deviation of prior beliefs is between 15-30%, such that all assets have the same expected payoff to

standard deviation ratio. We vary learning capacity K to explore its effect.

Following convention, we define the home bias as

home bias = 1− 1− share of home asset in home portfolio

share of foreign assets in world portfolio
(14)

In this example, the share of foreign assets in the world portfolio is 0.5. We compare the home bias
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our model generates to two benchmarks. The first benchmark is a world where there is no initial

information advantage and no learning capacity. The home bias is zero. The second benchmark is

an economy with initial information advantage (α = 0.1), but no learning capacity (K=0). The ten

percent initial information advantage by itself generates a 5.3 percent home bias in asset holdings.

Uncorrelated assets In our model, learning capacity magnifies home bias because home in-

vestors specialize in learning about one home asset. When there is only enough capacity to view

a signal that eliminates 22 percent of the risk in one asset (K=.24, 1− e−K = .22), the home bias

almost doubles from 5.3 to 10 percent. When there is enough capacity to eliminate 70 percent of

the risk in one asset (K=1.2, 1− e−K = .70), the home bias is 45%, more than eight times larger

than the home bias without learning.

Correlated Home Assets When home assets are positively correlated with each other, and

foreign assets are positively correlated with each other (correlations of 10-30%), but the two sets of

assets are mutually uncorrelated, each investor learns about one risk factor, that all his domestic

assets load on. Introducing moderate correlation strongly increases the home bias. The reason

for this increase is that the set of assets an investor learns about becomes more diversified. Such

portfolio is less risky to hold. Therefore, the investor takes a larger position and holds more of

the home risk factor. Home bias doubles to 19.4% when 1 − e−K = .22; it increases to 59.5%

for 1 − e−K = .70. (See line with circles in figure 3.) In contrast, the no learning benchmark is

unaffected (5.3%, line with diamonds). With 1− e−K = .82, home bias is 72%, just shy of the 76%

observed in the data. In the next section, we endow investors with advantages in local risks, rather

than country risks. This change reduces the capacity required to match the home bias.

4 Extensions

4.1 Local Information: An Amplification Mechanism

A unified explanation for home and local bias is something that many home bias theories cannot

provide (Coval and Moskowitz 2001). Their coexistence makes an information-based explanation

more appealing than explanations rooted in exchange rate risk, institutional difference, or language

barriers. By giving investors slightly more precise signals over local assets, this model can explain

the local investment bias, and the accompanying local excess returns. We could also interpret this
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Figure 3: Home Bias Increases With Capacity. Numerical example with two countries. Assets within a country
have correlated payoffs (cov= .092). Home bias is defined in (14). The ‘no advantage’ line (stars) gives the home bias in an
economy with no initial informational advantage and no capacity to learn. The ‘no learning’ line (diamonds) refers to the home
bias in a world with a small initial information advantage (10%) and no learning capacity. The ‘learning’ line (circles) plots the
home bias in our model. Learning capacity K varies between 0.05 and 1.5. The horizontal axis plots the potential percentage
reduction in the standard deviation of one asset.

as a model of bias toward industries that investors have prior knowledge of, perhaps because of

their job.

Suppose that home investors each had an advantage in only one home risk factor, the one

most concentrated in their region’s asset. An investor j from region m draws an independent

prior belief from the distribution µj ∼ N(f, Σm), where Σm = ΓΛmΓ, and Λm has a mth diagonal

entry that was lower than the mth diagonal in the beliefs of any other region. In this model, local

investors have an incentive to learn more about their local assets, because of their initial information

advantage (proposition 3). As a result, portfolios weight local assets more heavily, and earn higher

profits from on local assets, on average (proposition 6). Local advantages also amplify the effects

of home advantages: When fewer investors share an advantage in the same local risk, locals have

a larger advantage relative to the average investor (higher Λ̂a
m/Λj

m). A more specialized advantage

magnifies the optimal portfolio bias (E[Γ′mq = Λ̂a
m/Λj

m(Γ′mx̄)). Because returns to specialization

increase when information advantages are more concentrated, investors diversify less.

Numerical Example To quantify local bias, we use the same numerical example as in section

3.4, with correlated assets. We measure local bias as in (14), treating localities like countries. The

only difference is that instead of giving 1000 home (foreign) investors a 10% initial information

advantage in all 5 home (foreign) assets, we give 200 investors each a 50% information advantage in

one local asset; the aggregate information advantages at home and abroad are unchanged. Without

learning, the average local bias is only 5.0%; with capacity, 1− e−K = 0.70, it is 30%. The average
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local investor holds 3.6 times what a diversified investor would hold, of his local asset.

