

Does Economic Diversification Lead to Financial Development? Evidence From Topography Abstract

An influential theoretical literature has observed that economic diversification can reduce risk and increase financial development. But causality operates in both directions. A well functioning financial system can enable a society to invest in more productive but risky projects, thereby determining the degree of economic diversification. Thus, OLS estimates of the impact of economic diversification on financial development are likely to be biased. Motivated by the economic geography literature, this paper uses instruments derived from topographical characteristics to estimate the impact of economic diversification on the development of finance. The IV estimates suggest a large and robust role for diversification in shaping financial development

> Rodney Ramcharan¹ Research Department International Monetary Fund rramcharan@imf.org JEL Codes: 014;G21

¹ I am grateful to Thorsten Beck, Simon Johnson, Arvind Subramanian and Thierry Tressel for helpful discussions. Naomi Griffin and Zhaogang Qiao provided excellent research assistance. All remaining errors are mine.

I. INTRODUCTION

Greater diversification in economic production can reduce risk, engendering financial development. In the last decade, an influential theoretical literature has formalized this structural explanation of financial development (Acemoglu and Zilbotti [1997], Saint-Paul [1992], Greenwood and Jovanovic [1990]). A common theme among these models is that causality operates in both directions. The diversification of risk across a range of imperfectly correlated sectors—cross section diversification-can benefit the financial system. At the same time, a well developed financial system can allow a society to invest in more productive but risky projects, shaping production patterns and leading to higher levels of economic development. But how big is the impact of cross section diversification on financial development? And how does this production structure explanation compare with those that emphasize institutions and legal traditions?

Apart from historical studies², there has been surprisingly little empirical research quantifying the relationship between the pattern of economic production and the development of the financial sector. Moreover, because of the possible feedback from financial development to cross section diversification, OLS estimates of the impact of economic diversification on the level of financial development are likely to be biased. To help evaluate these theoretical approaches to development and finance³, this paper estimates the impact of economic diversification on various indicators of financial development using the exogenous variation in a country's topography.

Although the use of topographical data is new in economics⁴, our approach is firmly motivated by economic theory. Topographical characteristics such as the distribution of the land area by elevation, as well as by bioclimatic (biome) classes are geophysical characteristics not commonly thought to be affected by human activity over the short term. They do however exert a powerful influence on natural endowments and on the cost of moving goods within a country. And well developed theories of comparative advantage, as

² See for example (North and Thomas [1973], Wringley [1988] and Kennedy [1987]).

³ There is however a large literature that examines the impact of finance on growth, surveyed recently by Levine [2005].

⁴ Hoxby [2000] uses rivers and other waterways as an instrument for school district boundaries in the United States. Cutler and Glaeser [1997] use the same variable to study the impact of spatial segregation on the economic outcomes of population groups. Of course, geographical variables, such as distance from the equator and length of coastlines have been used extensively in the empirical growth and trade literatures [Barro and Sala-i-Martin (2003) and Gallup et. al(1998]

well as the more recent theoretical literature in economic geography⁵ suggest that these factors can influence production patterns.

In particular, the economic geography literature observes that transportation costs can shape the pattern of economic production in the manufacturing sector. At the same time, a vast literature on road construction documents that the variation in the terrain grade—the rise and fall of the surface area--as well as soil characteristics can exponentially affect the cost of building roadways and rail lines (Aw [1981]; Tsunokawa [1983]); Highway Research Board [1962], Paterson [1987]. Even after construction, the terrain also affects the time and energy required to move goods within a country and the maintenance of transport networks.

Building on these theoretical arguments, the analysis uses the plausibly exogenous variation induced by topography to estimate the impact of manufacturing sector diversification on financial sector development. Both the IV and OLS estimates indicate that greater cross section diversification is associated with increased financial development. But the IV estimates derived from the variation in topography are several times larger, suggesting that the impact of cross section diversification on the financial sector is economically large. For example, the IV point estimates imply that a one standard deviation increase in diversification is associated with about a 0.81 standard deviation increase in the level of credit to the private sector supplied by the banking system.

There is also support for the notion that the general quality of institutions and the protection of property rights can positively affect the level of financial development (Beck et. al [2003]), although the estimated impact of institutions is considerably smaller than cross section diversification. But when conditioned on cross section diversification, there is little evidence that historical differences in legal traditions significantly affect financial development (La Porta et. al [1997]).

Taken together, these results lend support to the large historical and theoretical literature that emphasize a causal relationship between the structure of economic production and the development of the financial system. These results imply that by impeding financial sector development, the concentration of economic activity common in developing countries, can adversely affect development. This paper is organized as follows. Section II discusses the empirical framework and data; Section III presents the main results; Section IV considers various alternative specifications, and Section V concludes.

II. EMPIRICAL FRAMEWORK AND DATA OVERVIEW

An extensive theoretical literature has analyzed the self reinforcing relationship between economic diversification and the development of finance. Thus, our rendition of this

⁵ Standard references include Krugman [1991, 1979]; Krugman and Venables [1995] and Fujita, Krugman and Venables [1999].

interaction is purposely minimal. We develop a highly stylized example to illustrate the main empirical issues involved in estimating the impact of diversification on financial development. Consider an economy with two sectors. One sector contains a single risk free project with return r: a government bond for example. The other sector is more productive, but risky. For simplicity, we assume that this more productive but risky sector has just two negatively correlated projects: A and B. To make the example as stark as possible, we assume that these two projects have identical returns, R, that are perfectly negatively correlated, with R > r. More precisely, with probability p sector A(B) returns R(0), while with probability 1-p sector A(B) returns 0(R).

To illustrate the impact of the production structure on financial development, suppose both projects A and B were operational. A risk averse lender would lend only to the productive sector, allocating her capital, W, equally between the two projects. However, with one project operational, an agent with constant relative risk aversion would allocate only $\frac{p}{1+p}$ fraction of her capital to the more productive but risky sector, keeping $\frac{1}{1+p}$ in the low return storage technology. Thus, this simple example illustrates how the degree of cross section diversification can influence the allocation and availability of credit⁶.

However, the level of financial development can also determine cross section diversification. To succinctly capture the flavor of these arguments, suppose that opening project *B* entails a fixed cost *F*. Suppose further that F > W, so that project *B* could not be opened with the initial capital *W*. But if the initial investment in *A* turned out to be successful, then the available loanable funds would be sufficient to open sector B. In particular, with constant relative risk aversion, project *B* would then be opened with the extra resources if $F < \Phi(W)$, where $\Phi'(W) > 0$. That is, the available pool of loanable funds—the level of financial development— in turn can also shape the pattern of economic production, enabling new projects to be undertaken. And this self reinforcing relationship can render OLS estimates of the impact of diversification on measures of financial development biased.

The estimation framework is based on a cross section of countries. For country *i* let FID_i denote the level of financial development; DIV_i is a measure of economic diversification; X_i is a vector of other country observables, and ε_i is a residual term; β and the $\alpha_i s$ are parameters to be estimated:

⁶ Models that do not explicitly model the formation of financial intermediaries can ignore the role of cross sector diversification [Saint-Paul (1993)]. In this case, increased specialization can lead to more developed financial markets, since specialization concentrates risk, increasing the demand for risk mitigating financial instruments.

$$FID_i = \alpha_0 + X_i \alpha + \beta DIV_i + \varepsilon_i \tag{0.1}$$

Since FID_i and DIV_i evolve jointly, shocks to FID_i are also likely to influence DIV_i , making the assumption $E(\varepsilon_i | DIV_i, X_i) = 0$ implausible despite conditioning on a rich vector of country observables. In addition to simultaneity bias, social norms that govern credit use, non-repayment, and general attitudes towards risk; as well as managerial and regulatory competence are all highly persistent unobservables that can shape both the pattern of production and financial development, leading to omitted variable bias. Also, measuring the pattern of production is subject to considerably uncertainty, and measurement error can cause OLS estimates of β to be biased downwards. The confluence of these sources of inconsistency makes it difficult to a priori discern the direction of bias in the OLS estimate of β .

A. Measuring The Structure of Economic Production

Measures of economic diversification are inherently sensitive to the level of aggregation. Consider again the simple example of an economy with two sectors: safe low return and more productive but risky; the more productive sector has two possible projects: *A* and *B*. Suppose that only the risky sector was operational, with both projects *A* and *B* active. Depending on the level of aggregation, such an economy might be characterized as highly specialized, since economic activity is concentrated in only one sector. However, with production ongoing in two negatively correlated projects, a finer classification method would suggest diversification.

To address issues of aggregation, we use the United Nations Industrial Development Organization (UNIDO, 2003) database, which reports both employment and value added shares only in the manufacturing sector at the 3-digit ISIC code⁷. We use the Gini measure—reserving alternative measures for the robustness section--to summarize the pattern of economic activity across the ISIC codes for each country. Economic activity is measured using both the value added and employment shares in the manufacturing sector. Production in economies with low Gini measures are "smoothly" distributed across a wide range of activities--diversified, while economies with high Gini measures are specialized or concentrated in just a few activities.

⁷ Using employment and value added shares as a measure of sectoral concentration is common in the literature. See Imbs and Wacziarg (2003), Krugman (1991) and Sukkoo Kim (1995) for examples. That said, these approaches do not capture the extent to which returns are correlated across sectors, and only imperfectly measure diversification.