Concentrating information advantages in local assets increases home bias. Without learning, the

home bias is 8%; with low capacity (1−e−K = 0.22), it is 23%. With more capacity (1−e−K = 0.70),

home bias is 76%, which is 29% more than the home advantage learning model. This matches the

76% home bias in the data.

How large is capacity? One way of inferring capacity is from excess profits that locally-

concentrated investors earn. Using brokerage account data, Ivkovic et al. (2005) show that in-

dividuals investors with concentrated portfolios earn 10% higher risk-adjusted annual returns on

local non-S&P500 stocks than investors with diversified portfolios. In our simulated model, we

compute the analogous risk-adjusted return statistics, to determine if our capacity level is realistic.

To link the model to data, we equate the largest risk-factor in each country (80% of market

capitalization) with S&P500 stocks (73% of US market capitalization). We compare expected

returns of investors who learn about their local asset and non-local investors on the non-S&P500

risk factors. Because informed local investors hold long positions only when assets are likely to have

high payoffs, they earn higher average returns. For the level of capacity that matches the empirical

home bias (1 − e−K = .70), local investors’ return on the smaller risk factors is 5% higher than

what non-locals earn. The model can match Ivkovic et al. (2005)’s 10% result for (1− e−K = .75).

These results suggest that the level of capacity required to match the home bias is not outlandish;

it may even underestimate investors’ true capacity.

Ivkovic et al. (2005) focus on non-S&P500 stocks because their informational asymmetries are

potentially the largest. They report insignificant outperformance on the S&P assets. While our

model cannot speak to the statistical significance of their results, it does qualitatively match the

pattern of lower outperformance on larger assets. For the calibration that matches the home

bias, local investors’ return on the S&P risk factors is only 2% higher than what non-locals earn.

Returns fall on the large risks because their size makes them valuable to learn about. Low average

uncertainty about the risks makes equilibrium returns and outperformance fall.

4.2 High-Capacity Home, Low-Capacity Foreign Investors

Using foreign investment data from Taiwan, Seasholes (2004) finds that foreign investors outper-

form the Taiwanese market, particularly in assets that are large and highly correlated with the

macroeconomy. He argues that “The results point to foreigners having better information process-
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ing abilities, especially regarding macro-fundamentals.” We can ask of our model: If Taiwanese

investors have low capacity, will Americans invest in Taiwanese assets? Will they outperform the

market? Will American excess returns be concentrated in assets that load heavily on the largest

risk factors? The answer to all three questions turns out to be yes.

When American capacity greatly exceeds Taiwanese capacity, then some Americans will invest

in Taiwan to capture higher returns. To see why, suppose instead that all investors devote their

capacity to learning only about their respective home risks. Since Americans have more capacity,

they will reduce the average posterior variance for their assets by more: Λ̂a
hi < Λ̂a?

fi , for equally-sized

home and foreign risks hi and fi. Recall that expected returns are determined by average posterior

variance; when Americans have higher capacity, expected returns for US assets are lower than for

Taiwanese assets. There will be some level of capacity difference that will create a great enough

difference in returns to induce some Americans to invest in Taiwan. Expecting to hold Taiwanese

assets, some Americans will learn about Taiwan. As Americans learn about and hold Taiwanese

assets, they depress Taiwanese returns. This does not mean that returns in Taiwan and the U.S. will

be equalized. Those Americans who learn about Taiwan will still face more posterior investment risk

because of their initial information disadvantage. Higher returns in Taiwan compensate Americans

for the higher posterior risk they bear.

Although U.S. investors face more posterior uncertainty in Taiwan than in the U.S., they can still

outperform the average Taiwanese investor. If Americans have capacity that exceeds Taiwanese

capacity, by more than their initial advantage in some risk factor, then Americans can become

better informed about that risk. By proposition 6, being more informed than the average Taiwanese

investor implies than the American investor will out-perform the average investor in assets that

load on his researched risk factor (fi).9

The risk factors that Americans should learn about, hold more of, and profit from are ones that

the largest assets weight most heavily on. Assuming that the average uncertainty (Λ̂a), noise in

prices (Λp) and American uncertainty (Λ) about each Taiwanese risk is identical, then the most

valuable risk to reduce is the one with the largest quantity, the highest Γix̄ (proposition 3). Thus,

the model, and Seasholes’ data, both predict that high-capacity foreigners trading large assets, with

high market covariance, are likely to out-perform the market.
9Americans may also hold Taiwanese assets for diversification purposes, without learning about them. These

American investors will under-perform relative to the locals.
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5 Conclusions

This paper questions the common assumption that residents have more information about their

region’s assets than do non-residents. The question is: If investors are restricted in the amount

of information they can learn about risky asset payoffs, which assets would they choose to learn

about? An investor, who does not account for the effect of learning on his portfolio choice, chooses

to study risks he is most uncertain about. He undoes his initial advantage. But, investors with

rational expectations reinforce informational asymmetries. An initial information advantage in a

risk is like a comparative advantage in learning about that risk. Investors believe that they will

hold slightly more of the asset they have an advantage in than the average investor will. Knowing

that the asset will be a larger part of their portfolio causes investors to value learning about it

more. By each specializing what they have a comparative advantage in, investors increase their

information asymmetry. Thus our main message is that information asymmetry assumptions in

international finance are defensible, but perhaps not for the reasons originally thought. We do not

need to resort to large information frictions; small frictions will suffice because learning will amplify

them. With sufficient capacity to learn, small initial information advantages can lead to a home

bias of the magnitude observed in the data.

The results can be applied to a wide range of environments to deliver rich cross-sectional predic-

tions. The theory can be interpreted as one of local bias, and predicts the excess returns observed

on local investors’ portfolios. The theory also predicts when investors will choose not to specialize

in home assets, and thus predicts patterns of foreign investment, and foreign investment returns.

The prediction that foreigners should hold and profit on large assets that are highly correlated with

the market is confirmed in empirical work by Seasholes (2004) and Kang and Stulz (1997).

Asymmetry in prior beliefs could arise from risky labor income. Baxter and Jermann (1997)

argue that countries’ labor income growth and equity returns are highly correlated. Although this

correlation worsens the home bias puzzle in a standard model, it bolsters our explanation. Labor

income is an example of a local information advantage. Such an advantage can lead an investor to

rationally learn more about his own country, own industry, and own company assets, and to weight

them heavily in his portfolio.10 Massa and Simonov (2005) document that Swedish investors tilt

their portfolio towards the industry they work in, and conclude that this is a rational response to
10See Van Nieuwerburgh and Veldkamp (2006) for an analysis of the role of information choice in the own-company

stock puzzle.
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being better informed.

Future work should focus on building a dynamic model of learning and investing to explain

the patterns of equity flows. The large cross-border equity flows observed have proven difficult

to reconcile with many theories of home bias (Tesar and Werner 1995). Gravity model estimates

(Portes, Rey and Oh 2001) add to the puzzle by showing that investors trade most with countries

whose assets offer little diversification benefit. Perhaps it is the fact that these assets are poor

diversification devices, that makes it efficient to learn about them, to hold them, and to trade them

prolifically. Direct evidence on information flows support this explanation. Portes and Rey (2003)

find that nearby markets exchange abundant information: they exhibit high telephone traffic and

strong evidence of insider trading.

An important assumption in our model was that every investor must process their own infor-

mation. If information capacity is costly, rather than fixed, then paying one portfolio manager to

learn about each risk is efficient. How might such a setting regenerate a home bias? By its nature,

selling information also generates an agency problem. A solution could involve auditing portfolio

managers. A manager from the same region, whose initial information resembles the investor’s, may

require less capacity to audit. In such a setting, portfolio managers who cater to nearby investors

would have incentives to learn that mirror their clients’ incentives. They would maximize profit by

reinforcing their initial information advantage and specializing in home assets. Our theory could

be reinterpreted as pertaining to these portfolio managers.

Information asymmetries play a prominent role in international finance. This paper provides

tools that can predict where asymmetries are most likely, and what form they will take. It also of-

fers a cautionary word about building theories around assumptions on information sets. Economic

agents can choose to acquire information and learn. Ignoring learning incentives when specify-

ing information structures raises questions about the resulting theories. These theories may be

analyzing situations that a utility-maximizing agent who can learn would never face.
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A The Model: Technical Details

A.1 The Role of Preferences

Acquiring information does not change asset fundamentals. In particular, it cannot change the total amount
of uncertainty about the assets’ payoffs. All it does is cause that uncertainty to be resolved sooner. It reduces
the risk that an investor faces at the interim stage, after learning but before investing.