B. Topography

To consistently estimate β , we rely on the exogenous cross country variation in topography to instrument diversification in the manufacturing sector, DIV_i . The geospatial data is taken from the Center for International Earth Science Information Network [CIESIN (2001)]. We measure topography using both the distribution of land area by elevation LEV_i , and the distribution of land area by bioclimatic⁸ (biome) classes: BIO_i . These are two distinct geophysical characteristics, allowing us to perform various over identification tests. The raw elevation data list the number of square kilometers across 12 elevation levels—ranging from below 5 meters, 5 to 10 meters, 10 to 25 meters and so forth up to above 5000 meters. The distribution of land area by biome classes lists the number of square kilometers across 16 biome categories, extending from tropical and subtropical moist broadleaf forests to rock and ice. To maintain consistency with the existing literature there are 50 countries in the benchmark specification (highlighted in bold in Tables 1 and 2), but 71 countries in more parsimonious specifications.

We summarize the distribution data using the Gini coefficient⁹, which measures the concentration of a country's land area among the various categories. Countries with land areas distributed across many elevation categories, but concentrated within a single elevation category, such as plateaus, will have higher Ginis. From Table 1, Belgium--predominantly flat--and Nepal—mostly mountainous—have the smallest degree of land area concentration by elevation. In the case of Belgium most of the land area is relatively equally distributed among the lower elevation categories in Belgium. Nepal has a similarly equal distribution of land, but at higher altitudes.

That is, the Gini coefficient provides information about the shape of the distribution rather than whether a country is mountainous or flat. South Africa and the bordering state of Namibia have the most unequal or concentrated land area distribution. In both cases their land areas span nearly all twelve elevation levels, but is mostly concentrated at higher elevations plateaus: over 60 percent of South Africa's land area is located between 800 and 1500 meters. To help visualize the differences in Ginis across countries, Figure 1 plots the distribution land of area by elevation for South Africa and Belgium. Much of South Africa is dominated by a high elevation plateau, while Belgium's land mass is relatively smoothly distributed at low elevation levels.

⁸ Bioclimatic classes or zones are divisions commonly used to classify variation in the habitat of plants and animals—terrestrial ecosystems. The classification system relies on the basic natural elements that influence habitat, including the interaction between climate, soil, and vegetation. A comprehensive discussion of the classification methodology can be found in Olson et. al [2001].

⁹ In the robustness section we experiment with a variety of alternative distribution statistics.

Examining the distribution of land area across biome classes, Table 2 indicates that about 9 percent of the sample have Gini coefficients of zero--a homogenous distribution of land area by biome classes. All of Kuwait's land area for example is defined as desert and shrub lands, while Korea's is wholly categorized as "temperate broadleaf and mixed forests". At the other extreme, Pakistan has the most unequal distribution of land area across the biome categories; while a significant percentage of the country's land area is located in mountain grasslands and conifer forests, nearly 90 percent of the land area is classified as desert and generic shrub lands.

According to models of geography (Fujita, Krugman and Venables [1999]), transportation costs can affect the pattern of production. These models typically assume that manufacturing requires a fixed cost. And when transportation costs are sufficiently low, manufacturers can concentrate their production geographically so as to realize economies of scale. But increased geographic concentration expands the labor force within the region. This creates a larger market, attracts more manufacturers and makes it profitable to incur the manufacturing fixed cost, leading to a wider variety of goods in the manufacturing sector (backward linkages). In this way, transportation costs can shape the pattern of production within the manufacturing sector.

However, obvious measures of domestic transport costs such as the unit cost of shipping or the tonnage transported on roadways reflect policy choices and income levels and are likely to be endogenous. Instead, a substantial engineering literature has long observed that topographical characteristics such as terrain variability and soil conditions can affect transportation costs. For example, the evidence from road building indicates that the area of site clearance per unit road length, as well as the volume of earthwork—factors that figure prominently in the overall cost of road construction--are *exponentially* related to the variation in the terrain grade—the sum of ground rise plus fall in terrain elevation. Moreover, for the same horizontal distance, moving goods across variable terrain requires both more energy and time¹⁰. And since these costs are eventually embedded into freight charges, natural terrain variation can induce differences in the transportation infrastructure across countries.

That said, the direction of the impact of terrain variability on transport costs is an empirical question. Intuitively, large elevation Ginis—land area concentrated at one altitude—might indicate low transport costs, since surface transport networks traverse little elevation changes. But populations may cluster to reduce transport costs in countries with land areas equally distributed across several elevation levels—low elevation Ginis. Indonesia for example has one of the most varied land areas by elevation. Yet in part a response to this extreme terrain variability, nearly half of the population lives on the island of Java. Likewise,

¹⁰ See for example (AASHTO (1972); Aw [1981]; Tsunokawa [1983]); Highway Research Board [1962], World Bank [1987] and the references contained therein.

Trinidad and Tobago also has substantial elevation variation, but most of the population lives on the relatively flat north west flood plain.

To help infer the direction of the impact of topography on transport costs, Table 4 examines the link between the Gini measure of terrain grade concentration (LEV_i) and the number of millions of tons of goods transported per kilometer of roadway for a cross section of 62 countries with available data, over the period 1990-2000. A one percent increase in LEV_i is associated with a 2.5 percent increase in the tonnage of goods moved per kilometer. Consistent with the engineering literature, the concentration of the land area at a given elevation, which often entails a smoother more uniform surface either because of high elevation plateaus or low lying plains, can positively affect the volume of goods transported on roads.

To gauge the robustness of this relationship, column 3 controls for population size, as well as per capita income. The LEV_i coefficient is slightly higher, but more precisely estimated. Figure 2 illustrates the conditional correlation between LEV_i and road tonnage, indicating that the linear positive relationship may only be an approximation. Column 4 restricts the sample, excluding those countries that do not appear in the subsequent analyses. Because of missing data this leaves only 30 countries in the specification, but the magnitude of the LEV_i estimate is little changed. While Figure 2 and Table 4 are descriptive, they do illustrate the basic intuition in the more rigorous engineering literature that emphasizes a connection between topographical characteristics, road construction and transport costs.

III. MAIN RESULTS

A. First Stage

This subsection documents the conditional correlation between the distribution of land area across terrain grade, LEV_i , biome classes, BIO_i and the pattern of production DIV_i in the base specification. To reduce the risk of including potentially endogenous regressors, we establish our main results within a relatively parsimonious framework. The core specification notes that although LEV_i and BIO_i are geophysical features largely exogenous with respect to human activity, they can more generally impact demographic variables. For example, topographical characteristics can affect population density or urbanization—variables which in turn might affect financial development¹¹. Thus, the core

¹¹ For example, greater urbanization might affect the monitoring cost of banks, or the value of real estate, with the latter affecting the balance sheet of banks. That said, these forces accumulate over decades, and are unlikely to invalidate our instrumental variables approach.

specification, a cross-section of 50 countries with data averaged from 1990-2000, includes population density, urbanization and the log of total population, and assumes that conditioned on these variables, LEV_i and BIO_i are uncorrelated with the unobserved determinants of financial development. The robustness section tests this identification assumption. It also considers various permutations of the core specification, including alternative sub-samples, regressors, and years.

Table 5 presents the first stage results for the base specification using manufacturing employment shares (3 digit ISIC: $DIV _ EM_i$) and manufacturing value added (3 digit ISIC: $DIV _ VA_i$) as our two measures of economic diversification. Column 2, which reports the results with $DIV _ VA_i$ as the dependant variable, indicates that both LEV_i and BIO_i are individually (p-values=0.04 and 0.00, respectively) and jointly significant (p-value=0.00), with an F-statistic of 8.20 and a partial correlation of 0.21. LEV_i enters with a negative sign. A one standard deviation increase in LEV_i is associated with about a 0.24 standard deviation decrease in $DIV _ VA_i$ -- greater concentration of the land area by elevation is associated with more diverse manufacturing sectors.

That is, when the terrain varies across many elevations, but is concentrated at a particular elevation level—a high Gini coefficient—populations may cluster at that elevation level to reduce transport costs. Clustering in turn can lead to a larger market size and an increased variety of products in the manufacturing sector. Figure 3 plots the conditional correlation between the two variables, indicating that the OLS estimate in Table 5 is not driven by influential observations. To further gauge the sensitivity of this relationship to influential observations, column 4 estimates the conditional median, producing estimates of similar precision and magnitude to those obtained using OLS from column 2.

Column 2 of Table 5 also indicates that the concentration of land area by biome classes (BIO_i) is positively associated with increased concentration in the manufacturing sector (DIV_VA_i). A one standard deviation increase in BIO_i is associated with a 0.46 standard deviation increase in DIV_VA_i . This positive relationship in part reflects the link between natural endowments and the pattern of economic production¹². Indonesia for example has the second most unequal distribution of land area, with about 92 percent of its surface area classified as tropical and subtropical broad leaf forest. At the same time, paper and pulp processing related industries account for a large share of the manufacturing sector. Plotting the conditional correlation between the two variables (Figure 3), as well as estimating the conditional median (column 4) indicate that this relationship is not driven by influential observations. Quantitatively similar results are obtained when using the

¹² Harrigan and Zakrajsec (2000) provide more direct evidence on the link between endowments and production patterns.

employment based measure of diversification DIV_EM_i (columns 3 and 5, and Figures 4 and 5).

We emphasize however that while the direction of the correlations are consistent with some predictions from the economic geography literature, they are not formal tests. In investigating the determinants of diversification, the first stage specification offers no alternative hypothesis. Moreover, because of congestion costs and other factors, multiple equilibria figures prominently in the theoretical literature—a feature not captured by the linear specifications in Table 5¹³. Nevertheless, the correlations in Table 5 provide a plausible source of exogenous variation to consistently estimate equation (0.1).