Because standard expected utility delivers no preference for early resolution of uncertainty, we use a
utility function, similar to Epstein-Zin preferences, that makes early resolution desirable. This formulation
keeps the exponential structure of preferences that makes the problem tractable. It also treats learned
information and prior information as equivalent. We are asking what variance of beliefs our investors would
most like to have, in period 2, when they decide how to invest.

If we instead use standard expected utility, the learning choice is indeterminate. Capacity increases
expected utility linearly, but how it is allocated makes no difference. In a sense, this is already a success
because the strict preference for diversification dictated by standard theory has been undone. But because
there would be no testable implications, this does not make for a satisfying theory. The indeterminacy can
be resolved by introducing a small preference for early resolution of uncertainty.

Using these preferences is not in any way assuming the result. The fixed-portfolio model in section 2
generates the opposite conclusion, despite having the same preferences. That model also illustrates why
using preferences for early resolution of uncertainty is the most sensible way to analyze learning choices.
Without a preference for early resolution of uncertainty, the investor who takes his portfolio as fixed when
he chooses what to learn wouldn’t care what he learned about, or if he learned at all. With a preference
for late resolution of uncertainty, the fixed-portfolio investor would be averse to observing new information
(ignorance is bliss). In order to meaningfully understand the information choices investors make, we start
not with investors who prefer ignorance, but with investors who prefer to learn.

A.2 Implications of the Learning Technology

This paper’s main result, that investors learn about risks that they have an initial advantage in, relies on
gains to specialization and strategic substitutability in learning. In this appendix, we show that neither force
depends on the assumption that investors learn about risk factors that are principal components.

In contrast, Mondria (2005) allows agents to learn about arbitrary risk factors, but restricts his analysis
to symmetric equilibria, where all investors start with the same information and learn the same information.
His results do not overturn ours. In fact, they demonstrate the robustness of our main result to changes in
the learning technology. When an investor in Mondria’s model has an initial advantage in an asset, that
investor will also learn more about that asset. Thus specialization arises, even with risk factor choice. In
both models, equilibria where all investors learn the same information do exist, but only when investors start
with identical prior beliefs (no initial advantages) and have low capacity.

Specialization persists with arbitrary risk factors Let the posterior covariance matrix be Σ̂ =
Γ̂′Λ̂Γ̂, where Γ̂ is an arbitrary posterior eigenvector matrix of Σ̂. This relaxes the constraint that signals
must be about principal components of payoffs. Imposing the existence of some eigenvectors for Σ̂ is not
restrictive because every variance-covariance matrix is positive-definite and has an eigen-representation of
this form. The objective function (10) then becomes:

max
Λ̂

1
2
Tr

(
Γ̂Λ̂−1Γ̂′Σp − I

)
+

1
2
E[f − pr]′Γ̂Λ̂−1Γ̂′E[f − pr]. (15)

Note that this objective is still a linear function of the form U = α +
∑

i L̂iΛ̂−1, for positive constants α

and {L̂i}i. The learning constraints (3) and (4) are still inequality and product constraints on the eigenvalues
of posterior beliefs Λ̂−1. Since the problem takes the same form of maximizing a sum, subject to a product
constraint, specialization will still arise. (See appendix B.4.) Furthermore, the new learning index is L̂iΛ−1

i ,
which is increasing in prior precision Λ−1

i . Thus, investors prefer to learn about risks that they already know
well.
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In fact, the specialization result also arises in Mondria (proposition 3). His agents devote all their
learning capacity to one linear combination of asset payoffs, as do ours. The differences in our results are
purely about whether investors want to specialize in the same risks, or different ones. Next, we show that
investors still prefer to learn about different risks.

Strategic substitutability persists with arbitrary risk factors Choosing risk factors does not
eliminate the strategic substitutability. Risks that other investors learn about will still have lower returns.
That is what makes one investor want to make her information set as different as possible from the other
investors’.

First, we introduce new ‘aggregate risk factors’. Note that Admati’s (1985) proof of the equilibrium
price does not depend on any particular risk structure. The key information variables in the price formulae,
(18), (19) and (20), will have the same forms as in appendix B.3, but with the eigenvectors of the average
investor’s posterior beliefs Γ̃, s.t. Σa

η = Γ̃Λa
ηΓ̃′. The columns Γ̃i are ‘aggregate risks’ and no longer have to

be the same as the eigenvectors of prior beliefs (Γ̃ 6= Γ) or the posterior risk factors of any given investor
(Γ̃ 6= Γ̂).