But despite the plausible exogeneity of these topographical characteristics, the first stage correlation may generate only weak identification. In this case, two stage least squares estimates can be biased towards OLS, and inference can be unreliable.¹⁴ Based on the definition proposed by Stock and Yogo (2001) that a 5 percent hypothesis test rejects no more than 15 percent of the time, the critical value for the weak instrument test based on the first stage F-statistic is 11.59. Thus, to address the challenges posed by these potentially weak instruments, we report results using both the 2SLS and limited information maximum likelihood estimators (LIML), since the latter is known to have better small sample properties and more robust to weak instruments (Mackinnon and Davidson [1993] and the survey by Stock et. al [2002]). Although developed under the maintained assumption of homoscedasticity, we also perform inference on the endogenous variable based on the conditional likelihood ratio test suggested by Moreira (2003).

B. Second Stage: The Impact of Economic Diversification on Financial Development

Using the core specification for a cross section of 50 countries with data averaged over the period 1990-2000, this subsection examines the impact of manufacturing sector diversification on various indicators of financial development. Measures of the willingness

¹⁴ Moreover, weak instruments can magnify even small deviations from our identification assumption. To see this point clearly, we treat topographical instruments as a scalar(TOP_i), and let **cov(.,.)** denote the covariance between two variables, then the IV estimate of β is

$$p \lim \hat{\beta} = \beta + \frac{\operatorname{cov}(TOP_i, \varepsilon_{it})}{\operatorname{cov}(TOP_i, DIV_{it})}$$
. Therefore, even a small correlation between our

topographical instruments and shocks to financial development can lead to large biases in the IV estimator if DIV_{ii} is weakly correlated with TOP_i . See Bound et, al [1995].

¹³ That said, functional form misspecification in the first stage does not affect the consistency of our second stage results [Kelejian (1971)]. See Davis and Weinstein (1996) for formal attempts at evaluating the theoretical predictions in the economic geography literature.

and ability of the financial system to supply credit are often imperfect, and we use a variety of common indicators of financial development. Table 6 uses credit issued by deposit money banks to the private sector as a share of GDP (PCD_GDP_i) as the dependant variable.

 PCD_GDP_i conveys the extent to which savings are channeled to investors—as opposed to the public sector.

Columns 2-4 use the value added measure of diversification ($DIV _VA_i$), reporting results using the two instrumental variables estimators: Limited Information Maximum Likelihood (LIML) and Two Stage Least Squares (2SLS), as well as OLS. All three estimators imply a negative relationship between PCD_GDP_i and DIV_VA_i . But the two IV estimates are very similar, and about 2.4 times larger than the OLS coefficient. From the LIML estimate, a one standard deviation increase in DIV_VA_i is associated with a 0.95 standard deviation decrease in PCD_GDP_i : increased concentration in the manufacturing sector can have an economically large negative impact on the level of financial development. Estimates based on the employment shares measure of diversification (DIV_EM_i) (Columns 5-7) are about 50 percent larger than those in Columns 2-4, and follow a similar pattern: the IV coefficients are nearly identical, but much larger than the OLS estimate.

Although it does not distinguish between claims of deposit money banks on the private or public sector, Table 7 uses claims on the domestic real non financial sector by deposit money banks as a share of central bank assets (DMB_CB_i) as another common indicator of overall financial development [(King and Levine [1993]; Beck, Levine and Loayza [1998])]. From columns 2-4, DIV_VA_i is also negatively associated with DMB_CB_i ; both the LIML and 2SLS estimates are similar, and remain considerably larger in absolute value than the OLS coefficient-- about twice as large in this case. Moreover, the economic impact of DIV_VA_i is substantial; from column 2, a one standard deviation increase is associated with a 0.75 standard deviation decrease in DMB_CB_i . And as with PCD_GDP_i , the estimates are also robust when using the employment based measure of diversification, and are about 50 percent larger that those obtained from DIV_VA_i .

The IV estimates in the baseline specification suggest that economic diversification can have a large impact on indicators of financial development. The analysis now incorporates alternative explanations of financial development, both to assess the robustness of our identification assumption, as well as to compare the impact of diversification relative to these other explanations. In particular, an influential empirical literature has suggested that differences in legal systems can help explain cross country differences in financial sector development [La Porta et. al (1998)]. Legal systems vary in their apportioning of rights between creditors and debtors, and this literature argues that systems that make it costly to enforce debt contracts can raise the cost of credit, influence ownership concentration and also the pattern of economic production [Jensen and Meckling (1976)]. In addition to the legal infrastructure, recent arguments have observed that the security of property rights, and the quality of the more general institutions that govern economic transactions can also shape both the development of finance and the real sector. According to this literature, climate and geography can shape a country colonial experience, determining the post colonial political system and the overall institutions that govern the interaction between individuals and the state—fundamental factors that seem to affect long run economic (Acemoglu et. al [2001]) and financial development [Beck, et.al (2002)].

To incorporate these two explanations into our base specification, we differentiate between the two most widespread legal traditions, using an indicator variable that equals one if a country's legal origin is English and zero otherwise, and a similarly defined indicator variable for French legal origin¹⁵. To capture more general notions of institutional quality, we also include an index that measures how well the government protects private property. Directly conditioning on these institutional and historical variables reduces the possibility that our topographical instruments might affect financial development through these institutional and legal channels. Also, while our topographical instruments are conceptually distinct from the geographic variables associated with long run institutions, we directly include those geographic variables common in the trade and growth literature as an additional check on our identification assumption. Specifically, we include a country's latitude—the absolute value of latitude, scaled to lie between zero and one; as well as whether a country is landlocked—as summarized by an indicator variable.

Table 8 considers the impact of diversification on the level of credit to the private sector (PCD_GDP_i) within this augmented specification. All three estimators continue to suggest a large and negative relationship between DIV_VA_i and PCD_GDP_i . And the IV coefficients remain about 3 times larger than the OLS estimate, although the estimates in Table 8 are generally about 20 percent smaller than the core specification in Table 6. Among the geographic and institutional variables, only the index of state protection of private property rights is significantly related to PCD_GDP_i (p-value=0.01). And a one standard deviation increase in the property rights index is associated with a 0.41 standard deviation increase PCD_GDP_i --an impact that while sizeable, is considerably smaller than the impact associated with diversification. To gauge the effects of co linearity on the precision of the

¹⁵ Supposedly, British Common Law evolved to protect property rights from royal seizure, while the French civil code was designed to consolidate State power [North and Weingast (1989)]. And the law and finance theory allege that legal systems derived from the French civil code provide less legal protection for private property, impeding financial sector development. See Levine (2005b) for a discussion of these issues.

geographic and institutional estimates, column 8 drops the private property rights index from the specification; the results are nearly unchanged compared with column 2.

Table 9 uses a similar approach to study the impact of diversification on claims on the domestic real non financial sector by deposit money banks as a share of central bank assets (DMB_CB_i) . As with PCD_GDP_i , the IV estimates continue to suggest a large role for diversification in shaping financial depth, and are slightly smaller than those in the core specification (Table 7). For example, the LIML estimate in column 2 implies that a one standard deviation increase in DIV_VA_i is associated with a 0.68 standard deviation decrease in DMB_CB_i -- the implied impact using DIV_EM_i is about 27 percent larger. Also, the impact of diversification continues to be much larger than the various institutional and geographic variables, most of which are not significant. Thus, the impact of economic diversification on financial development remains robust and large after controlling for alternative determinants of financial development and plausible alternative channels through which our instruments might influence financial development.

IV. SENSITIVITY ANALYSES

A. Further Endogeneity Tests

Compared to OLS, the IV estimates derived from the variation in topography suggest a large role for economic diversification in shaping financial development. And our identification assumption has not been refuted by the standard omnibus over identification tests. But these tests often have limited power to detect invalid instruments, and since economic theory does not provide a complete list of the causal determinants of financial development, the validity of our IV approach, while plausible, is fundamentally unknowable. Nevertheless, to further assess the plausibility, this subsection considers whether our biome measure of topography might be endogenous.

Economic and demographic pressures can lead to deforestation, and desertification, fundamentally changing ecological systems. The biome measure of topography might reflect these demographic and social forces. At the same time these forces might be closely linked to financial and economic development, making the biome variable potentially endogenous. In contrast, the distribution of land area by elevation is more likely to be exogenous to human activity, especially when considered over a decade¹⁶. Thus, we use a Hausman test based on this difference in the plausibility of our two instruments.

¹⁶ Of course, economic forces may lead to coastal infills, but these projects typically add only a few square kilometers of land area, and do not systematically alter the distribution of land area by elevation, especially within a decade.

The underlying logic behind this approach is that we have more a priori confidence in the exogeneity of the elevation based instrument LEV_i than in the biome instrument-- BIO_i . Thus, estimates using only LEV_i are likely to be consistent but inefficient. Under the null hypothesis, using both BIO_i and LEV_i are likely to lead to more efficient estimates. Significant differences between the two approaches would cast doubt on the validity of BIO_i . The test is distributed as χ^2 with one degree of freedom. To implement this test we are forced to use only the employment shares measure of diversification, since LEV_i is not significant in the first stage regression with DIV_VA_i as the dependant variable. From Table 10, estimates using only LEV_i are clearly less efficient, and there is little difference in the point estimates between the estimation strategies in Tables 7 and 8: we cannot reject the null that BIO_i is exogenous.