An individual’s value of learning about a risk Γ̂i correlated with Γ̃j is decreasing in the precision of the
average investor’s beliefs about the payoffs of aggregate risk j. The average investor’s information enters an
individual’s utility function (15) in two places: through Σp in the first term and through E[f − pr] in the
second term.

Define a weighting matrix M such that Γ̂ = Γ̃M . Then Mij describes how much the individual’s risk
factor j weights on the aggregate risk factor i, and thus how much their payoffs covary. Let Mi be the ith
row of M .

The first term in utility is 1
2Tr

(
Γ̂′Λ̂−1Γ̂Σp − I

)
. Then, the marginal utility of increasing the precision

of beliefs about private risk i, Λ̂−1
ii is 1

2Tr(M ′
iMiΛp). The partial derivative of this marginal utility with

respect to Λpjj is the (j, j)th entry of (1/2M ′
iMi), which is 1/2(Mij)2 = 1/2(Γ̃′jΓ̂i)2, the squared covariance

of private risk i with aggregate risk j. Since the squared covariance is always positive, the value of learning is
increasing the in the exploitable pricing error. The last step links this to the average investor’s uncertainty:
∂Λpjj/∂Λa

ηj > 0 because equation (19) tells us that Λpjj = (Λa
η)2, times a positive constant, and Λa

η is always
positive. Thus, the first component of the value of learning about Γ̂i is always weakly increasing in aggregate
uncertainty Λa

ηj . This substitutability is stronger, the more Γ̂i and Γ̃j covary.
The second term can be rewritten as

∑
i(Γ̂

′
iE[f − pr])2Λ̂−1

i . The marginal utility of increasing the
precision of beliefs about private risk i is (Γ̂′iE[f − pr])2. The expected return on risk factor Γ̂i is a weighted
sum of the expected returns on each risk Γ̃j : Γ̂′iE[f −pr] =

∑
j MijΓ̃′jE[f −pr]. Manipulating equation (16)

reveals the expected return on aggregate risk j: Γ̃′jE[f−pr] = ρ[ 1
ρ2σ2

x
(Λa

ηj)
−2+(Λa

ηj)
−1]−1Γ̃′j x̄. This converges

to zero as the average investor’s precision of beliefs (Λa
ηj)

−1 rises. Thus the utility gain (Γ̂′iE[f − pr])2 from
learning about the payoff of Γ̂i decreases in the aggregate amount learned about each of its aggregate risk
components because the expected return on each Γ̃j converges to zero as (Λa

ηj)
−1 increases.

In other words, no matter what risk factors we learn about, when others learn about correlated risks, it
reduces the expected returns and exploitable pricing errors on our risk factors and makes them less desirable
for to learn about. This is strategic substitutability.

B Proofs

B.1 Proof of Proposition 1

The optimization problem is
max

Λ̂

∑

i

q̃2
i Λ̂i
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s.t. Λ̂i ≤ Λi and
∏

i Λ̂i ≥
∏

i Λie
−2K , where q̃i = Γ′iq. The first-order condition for this problem is

q̃2
i − υ

1
Λ̂i

∏

i

Λ̂i + φi = 0

where υ is the Lagrange multiplier on the capacity constraint and φi is the Lagrange multiplier on the
no-negative-learning constraint for asset i. Define M = υe−2K

∏
i Λi. The result that Λ̂i = min

{
Λi,

M
q̃2

i

}

follows from the first order condition and the no-negative learning constraint, which states that φi = 0 when
Λ̂i > Λi. 2

B.2 Proof of Corollary 1

If (Λi − ε)q̃2
i > M for i = argminj(Λj − ε)q̃2

j , then 1 tells us that posterior beliefs Λ̂i are unaffected by
an ε reduction in the prior belief. There exists a capacity K? such that mini

(
(Λi − ε)q̃2

i

)
= M . All that

is left is to characterize K?. Since the capacity used learning about a factor j is log(Λj) − log(Λ̂j) =
log(Λj)− log( 1

q̃2
j
M) = log(Λj q̃

2
j )− log

(
mini

(
(Λi − ε)q̃2

i

))
, the total capacity required is

K? = −N log
(
min

i

(
(Λi − ε)q̃2

i

))
+

N∑

j=1

log(Λj q̃
2
j ).

2

B.3 Proof of Proposition 2

From Admati (1985), we know that equilibrium price takes the form rp = A + Bf + Cx, where

A = −ρ

(
1

ρ2σ2
x

(Σa
ηΣa′

η )−1 + (Σa
η)−1

)−1

x̄, (16)

C = −
(

1
ρ2σ2

x

(Σa
ηΣa′

η )−1 + (Σa
η)−1

)−1 (
ρI +

1
ρσ2

x

(Σa
η)−1′

)
. (17)

The matrix B is the identity matrix, because all investors have independently distributed priors. We treat
priors as though they were private signals. This assumption deviates from Admati (1985) and Van Nieuwer-
burgh and Veldkamp (2004), which assumes that investors have identical priors.

Let Σηj be the variance-covariance matrix of the private signals that investor j chooses to observe. For
future use, we define the following three precision matrices. They are derived from the above pricing function
and the definitions for A, B, and C. (Σa

η)−1 is the average precision of investors’ information advantage, plus
the average precision of the information they choose to learn. (Σp)−1 is the precision of prices as a signal
about true payoffs. (Σ̂a)−1 is the average of all investors’ posterior belief precisions, taking into account
priors, signals and prices.

(Σa
η)−1 = Γ(Λa

η)−1Γ′ =
1
2
Σ−1 +

1
2
(Σ?)−1 +

∫

j

(Σj
η)−1dj, (18)

(Σp)−1 = ΓΛ−1
p Γ′ =

1
ρ2σ2

x

(Σa
ηΣa′

η )−1, (19)

(Σ̂a)−1 = ΓΛ̂−1
a Γ′ =

1
ρ2σ2

x

(Σa
ηΣa′

η )−1 + (Σa
η)−1 (20)

We have assumed that investors choose to obtain signals about the eigenvectors Γ of the prior covariance
matrix Σ. It is easy to show that when Ση has eigenvectors Γ, the three precision matrices above also have
the same eigenvectors.
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We note and later use that CC ′σ2
x = ρ2σ2

xΣa
ηΣa′

η = Σp, because C = −ρΣa
η. We also use that

−Γ′iA = ρΓ′iΣ̂
ax̄ = ρΓ′iΓΛ̂aΓ′x̄ = ρ(Γ′ix̄)Λ̂a

i , (21)

where the first equality follows from the definition of A and the definition of Σ̂a, the second equality follows
from Σ̂a = ΓΛ̂aΓ′, and the last equality follows from Γ′Γ = I. 2

B.4 Proof of Proposition 3

Expected excess returns µ̂ − pr are normally distributed with mean −A and variance VER = Σp − Σ̂. The

first part of the objective is Tr
(
Σ̂−1VER

)
, which we rewrite as Tr

(
Σ̂−1ΣΣ−1(VER + Σ̂− Σ̂)

)
. This is

Tr
(
Σ̂−1ΣΣ−1(VER + Σ̂)− I

)
or Tr

(
Σ̂−1ΣΣ−1(VER + Σ̂)

)
− N . The trace is the sum of the eigenvalues.

Let yi, be the ratio of the precision of the posterior to the precision of the prior for risk i, i.e. it is the ith

eigenvalue of Σ̂−1Σ: yi ≡ Λ̂−1
i Λi. Let Xi be the ith eigenvalue of Σ−1(VER + Σ̂). Then the ith eigenvalue

of the matrix inside the trace is yiXi, and Tr
(
Σ̂−1ΣΣ−1(VER + Σ̂)

)
=

∑N
i=1 Xiyi. This is because Σ, Σ̂,

and C all share the same eigenvectors Γ. The matrix Σ−1(VER +Σ̂) = Σ−1Σp has eigenvalues Xi = ΛpiΛ−1
i .