B. Predetermined Regressors

The topographic instruments for diversification appear plausible, but the IV estimates can still be inconsistent if shocks to financial development over the 1990s also influenced the other regressors. While the extent of this inconsistency is likely to be limited given how slowly demographic variables evolve, Table 11 nevertheless uses lagged values of the regressors. Specifically, Table 11 estimates the base specification using the diversification and financial development measures observed in the 1990s, but the average values of urbanization, population density and population levels are observed from 1970-1979. Lagging the demographic regressors by at least a decade reduces the potential for biased estimates due to the possible correlation between shocks to financial development observed over the 1990s and the various demographic variables also observed over the 1990s. For parsimony, Table 11 presents the LIML results using the valued added measure of diversification—the 2SLS are nearly identical, while the OLS results are smaller in magnitude; these results are available upon request.

From Columns 2 and 3, the estimated impact of diversification on the two measures of financial development are nearly identical to those obtained earlier (Tables 6 and 7). Moreover, the coefficients using the lagged demographic variables are also quite similar to those derived using the averaged values over the 1990s. As a further robustness check, columns 4 and 5 also include per capita income averaged from 1970-1979. Per capita income is closely related to the level of financial development, and using lagged values reduce the potential for biased estimates. But despite the potential endogeneity of income, its inclusion helps in gauging whether by directly affecting income levels, the topographical instruments influence financial development beyond their impact on diversification. From columns 4 and 5 of Table 11, the diversification coefficients in the PCD_GDP_i and DMB_CB_i specifications are respectively 30 and 3 percent smaller than the estimates in Tables 6 and 7—differences that lie within sampling error.

C. Alternative Distribution Measures

Measures of concentration can be sensitive to the shape of the underlying distribution, and ignoring inter group inequality can generate biased Gini coefficients in grouped data [Lerman and Yitzhaki (2002)). To assess the sensitivity of the results to the Gini concentration measure, we use two well known additional methods to summarize the distribution data on land area by elevation, biome classes, and economic activity in the manufacturing sector: the Theil Index, and the mean log deviation. These results are reported in Tables 12 and 13, where for brevity, we show only the LIML estimates. These alternative measures of diversification produce results that are quantitatively very similar to those obtained using the Gini metric. In the case of claims on the domestic real non financial sector by deposit money banks as a share of central bank assets (DMB_CB_i) for example, one standard deviation increases in the Theil Index and the mean log deviation imply respectively a 0.69 and 0.67 standard deviation declines in DMB_CB_i .

While the preceding measures of concentration are useful in summarizing the distribution of data grouped into qualitative categories—biomes or industry codes—these measures may not fully capture variation among quantitative groups like land elevation. Thus, we also compute the weighted variance of a country's elevation. For each of the 12 elevation categories, we select the midpoint e_i as the relevant elevation level within category i^{17} ; likewise, let a_i denote the number of square kilometers of land area in category i, so that the country's total land area is given by $A = \sum_{i=1}^{12} a_i$. Then the mean weighted elevation level m, is given by $m = \frac{1}{A} \sum_{i=1}^{12} a_i e_i$. And the variance of the land area around the mean elevation level is given by $\sum_{i=1}^{12} \frac{a_i}{A} (e_i - m)^2$, where each category's deviation from the mean elevation level is weighted by that category's share of land area. Thus, higher variances indicate a greater dispersion in the land area from it's mean elevation level¹⁸.

Columns 4 and 7 of Tables 12 and 13 combines this approach to measuring elevation variation with the mean log deviation measures for economic diversification and biome classes. Despite the slightly weaker first stage correlation between the diversification

¹⁷ For example, we assume that the elevation of the land in the 5-10 meters category is at 7.5 meters. However, since there is no upper bound, elevation levels in the 5000 meters and above category are set at 5000 meters.

¹⁸ The Gini measure of concentration is highly negatively correlated (-0.54) with this weighted variance metric.

measures and the elevation variance, the estimated impact of diversification—both value added and employment measures--on PCD_GDP_i (Table 12) are little changed. However, in the case of DMB_CB_i , the point estimates are smaller and less precisely estimated than those obtained when the variation in elevation is summarized using the mean log deviation.

D. Alternative Samples and Years

Using the base specification, Columns 2 and 3 of Table 14 present results for only the 31 developing countries in the sample. From column 2, the estimated impact of DIV_VA_i on PCD_GDP_i is nearly identical to the overall sample, but not significant at conventional levels (p-value=0.17). Column 3 uses DMB_CB_i as the dependant variable. In this case the DIV_VA_i coefficient is about 25 percent larger than the overall sample, and statistically significant (p-value=0.02). By excluding the institutional and historical variables, the core specification allows for a larger sample of countries, increasing the sample size by about 42 percent. For this larger sample, column 4 of Table 14 indicates that the impact of DIV_VA_i on PCD_GDP_i is robust (p-value=0.06) and remains very similar in magnitude to the point estimate in Table 6. However, examining the impact of DIV_VA_i on DMB_CB_i reveals that while the point estimate is again similar to the overall sample, it is not significant (p-value=0.18).

As a further robustness exercise, Columns 6 and 7 considers the base specification, but with data averaged from 1980-1989. The resulting cross section consists of 49 countries. The diversification point estimates are robust and little changed compared with the 1990s estimates in Tables 6 and 7, as well as with the various sub-samples in columns 2-5. These results suggest that the impact of diversification on financial development is relatively stable across various sub samples, although the precision of the IV estimates can be sensitive to the sample.

E. Other Indicators of Financial Development

By shaping the risk profile of lending portfolios, diversification may also affect the ability of the banking system to attract savings, and supply credit. Table 15 investigates this idea, estimating the impact of diversification on the level of demand, time and savings deposits in deposit money banks, as a share of GDP (DEP_GDP_i). For economy of exposition, we only present the LIML estimates. As with the other indicators of financial development, the impact of diversification is economically large: column 2 indicates that a one standard deviation increase in DIV_VA_i is associated with a 0.71 standard deviation increase in DEP_GDP_i , with the DIV_EM_i estimate about 18 percent larger (column 3). As a further robustness check, Table 14 again considers the impact of diversification on claims on the domestic real non financial sector by deposit money banks, but deflated by the overall size of the economy—GDP (DMB_GDP_i), instead of central bank assets (Table 7).

The results are stable across specifications, as a one standard deviation increase in $DIV VA_i$ implies a 0.77 standard deviation increase in $DMB GDP_i$.

V. DISCUSSION

Building on the idea that development involves finance as well as goods, a large and influential theoretical literature has explored the causal connections between financial intermediation, the pattern of production and economic development. An empirical literature, of perhaps similar volume, has investigated one side of this channel, documenting a large and robust impact of financial development on economic growth. There is however considerably less empirical evidence on the link between the pattern of production and financial development. Using the exogenous variation in topographical characteristics, this paper has presented instrumental variables estimates suggesting that the production structure can have a robust and economically large impact on financial development.

Across a range of specifications, estimators and measures, economies that have more concentrated manufacturing sectors typically have lower levels of deposits in money banks, deposit money bank assets relative to central bank assets, and lower levels of credit provided by deposit money banks to the private sector. Moreover, while there is little evidence that differences in legal traditions systematically explain cross country variation in financial development, institutional quality does seem to have an impact. These results lend support to the idea found in the development and finance literature that the concentration of economic activity into just a few sectors can hinder financial and overall economic development. When our results are interpreted in this context, they help to understand why many developing countries often remain specialized in exploiting their natural resource endowments, with their financial sectors mainly subsisting on safe government bonds. Whether or not our estimates are large enough to generate multiple equilibria and development traps—a common result in the theoretical literature—is a question left for future research.

While the various specifications, methodologies and endogeneity tests suggest that our instrumental variables approach is plausible, the capacity of economic theory to impose robust exclusion restrictions is limited. And we view the consistency of our results with caution. For example, country borders are not randomly distributed but reflect a complex interplay between political and economic factors, as well as changing military technologies. Over time, these forces may not only determine the geophysical characteristics of national political boundaries, but plausibly the production patterns and the level of financial development within those boundaries. This can potentially bias IV estimates based on topography in directions that are unclear. Therefore, while our approach is the first attempt to estimate the impact of the real sector on finance, future research that is able to exploit other plausible exogenous variation in the pattern of production would help in understanding the links between development and finance.