The second part of the object function is
∑N

i=1 θ2
i yi, where θ2

i = (Γ′iA)2 Λ−1
i is the prior squared Sharpe

ratio of risk factor i. The objective is to maximize
∑N

i=1(Xi + θ2
i )yi, where Xi + θ2

i is the learning index

of risk factor i. The maximization over {yi} is subject to
∏N

i=1 yi ≤ e2K and yi ≥ 1 +
Λ−1

pi

Λ−1
i

. This problem
maximizes a sum subject to a product constraint. A simple variational argument shows that the maximum
is attained by maximizing the yi with the highest learning index Xi + θ2

i . The investor devotes all his ‘spare

capacity’ to learning about this risk factor i. To be more precise, he sets yj = 1 +
Λ−1

pj

Λ−1
j

, for all risk factors

j that he does not learn about, and he uses all remaining capacity to obtain a private signal on risk factor

i: yi = τ

(
1 +

Λ−1
pi

Λ−1
i

)
, where τ = e2K

(∏N
j=1

(
1 +

Λ−1
pj

Λ−1
j

))−1

. We endow the investor with enough capacity

such that he has spare capacity to acquire private signals after devoting capacity to learning from prices:
∏N

j=1

(
1 +

Λ−1
pj

Λ−1
j

)
< e2K and therefore τ > 1. For future reference define the ‘spare capacity’ of an investor

who learns about risk factor i as

K̃i = K − 1
2

∑

j 6=i

log

(
1 +

Λ−1
pj

Λ−1
j

)
. (22)

2

B.5 Proof of Corollaries 2 and 3

The learning index for home risk factor i is always greater for a home investor:

Λpi

Λi
+

(Λ̂a
i )2

Λi
(Γ′ix̄)2 >

Λpi

Λ?
i

+
(Λ̂a

i )2

Λ?
i

(Γ′ix̄)2. (23)

because Λi < Λ?
i . Likewise, the learning index of a foreign risk factor j is always greater for a foreign investor:

Λpj

Λ?
j

+
(Λ̂a

j )2

Λ?
j

(Γ′j x̄)2 >
Λpj

Λj
+

(Λ̂a
j )2

Λj
(Γ′j x̄)2. (24)

because Λj > Λ?
j .

Therefore, if one foreign investor learns about a home risk factor i, then all home investors must also
be learning about i, or some other risk factor with an equally high learning index. This other risk factor
must be a home risk factor, otherwise the foreign investor would strictly prefer to learn about it. Let K̃ be
the spare capacity for a particular home risk factor (22). Since every home investor learns about that home
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risk factor, then |Λ̂h| = e−2K̃ |Λ−1
h + Λ−1

p |−1 and |Λ̂f | = |Λ−1
f + Λ−1

p |−1. Since foreign investors might learn

about home risk, but might not: |Λ̂?
h| ≥ e−2K̃ |Λ?

h + Λ−1
p |−1 and since he might or might not learn about his

own foreign risk: |Λ̂?
f | ≤ |Λ?

f + Λ−1
p |−1. Since price precisions (Λ−1

p ) are constant and positive, taking ratios
of |Λ̂?

h| to |Λ̂h| and of |Λ̂f | to |Λ̂?
f | yields the result. The same argument can be made, in the case where one

or more home investors learn about foreign risks.

Symmetric risk factors First, consider a one-agent deviation from the candidate symmetric equilib-
rium where all home investors learn about home risk factors and all foreign investors learn about foreign risk
factors. In particular, suppose all foreign investors besides one were learning about the equal-sized foreign
risk factors (i,j such that Γix̄ = Γj x̄), in the same proportion as home investors are learning about the
equal-sized home risk factors. We assumed that Λi = Λ?

j for the equal-sized risk factors. Since an equal
fraction of investors is learning about i and j, the average signal precision for each risk, and the precision of
the price signal will be equal (Λ̂a

i )2/Λi = (Λ̂a
j )2/Λ?

j and Λpi = Λpj . Therefore, home investors get as much
value from learning about i as foreign investors get from learning about j:

Λpi

Λi
+

(Λ̂a
i )2

Λi
(Γ′ix̄)2 =

Λpj

Λ?
j

+
(Λ̂a

j )2

Λ?
j

(Γ′j x̄)2. (25)

Combining (23) and (25) tells us that the foreign investor must strictly prefer learning about foreign risk.
So, a one-agent deviation from the equilibrium is not optimal.

Next, consider a multiple-agent deviation from the candidate symmetric equilibrium. Suppose that
foreign investors learn about the equal-size risk factors, but in different proportions, or that a mass of
foreign investors learns about home risks. Note that fewer investors learning about a risk factor increases
the (Λ̂a)2/Λ and Λp for that factor. For one of the factors i that home investors learn about, there must be

fewer investors learning about the same-sized foreign risk factor j such that Λpi

Λi
+ Λ̂a

i

Λi
(Γ′ix̄)2 <

Λpj

Λ?
j

+ Λ̂a
j

Λ?
j
(Γ′j x̄)2.