Country	Gini	<5	5M-	10	25M-	50M-	100M-	200M-	400M-	800M-	1500	3000	>5000
-	Coeffici	М	10	M-	50M	100M	200M	400M	800M	1500	M-	M-	М
	ent		M	25						М	3000	5000	
	ent			M							M	M	
Bolgium	0.1817	311	146	301	3785	4044	/689	6474	3/120	0	0	0	0
Deigium	0.1017	0	2	5	5705		4007	04/4	5420	0	0	0	0
Newsl	0.27052	9	3	5	0	9047	12105	0000	14049	25(50	22510	20092	12049
Nepai	0.27052	0	0	0	0	894/	12195	9098	14948	25059	33510	29983	12948
Philippines	0.30338	175	800	234	30864	46436	43726	52889	49534	29595	4710	0	0
		51	I	87									
Denmark	0.31308	920	410	102	13292	7184	602	0	0	0	0	0	0
		6	8	16									
Indonesia	0.31789	274	579	111	13683	27960	31636	25631	25022	18583	78441	7894	0
		016	22	714	6	8	6	4	8	2			
Costa Rica	0.32365	172	817	210	6280	7528	5915	6130	8109	7506	5743	172	0
		1		8									
Trinidad and	0.38458	409	258	430	946	1721	710	387	151	0	0	0	0
Tobago										÷	-		
Sri Lanka	0 39146	533	251	608	7700	14389	17357	6194	3958	2732	946	0	0
SITLanka	0.57140	1	6	7	1100	14507	17557	0174	5750	2152	740	0	0
Danama	0.40520	492	160	244	7205	14475	12000	12951	10250	5625	1014	22	0
гапаша	0.40339	465	109	344	1205	14475	13099	13651	10239	5055	1914	22	0
C: X	0.4105	9	9	1	(202	17250	11502	12520	14004	400	0	0	0
Sierra Leone	0.4105	333	200	350	6302	17250	11593	13529	14884	409	0	0	0
		4	0	6									
Italy	0.41969	119	606	141	15550	24433	36801	61428	66848	44329	22971	581	0
		16	5	52									
Korea, Republic of	0.42333	511	262	662	7592	12625	18433	24046	17873	4087	22	0	0
		9	4	5									
Malaysia	0.42415	237	617	144	25272	60030	68439	53792	52824	25423	5205	65	0
•		88	3	11									
Venezuela	0.42424	419	798	210	48114	16139	15623	10453	17877	13427	60718	2581	0
		84	0	57	-	8	6	0	7	6			-
Tunisia	0 42495	387	197	122	12539	18131	30047	44845	25939	5549	0	0	0
1 uniona	0.12170	1	9	38	12000	10101	20017		20/0/	00.1	Ŭ	Ŭ	ů
Kuwait	0.42981	109	602	882	1355	3785	6775	2818	0	0	0	0	0
Kuwan	0.42701	7	002	002	1555	5765	0775	2010	0	0	0	0	0
Argonting	0.42126	240	240	752	1400	1212	1011	4001	4141	2405	1510	1060	9707
Aigentina	0.43130	340	240	755	1499	4312	4014	4021	4141	5495	1012	1002	0/9/
D 11 4	0.4221.4	05	00	205	34	41	15507	95	42	14776	09	19	2100
Pakistan	0.43314	174	144	305	38113	79516	15587	7/946	11485	147/6	99153	20842	2108
		43	75	63			1		4	2			
Cyprus	0.43406	366	108	473	538	1118	1699	1936	1936	667	43	0	0
Austria	0.44233	0	0	0	0	172	4646	14798	24670	22347	17271	258	0
Greece	0.44238	608	146	400	6065	9958	17658	24864	34822	24218	3742	0	0
		7	3	1									
Chile	0.44479	276	415	110	16518	30262	82334	10231	10526	15085	11836	11438	3506
	_	60	1	34				5	2	9	0	1	

 Table 1. The Distribution of Land Area (000 km²) by Elevation (in Meters).

Japan	0.44732	168 63	918 4	201 53	23810	36844	55986	80893	86098	40930	7270	22	0
New Zealand	0.45338	684 0	264 6	847 4	12561	21809	36629	57040	66826	47964	8410	0	0
Swaziland	0.46086	0	0	0	0	108	903	5721	5313	5463	86	0	0
Thailand	0.46517	194 65	106 47	221 54	35682	52609	14875	10519	85302	37704	1161	0	0
Bolivia	0.46808	0	0	0	0	3269	30337 5	29737 4	91281	66482	88614	23708 6	3420
China (without Taiwan)	0.47142	108 958	807 56	185 189	26918 2	32026	52994 4	76537	11825 71	23332	11839 32	18042 95	60601 8
United Kingdom	0.47824	121	404 4	114 85	21680	71343	62503	39575	19874	667	0	0	0
Honduras	0.4786	503	165	326	4259	6496	8625	13335	30413	34413	5700	0	0
Ghana	0.481	0	0	0	1334	43812	10622 9	84226	4861	0	0	0	0
Jamaica	0.48374	430	301	796	667	882	1377	2710	3463	452	43	0	0
Fiji	0.48397	215	301	796	1463	2022	5506	4323	2000	215	65	0	0
Mongolia	0.48419	0	0	0	0	0	0	0	89173	85624 5	60206 0	17121	0
Mauritius	0.49604	0	0	43	108	86	839	559	215	0	0	0	0
India	0.49854	632 99	432 32	888 72	13795 4	28754 4	50912 3	85020 1	80243 2	16144 1	10229 3	14974 1	88937
United States of	0.50715	215	100	244	31595	55211	10060	20225	17092	17430	14882	58804	22
America		793	702	033	7	8	00	50	60	70	20		
Mexico	0.51067	559 43	322 41	723 11	88421	97519	12567 3	15926 9	21233 0	40717 4	62681 6	5162	0
El Salvador	0.52096	774	344	366	1247	1269	2430	4366	7442	2301	215	0	0
Brazil	0.52134	168	501	124	41971	15955	14026	21725	20207	58065	4904	0	0
		582	79	361	3	50	80	30	40	9		-	-
Sweden	0.52587	709 8	462 4	162 39	32714	46200	76268	13322 2	10633 7	23939	473	0	0
Portugal	0.52747	172 1	111 8	215 1	4151	9743	20583	25530	21207	6409	86	0	0
Ecuador	0.52903	438 8	109 7	294 7	5786	10776	26692	80721	26240	27703	43963	28197	237
France	0.53197	104 32	421 6	143 68	27574	74204	15060 1	13388 9	71580	44501	16217	452	0
Uruguay	0.53653	535 6	365 6	112 70	22885	49276	68052	17207	22	0	0	0	0
Iceland	0.54497	200 0	133 4	331 2	3699	6087	8087	17938	40436	16798	2000	0	0
Colombia	0.54609	148 84	647 4	238 96	34736	17961 6	33069 0	23149 4	90206	83388	12169 4	31768	22
Peru	0.55046	582 9	122 6	301 1	4861	68590	31182 7	19574 7	15088 1	10900 4	14275 1	29982 6	7657
Norway	0.56329	688 3	116 1	589 3	6603	1587 3	3286 5	6813 8	1021 86	7839 8	5205	0	6883
Cote d'Ivoire	0.57126	0	0	0	22	30778	63019	18092 8	48007	710	0	0	0
Kenya	0.57995	260 3	107 5	363 5	7786	21186	54674	10487 4	17258 3	12197 4	93927	2215	0
Senegal	0.58266	651 7	664 6	304 56	82269	54782	17142	989	43	0	0	0	0
Egypt	0.60075	340 05	119 59	234 23	25444	48007	22493 4	38654 7	20480 2	29036	860	0	0
Canada	0.617	214	629 55	165 549	26868	49163 7	15158 80	32149 70	24382 80	11069 40	39487 1	2000	43
Australia	0.62232	111	528 67	100	20103 8	81198 1	15377	28263	19456	13109	688	0	0
Gabon	0.62419	920	172	432	7463	17142	30370	66332	12649	3613	0	0	0
Nothonlanda	0.62692	202	122	691	2624	520	227	12	0	0	0	0	0
retheriands	0.03082	203	432	004	∠0∠4	338	237	43	U	U	U	U	U

		47	3	0									
Malawi	0.63803	0	0	0	538	1549	1828	2818	55642	57707	7872	0	0
Finland	0.64002	299	208	101	16884	68074	14692	81667	5958	495	0	0	0
		0	6	73			3						
Zimbabwe	0.64451	0	0	0	0	0	258	15594	97368	27158	7657	0	0
										5			
Hungary	0.65184	0	0	22	65	30757	45533	14841	1914	86	0	0	0
Iran (Islamic	0.66577	201	167	241	17142	17981	26563	70268	25739	58840	57945	11421	0
Republic of)		53	33	97					0	2	5		
Spain	0.66623	434	262	408	6969	14045	28757	79151	18714	16421	18088	65	0
		5	4	7					4	6			

Countries in the core specification sample are in **bold**. Source: Center for International Earth Science Information Network (2001).