This also implies that the foreign investor must strictly prefer learning about j to i, or to any of the other
equally valuable home risk factors. The analogous argument can be made showing that home investors
always learn about home risks. 2

B.6 Proof of Propositions 4 and 5

Symmetric risk factors By corollary 2, we know that an investor with K > 0 will learn about a risk
factor that they have an advantage in, one of their home risk factors. Let i denote that risk factor. Then
Λ̂−1

i = e2KΛ−1
i . When agents can learn (K > 0), let ξi denote the fraction of home investors that learn

about home risk factor i. Then (Λ̂a
i )−1 = 1

2ξie
2K(Λi)−1 + 1

2 (1 − ξi)(Λi)−1 + 1
2 (Λ?

i )
−1. The product Λ̂−1

i Λ̂a
i

is increasing in K because the first term is increasing proportionally and the second term is decreasing
less than proportionally in e2K . Using equation (13), describing the portfolio with K > 0 and equation
(12), describing the no learning portfolio (K = 0), it follows that the difference between the ith component,
Γ′i(Λ̂

−1Λ̂a − Λ−1Λa)(Γx̄) is strictly positive.

General case By corollary 3, there are three situations to consider: all investors learn about their own
home assets, some home investors learn about foreign risk factors, or some foreigners learn about home risk
factors. This first case we considered in the previous paragraph. We prove the third case here; the second
one follows from the same logic.

When some foreign investors learn about home risks, all home investors must learn about home risks as
well. Every investor who learns about home risks is indifferent between learning about any home risk learned
about in equilibrium. While the extent of home bias won’t hinge on which risk factor, within a country, any
investor learns about, it simplifies our analysis to assume that each investor who learns about home risks
adopts a symmetric mixed strategy over which risks to specialize in. Let ξi (ξ?

i ) be the fraction of home
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(foreign) investors who learn about home risk i. Because all home investors learn about home risks, it must
be that: ξi ≥ ξ?

i .
Define Γ′iq

ha = (Λ̂−1
i )haΛ̂aΓ′ix̄ to be the portfolio holdings of risk factor i of the average home investor

(ha). This follows from pre-multiplying both sides of equation (13) by Γ′i. Here, (Λ̂−1
i )ha = ξie

2K(Λi)−1 +
(1−ξi)(Λi)−1 is the average posterior precision of home investors about risk factor i. The worldwide average
precision is (Λ̂a

i )−1 = 1
2ξie

2K(Λi)−1 + 1
2 (1− ξi)(Λi)−1 + 1

2ξ?
i e2K(Λ?

i )
−1 + 1

2 (1− ξ?
i )(Λ?

i )
−1.

Consider the extreme case where all foreign investors learn about home risk factors (ξi = ξ?
i ). Then

(Λ̂−1
i )haΛ̂a

i can be shown to collapse to 2Λ̂−1
i

Λ̂−1
i +(Λ̂?

i )−1 . This expression does not depend on K. This implies

that the learning portfolio (K > 0) and the no-learning portfolio (K = 0) are identical: E[qi] = E[qno learn
i ].

In all other cases, ξi > ξ?
i . Taking a partial derivative of (Λ̂−1

i )haΛ̂a reveals that it is increasing in
e2K . As a result, the difference between the learning and the no-learning portfolio on risk factor i is strictly
positive: E[qi] > E[qno learn

i ].2

B.7 Proof of Proposition 6

The expected portfolio return on a risk factor can be expressed as the expected portfolio weight times the
expected return of the factor, plus their covariance:

Expected return = (Γ′iE[q])(Γ′iE[(f − pr)]) + Γ′icov(q, f − pr)Γi. (26)

Using equation (13) and the price formula in appendix B.3,it can be shown that cov(q, f − pr) =
1
ρ (Σ̂−1Σ− I). Canceling out orthogonal eigenvectors, we can rewrite:

Expected return =
1
ρ

(
Λ̂−1

i (Γ′iA)2 + Λ̂−1
i Λi − 1

)
. (27)

Capacity allows the investor to increase his posterior precision for the risk factor he learns about (∂Λ̂−1
i

∂K > 0).
One individual’s capacity does not affect the aggregate variable A or the given exogenous variables Γi or Λi.
Therefore, capacity increases the expected return. 2
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