Country	Gini Coefficient	V	В	С	D	Ш	ц	U	Η	Ι	ŗ	К	Γ	M	z	0	Р
Mauritius	0	1860	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cyprus	0	0	0	0	0	0	0	0	0	0	0	0	1109 4	0	0	0	0
Denmark	0	0	0	0	53119.2 5	0	0	0	0	0	0	0	0	0	0	0	0
Kuwait	0	0	0	0	0	0	0	0	0	0	0	0	0	15614	0	0	0
Korea, Republic of	0	0	0	0	114336	0	0	0	0	0	0	0	0	0	0	0	0
Netherlands	0	0	0	0	38445.9 9	0	0	0	0	0	0	0	0	0	0	0	0
Belgium	0	0	0	0	30721	0	0	0	0	0	0	0	0	0	0	0	0
Austria	0.0593	0	0	0	36997	46954	0	0	0	0	0	0	0	0	0	0	0
Swaziland	0.12115	3734	0	0	0	0	0	6902	0	0	6797	0	0	0	0	0	0
Fiji	0.17727	9047	4311	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Turkey	0.24706	0	0	0	305864	101290	0	0	107853	0	0	0	2629 41	0	0	0	0
Nepal	0.24727	26049	0	$2255 \\ 0$	20388	17452	0	19098	0	0	33134	0	0	0	0	0	6
Italy	0.29026	0	0	0	59161	54671	0	0	0	0	0	0	$\frac{1846}{07}$	0	0	0	0
New Zealand	0.29037	0	0	0	141864	0	0	0	53469	0	39557	0	0	0	0	0	0
Portugal	0.30254	0	0	0	17947	0	0	0	0	0	0	0	7294 3	0	0	0	0
Thailand	0.33582	266461	2320 85	0	0	0	0	0	0	0	0	0	0	0	1019 3	0	0
Spain	0.34871	0	0	0	76397	0	0	0	0	0	0	0	4285 85	0	0	0	0
Cote d'Ivoire	0.35657	149583	0	0	0	0	0	17375 7	0	0	0	0	0	0	531	0	0
Honduras	0.36607	39080	$1925 \\ 0$	5111 8	0	0	0	0	0	0	0	0	0	0	2894	0	0
Sierra Leone	0.37673	47425	0	0	0	0	0	19059	0	0	0	0	0	0	6297	0	0
Greece	0.38525	0	0	0	14683	0	0	0	0	0	0	0	1132 71	0	0	0	0
United Kingdom	0.40836	0	0	0	215300	21721	0	0	0	0	0	0	0	0	0	0	0
El Salvador	0.43265	1044	8239	1036 8	0	0	0	0	0	0	0	0	0	0	907	0	0
Bolivia	0.43301	341877	3655 26	0	0	0	0	13101 2	0	29555	21820 1	0	0	0	0	3928	0
Ghana	0.43646	79516	0	0	0	0	0	15914 3	0	0	0	0	0	0	1750	0	0
Jordan	0.43834	0	0	0	0	0	0	0	11757	0	0	0	9559	68834	0	0	0
Namihia	0 45445	0	0	C	0	0	C	242.20	0	10717	0	0	C	57577	C	0	0

Table 2. The Distribution of Land Area (000 km²) by Bioclimatic Classes.

0.455	0.457	a 0.468	0.470	0.47	es 0.471	ve 0.481	0.485	0.49	0.495	0.495	0.495	thout Taiwan) 0.502	0.523	rica 0.52 ²	0.54(0.546	0.553	0.562	0.565	0.571	and Tobago 0.597	0.595	a 0.60(0.612	0.635	0.635	nic Republic of) 0.641
517	782	868 1	083	711	172 2.	168	949	616	9776	955	989	1 1238	332 2	.482 2	-047	-615	379	336 3	509 6	186	727	902 2.	067 4	296	524 3	841	.115
0	0	4804	0	0	43094	0	8148	0	0	0	0	50238 7	14465	9453	0	95	1511	\$2412	5118	0	4425	44057	51837	0	11948	0	0
0	0	4722 5	0	0	0	0	2151	0	0	0	0	0	0	0	0	0	0	0	4713	0	256	0	9993 4	0	0	0	0
0	0	0	0	0	7076	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	304225	0	0	127881	0	0	0	0	8492	92976	0	232095 0	0	0	462031	0	277702	552367	0	646046	0	0	0	0	0	4287	399202
2568	0	0	132144	0	0	0	0	0	17295	42	0	518837	0	0	18660	0	53270	0	0	770129	0	0	0	0	0	0	63264
0	0	0	40578	261127	0	0	0	0	95155	0	86970	83	0	0	0	0	0	0	0	$457221 \\ 0$	0	0	0	0	0	325556	0
8 0	0	0	0	0	0	38524 2	0	19609 5	0	0	0	0	47314	16789 2	0	78214	0	21083 22	0	0	0	21797 7	25000 9	0	0	0	0
0	29572	0	615759	0	0	0	0	0	0	0	0	624287	0	0	0	0	0	576141	0	674742	0	0	0	0	0	0	64389
10842	0	0	0	0	0	0	0	0	0	0	0	119132	0	0	0	4910	0	0	0	0	0	497	6014	71308	0	0	6337
0	97739	0	82100	0	0	7191	0	0	0	0	0	24400 62	0	38237 8	0	21399	0	11996	0	0	0	0	3157	0	4339	0	15236 0
0	0	0	0	52131	0	0	0	0	18674 2	0	0	0	0	0	0	0	0	0	0	270804 2	0	0	0	0	0	5646	0
7885 9	1483 69	0	0	0	0	0	0	0	0	0	0	0	0	9530 7	6620 2	0	0	7785 42	0	0	0	0	0	3653	0	0	0
4 60974	10688 8	2124	69535 9	0	0	0	0	0	0	0	0	17428 30	0	54083 5	0	0	0	35624 37	0	0	0	0	93127	90088 6	0	0	93661 1
0	0	0	0	0	0	0	338	1602	0	0	0	0	5028	845	0	0	0	0	3208	0	122	2561	$1073 \\ 0$	0	6540	0	0
0	0	0	0	5702	0	0	0	0	0	0	0	0	0	0	0	2321 9	0	0	0	1248 46	0	4030	0	0	0	0	8985
0	15	0	0	0	0	0	0	0	0	0	10	46	0	0	0	0	0	0	0	119	0	0	0	0	0	0	0

- 22 -

45 45 1 1 96 96 1 1 9 1 9 1 9 1 1 702 1 723 0 78710 0 0 3503 1 5787 1 1 4 705 2 834 0 88 0 0 0		gentina 0.04309 0.1432 30	ru 0.65117 868536 4:	uguay 0.65861 0	sta Rica 0.66314 41128 6.	exico 0.66669 266324 3	dia 0.66988 110596 9 9 0.66988 0.0596 9	0.67441	nited States of America 0.67938 12647 6	0.6841 846797 8	uador 0.6865 194977 2.	nya 0.7103 76133	mbia 0.71332 0 3.	geria 0.74376 126847	donesia 0.79052 7. 9	kistan 0.81791 0
0 78719 0 0 7583 15787 114705 2834 0 88 0 0	45	3079 32	4877 4	0	5240	3710 4 28	9652 5 09		5265 1	8435 3	2511 7	0	3480 7	0	7439 2 5	0
8710 0 0 7503 15787 114705 2834 0 88 0 0 0	r c		0	0	0	555 68	248 100 5		686 21: 7	0	0	0	0	0	760	806 2′
0 0 3593 15787 114705 2834 0 88 0 0	0770	81.18	0	0	0	0 1	0207 27		5929 15 9	0	0	0	0	0	0	789 24
0 3503 15287 114205 2834 0 88 0 0 0	c	D	0	0	0	331	1257		0098 4	0	0	0	0	0	0	1959
96 1 96 3503 15787 114705 2834 0 88 0 0 0	c	5	0	0	0	0	0		472823	0	0	0	0	0	0	0
15787 114205 2834 0 88 0 0	96	3593 72	0	17313 2	0	2445	15392		74712	15167 6	0	39696 9	63564 3	74032 8	8913	0
114705 2834 0 88 0 0 0	1 5 7 0 7	18/cl 18	0	1440	0	0	0		241422 4	0	0	0	0	0	0	0
2834 D 88 D D D	111705	GU/411	0	337	0	279	23379		19536	0	2937	73	81601	5261	0	4123
0 88 0 0	1000	2834 38	17655 3	0	0	302	19302		0	15510	15940	1702	1554	13337	10062	47397
88 D D D	c	D	0	0	0	0	0		848802	0	0	0	0	0	0	0
1 9 0	ç	ŝ	0	0	0	6770	0		1126 62	0	0	0	0	0	0	0
6		D	18315 2	0	0	71902 5	73344 1		16039 78	26790	6030	96553	0	0	0	70658
c	6	D	267	0	1047	2376 6	1386 7		187	1668	5100	2726	0	1729 3	4011 6	2455
	c	5	4088	0	27	0	0		3515 3	0	0	1062 8	2114	4264	0	0
ć	c	ñ	0	0	0	0	42		38	0	0	0	0	0	0	1530

Countries in the core specification sample are in bold. Source: Center for International Earth Science Information Network. Biome Code: A=T ropical and subtropical moist broad leaf forests; B= tropical dry broadleaf forests; C= tropical & subtropical coniferous forests; D=temperate broadleaf & mixed forests; E= temperate conifer forests; F= boreal forests/taiga; G= tropical & subtropical grasslands, savannas & shrublands;H= temperate grasslands, savannas & shrublands;I= flooded grasslands & savannas,J= mountain grasslands & shrublands; K= tundra;L= Mediterranean forests, woodlands & scrub;M= deserts & generic shrublands;N= mangroves;O=Lakes;P=Rock and Ice. Source: Center for International Earth Science Information Network (2001)

Figure 1 The Distribution of Land Area Elevation South Africa and Belgium (Percent Of Land Area In Each Elevation Level)

Variable	Definition	Source
Diversification—Value Added and Employment Shares	Gini Coefficient; Mean Log Deviation and Theil Index	United Nations Industrial Development Organization. Industrial Statistics Database, 3- digit level of ISIC Code, 2003.
Land Area Distribution, by Elevation and Biome Classes	Gini Coefficient; Mean Log Deviation and Theil Index; Variance.	Center for International Earth Science Information Network, 2001.
Population	Logarithm of Total Population	World Bank, (2003).
Urban Population	Urban Population, as Percent of Total Population	World Bank, (2003)
Population Density	The Number of People per Square Kilometer	World Bank, (2003)
Private Credit by Deposit Money Banks, as a Share of GDP (PCD_GDP)	Total credit issued by deposit money banks to the private sector divided by GDP.	Beck, Demirguc-Kunt and Levine (1999).
Assets in Deposit Money Banks, as a Share of Central Bank Assets (DMB_CB)	Total Assets in Deposit Money Banks Divided by Central Bank Assets	Beck, Demirguc-Kunt and Levine (1999)
Deposits in Money Banks, as a Share of GDP	Demand, Time and Saving Deposits in Deposit Money Banks, Divided by GDP	Beck, Demirguc-Kunt and Levine (1999)
Assets in Deposit Money Banks, as a Share of GDP	Total Assets in Deposit Money Banks Divided by GDP	Beck, Demirguc-Kunt and Levine (1999)
English Law	An indicator variable that equals one if a country's legal origin is primarily English	LaPorta, R., Lopez-de-Silanes, F., Shleifer, A., Vishny, R.W. (1997)
French Law	An indicator variable that equals one if a country's legal origin is primarily French	LaPorta, R., Lopez-de-Silanes, F., Shleifer, A., Vishny, R.W. (1997)
Property Rights	An index measuring the extent to which the government protects private property and enforces laws that protect private property	LaPorta, R., Lopez-de-Silanes, F., Shleifer, A., Vishny, R.W. (1997)
Latitude	The absolute value of the latitude of each country normalized to lie between zero and one	LaPorta, R., Lopez-de-Silanes, F., Shleifer, A., Vishny, R.W. (1999)
Landlocked	An indicator variable that equals one if a country is landlocked	Center for International Earth Science Information Network, 2001.
Road Tonnage	Roads, millions of tons of goods transported per kilometer	World Bank, (2003).

	OLS	OLS	OLS
	(2)	(3)	(4)
Log(Gini)	2.462*	3.092***	2.820*
	(1.469)	(1.251)	(1.621)
Log(Population)		0.872***	0.817**
		(0.252)	(0.300)
Per Capita Income		0.0009***	0.0001***
-		(0.001)	(0.00002)
Number of	61	61	30
Observations			
R-Squared	0.03	0.53	0.48

Table 4. The Impact of the Log Gini Measure of Land Area Distribution by Elevation on the Log of the Millions of Tons of Goods Transported per Kilometer of Roadway.

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%.

Figure 2 The Conditional Correlation Between the Number of Tons of Goods Transported Per Kilometer of Roadway and the Distribution of Land by Elevation

	Dependant	Dependant	Dependant	Dependant
	Variable [.]	Variable [.]	Variable [.]	Variable [.]
	Manufacturing	Manufacturing	Manufacturing	Manufacturing
	Sector	Sector	Sector	Sector
	Diversification_	Diversification_	Diversification	Diversification_
	Value Added	Employment Based		Employment Based
	Rased Measure	Measure	Rased Measure	Measure
	(OIS)	(OLS)	(Median	(Median
	(0L5)	(OLS)	(Niculaii Regression)	(Niculari Regression)
	(2)	(3)	(4)	(5)
Area Bioma Classes	0 175***	0.008*	0 202***	0.105
Alea Diollie Classes	[0.1/3***	0.098	0.203	0.103
Area Elevation	0.179**	0.172*	0.049	0.269**
Area Elevation	-0.1/8**	-0.1/2*	-0.252***	-0.208**
D	[0.083]	[0.088]	[0.0/9]	[0.121]
Percent Urban	-0.001***	-0.002***	-0.001*	-0.002***
Population				
	[0.0003]	[0.0004]	[0.0004]	[0.001]
Population Density	0.0001	0.0002**	0.0002**	0.0002*
	[0.0001]	[0.00009]	[0.0009]	[0.0001]
Log of Population	-0.026***	-0.034***	-0.030***	-0.032***
	[0.006]	[0.008]	[0.006]	[0.009]
Constant	1.042***	1.245***	1.095***	1.260***
	[0.100]	[0.109]	[0.099]	[0.144]
Observations	50	50	50	50
R-squared	0.39	0.59	0.30	
F-Statistic (P-value)	8.20 (0.00)	2.68(0.07)	11.20(0.00)	3.11(0.05)
Partial R-squared	0.212	0.144		
Summary Statistics:	0.549	0.563	0.549	0.563
Mean				
Summary Statistics:	0.08	0.084	0.08	0.084
Standard Deviation				

Table 5. First Stage Results: Base Specification

Heteroscedasticity robust standard errors in brackets. * significant at 10%; ** significant at 5%; *** significant at 1%. F-Statistic (heteroscedasticity robust) is the joint test that the coefficients of the Area Elevation and Area Biome Classes variables equal zero.

	LIML	2SLS	OLS	LIML	2SLS	OLS
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-3.435***	-3.413***	-1.420***			
	[1.092]	[1.080]	[0.429]			
DIV_EM_i				-5.056**	-4.960**	-0.697
				[2.462]	[2.384]	[0.557]
Urban Population	0.001	0.001	0.004**	-0.004	-0.004	0.004**
(Percent)	[0.002]	[0.002]	[0.002]	[0.00(]	[0.006]	[0.002]
Denvlation	[0.003]				0.001**	0.002
Density	0.0005	0.0005	0.0004	0.001**	0.001**	0.001*
	[0.0003]	[0.0003]	[0.0003]	[0.001]	[0.001]	[0.000]
Log of Population	-0.043	-0.043	-0.007	-0.134*	-0.131*	-0.002
	[0.031]	[0.031]	[0.025]	[0.081]	[0.078]	[0.030]
Constant	2.914***	2.894***	1.044*	5.595*	5.483*	0.535
	[1.128]	[1.118]	[0.621]	[2.946]	[2.855]	[0.810]
Observations	50	50	50	50	50	50
R-squared	0.11	0.11	0.33	0.54	0.55	0.24
Over	0.115(0.734)	0.12(0.734)		0.160(0.689)	0.267(0.605)	
Identification	, , , , , , , , , , , , , , , , , , ,					
Tests (p-value)	0.002	0.002		0.004	0.004	
CLR Test (p-	0.003	0.003		0.004	0.004	
value)	0.420	0.420	0.420	0.420	0.420	0.420
Summary	0.439	0.439	0.439	0.439	0.439	0.439
Statistics: Mean	0.005	0.005	0.005	0.005	0.005	0.005
Summary	0.295	0.295	0.295	0.295	0.295	0.295
Statistics:						
Standard						
Deviation						

Table 6. The Impact of Diversification—Value Added (DIV_VA_i) and EmploymentBased (DIV_EM_i) Measures—On The Level Of Private Sector Credit As A Share ofGDP—Base Specification.

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test

(Moreira (2003))] is that the diversification point estimate is zero $(\beta = 0)$.

	LIML	2SLS	OLS	LIML	2SLS	OLS
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-1.588***	-1.517***	-0.645***			
	[0.538]	[0.499]	[0.239]			
DIV_EM_i				-2.393**	-2.387**	-0.412
				[1.148]	[1.143]	[0.304]
Urban Population (Percent)	0.002	0.002	0.003**	-0.001	-0.001	0.003**
	[0.002]	[0.002]	[0.001]	[0.003]	[0.003]	[0.001]
Population Density	0.0002**	0.0002**	0.0002**	0.001**	0.001**	0.0002**
	[0.0001]	[0.0001]	[0.000]	[0.0002]	[0.0002]	[0.0001]
Log of Population	-0.020	-0.019	-0.003	-0.064	-0.064	-0.004
	[0.016]	[0.016]	[0.012]	[0.039]	[0.039]	[0.013]
Constant	1.900***	1.834***	1.025***	3.203**	3.197**	0.905**
	[0.589]	[0.556]	[0.304]	[1.405]	[1.399]	[0.370]
Observations	50	50	50	50	50	50
R-squared	0.19	0.21	0.34	0.15	0.15	0.29
Over identification Tests (p-value)	0.805(0.369)	1.789 (0.181)		0.021(0.885)	0.03(0.857)	
CLR Test (p-value)	0.02	0.02			0.02	0.02
Summary Statistics: Mean	0.831	0.831	0.831	0.831	0.831	0.831
Summary Statistics: Standard Deviation	0.172	0.172	0.172	0.172	0.172	0.172

Table 7. The Impact of Diversification—Value Added (DIV_VA_i) and EmploymentBased (DIV_EM_i) Measures—On The Level of Assets in Deposit Money Banks, As AShare Of Central Bank Assets—Base Specification.

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero ($\beta = 0$).

	LIML	2SLS	OLS	LIML	2SLS	OLS	LIML
	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$DIV VA_i$	-2.797**	-2.725**	-0.954**				-2.462**
	[1.135]	[1.089]	[0.431]				[1.125]
DIV_EM_i				-3.358**	-3.257**	-0.945*	
				[1.356]	[1.286]	[0.506]	
Percent Urban Population	-0.001	-0.001	0.001	-0.006	-0.006	0.000	0.002
	[0.003]	[0.003]	[0.002]	[0.005]	[0.004]	[0.002]	[0.003]
Population Density	0.0002	0.0002	0.0002	0.001*	0.001*	0.000	0.0004
	[0.0003]	[0.0003]	[0.0003]	[0.0003]	[0.0003]	[0.000]	[0.003]
Log of Population	-0.026	-0.024	0.007	-0.079*	-0.076*	-0.005	-0.0157
	[0.031]	[0.030]	[0.025]	[0.044]	[0.042]	[0.032]	[0.0285]
English Law	-0.097	-0.092	0.028	0.033	0.035	0.076	-0.079
	[0.162]	[0.159]	[0.144]	[0.154]	[0.152]	[0.142]	[0.155]
French Law	-0.114	-0.111	-0.047	-0.033	-0.033	-0.019	-0.166
	[0.141]	[0.139]	[0.138]	[0.148]	[0.146]	[0.140]	[0.141]
Property Rights	0.131***	0.131***	0.127**	0.174***	0.173***	0.139***	
	[0.049]	[0.048]	[0.051]	[0.051]	[0.050]	[0.050]	
Latitude	-0.049	-0.038	0.231	0.345	0.346	0.367	0.231
	[0.284]	[0.279]	[0.285]	[0.334]	[0.331]	[0.307]	[0.263]
LandLock	0.091	0.091	0.088	-0.116	-0.110	0.030	0.076
	[0.191]	[0.187]	[0.127]	[0.154]	[0.150]	[0.108]	[0.236]
Constant	2.005	1.935	0.179	3.171**	3.053**	0.342	1.926
	[1.238]	[1.196]	[0.655]	[1.617]	[1.538]	[0.794]	[1.207]
Observations	50	50	50	50	50	50	50
R-squared	0.38	0.39	0.54	0.33	0.34	0.53	0.37
Over identification	0.327(0.56	0.48(0.503)		0.338(0.56	0.396(0.5		0.151(0.69
Tests (p-value)	7)			2)	29)		7)
First Stage F-	4.48 (0.01)	4.48 (0.01)		3.03 (0.06)	3.03		4.95 (0.01)
Statistic (p-value)					(0.06)		
CLR Test (p-value)	0.03	0.03		0.04	0.04		0.07
Partial R-Squared	0.168	0.168		0.161	0.161		0.168

Table 8. The Impact of Diversification—Value Added (DIV_VA_i) and EmploymentBased (DIV_EM_i) Measures—On The Level Of Private Sector Credit As A Share ofGDP—Law and Geography Specification.

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero ($\beta = 0$).

Table 9. The Impact of Diversification—Value Added (DIV_VA_i) and Employme	nt
Based (DIV_EM _i) Measures—On The Level of Assets in Deposit Money Banks, A	s A
Share Of Central Bank Assets— Law and Geography Specification.	

	LIML	2SLS	OLS	LIML	2SLS	OLS
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-1.452*	-1.327**	-0.511*			
	[0.746]	[0.647]	[0.255]			
DIV_EM_i				-1.843***	-1.843***	-0.657**
				[0.693]	[0.693]	[0.280]
Percent Urban Population	-0.0002	-0.0008	0.001	-0.003	-0.003	-0.000
	[0.002]	[0.002]	[0.001]	[0.002]	[0.002]	[0.001]
Population Density	0.00006	0.00003	0.00003	0.0002*	0.0003*	0.000
	[0.0001]	[0.0001]	[0.0001]	[0.0001]	[0.0001]	[0.000]
Log of Population	-0.015	-0.013	0.001	-0.046*	-0.046*	-0.010
•	[0.019]	[0.017]	[0.012]	[0.024]	[0.024]	[0.015]
English Law	-0.111*	-0.103*	-0.047	-0.045	-0.045	-0.024
	[0.063]	[0.056]	[0.035]	[0.049]	[0.049]	[0.034]
French Law	-0.064	-0.059	-0.030	-0.023	-0.023	-0.016
	[0.065]	[0.061]	[0.050]	[0.059]	[0.059]	[0.049]
Property Rights	0.068**	0.068**	0.066	0.092***	0.092***	0.074*
	[0.033]	[0.033]	[0.039]	[0.031]	[0.031]	[0.038]
Latitude	-0.047	-0.028	0.096	0.156	0.156	0.167
	[0.180]	[0.166]	[0.131]	[0.159]	[0.159]	[0.137]
LandLock	-0.029	-0.030	-0.031	-0.143	-0.143	-0.071
	[0.082]	[0.076]	[0.051]	[0.088]	[0.088]	[0.051]
Constant	1.712**	1.587**	0.778**	2.434***	2.434***	1.042**
	[0.847]	[0.757]	[0.352]	[0.891]	[0.891]	[0.403]
Observations	50	50	50	50	50	50
R-squared	0.35	0.38	0.47	0.33	0.34	0.48
Over identification Tests (p-value)	1.133 (0.287)	2.531 (0.112)		0.001(0.989)	0.001(0.989)	
First Stage F- Statistic (p- value)	4.48 (0.01)	4.48 (0.01)		3.03 (0.06)	3.03 (0.06)	
CLR Test (p- value)	0.09	0.09		0.06	0.06	
Partial R- Squared	0.168	0.168		0.161	0.161	

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero ($\beta = 0$).

	Dependant Variable: The Level Of Private Sector Credit, As A	Dependant Variable: The Level of Assets in Deposit Money Deplet As A Share Of Control
	Share of GDP	Banks, As A Snare Of Central
	(2818)	Bank Assets
	2.440*	(25L5)
$DIV _EM_i$	-2.449*	-1.85/**
	[1.458]	[0.944]
Percent Urban Population	-0.004	-0.003
	[0.004]	[0.003]
Population Density	0.0004	0.000
	[0.0003]	[0.000]
Log of Population	-0.051	-0.047
	[0.048]	[0.032]
English Law	0.050	-0.046
	[0.142]	[0.052]
French Law	-0.028	-0.023
	[0.136]	[0.059]
Property Rights	0.161***	0.092***
	[0.051]	[0.035]
Latitude	0.353	0.156
	[0.307]	[0.161]
LandLock	-0.061	-0.144*
	[0.111]	[0.084]
Constant	2.106	2.450**
	[1.709]	[1.138]
Observations	50	50
R-squared	0.33	0.34
Hausman Over identification Test	0.02 (0.95)	0.00 (0.99)
(p-value)		
First Stage F-Statistic (p-value)	3.57 (0.06)	3.57 (0.06)
Partial R-Squared	0.09	0.09

Table 10. Testing The Exogeneity of Area Biome Classes

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The F-Statistic (heteroscedasticity robust) test whether the coefficient on the Area Elevation Distributions measure in the first stage equals zero. The Hausman Over Identification Test is distributed as Chi-Squared with one degree of freedom.

(1)	Dependant	Dependant	Dependant	Dependant
	Variable: The	Variable: The	Variable: The	Variable: The
	Level Of Private	Level of Assets in	Level Of Private	Level of Assets in
	Sector Credit, As	Deposit Money	Sector Credit, As	Deposit Money
	A Share of GDP	Banks, As A Share	A Share of GDP	Banks, As A Share
	(LIML)	Of Central Bank	(LIML)	Of Central Bank
		Assets		Assets
		(LIML)		(LIML)
	(2)	(3)	(4)	(5)
$DIV VA_i$	-3.293***	-1.584***	-2.325**	-1.253**
	[1.078]	[0.510]	[0.971]	[0.510]
Percent Urban	0.002	0.002	-0.002	0.000
Population				
	[0.002]	[0.001]	[0.002]	[0.001]
Population Density	0.001*	0.0002**	0.0004*	0.000*
	[0.0004]	[0.0001]	[0.0002]	[0.000]
Log of Population	-0.040	-0.020	-0.024	-0.015
	[0.031]	[0.016]	[0.025]	[0.014]
Per capita Income			0.000002***	0.000002**
			[0.00001]	[0.000001]
Constant	2.744**	1.913***	2.023**	1.666***
	[1.081]	[0.535]	[0.932]	[0.523]
Observations	50	50	50	50
R-squared	0.15	0.20	0.43	0.32
Over identification	0.19(0.663)	0.81(0.370)	0.486(0.486)	1.14(0.285)
Tests (p-value)				
First Stage F-	7.51 (0.002)	7.51 (0.002)	6.59(0.003)	6.59(0.003)
Statistic (p-value)				
CLR Test (p-value)	0.003	0.03	0.04	0.09

Table 11. Predetermined Regressors

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. The dependant variable and DIV_VA_i are averaged from 1990-2000. All other regressors are "initial values" averaged from 1970-1979. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero ($\beta = 0$).

Table 12. The Impact of Diversification—Value Added (DIV_VA_i) and EmploymentBased (DIV_EM_i) Measures— On The Level Of Private Sector Credit As A Share ofGDP—Law and Geography Specification: Alternative Measures of Diversification.

	LIML (Theil Index)	LIML (Mean Log	LIML (Mean Log	LIML (Theil	LIML (Mean Log	LIML (Mean Log
		Deviation)	Deviation; Elevation	Index)	Deviation)	Deviation; Elevation
			Variance)			Variance)
	(2)	(3)	(4)	(5)	(6)	(7)
DIV_VA _i	-1.086***	-0.991***	-0.890***			
	[0.349]	[0.338]	[0.285]			
DIV_EM_i				-1.007***	-1.230***	-1.221***
				[0.324]	[0.377]	[0.423]
Percent Urban Population	-0.000	-0.002	-0.001	-0.005	-0.006	-0.006
	[0.003]	[0.003]	[0.003]	[0.004]	[0.004]	[0.004]
Population Density	0.0002	0.00003	0.000	0.0003	0.0002	0.000
	[0.0002]	[0.0002]	[0.0003]	[0.0003]	[0.0002]	[0.0004]
Log of Population	-0.034	-0.049	-0.042	-0.067**	-0.081**	-0.081*
	[0.027]	[0.034]	[0.031]	[0.033]	[0.040]	[0.043]
English Law	-0.064	-0.050	-0.035	0.061	0.008	0.009
	[0.150]	[0.156]	[0.147]	[0.143]	[0.173]	[0.167]
French Law	-0.077	-0.105	-0.096	0.001	-0.062	-0.062
	[0.137]	[0.159]	[0.152]	[0.140]	[0.166]	[0.164]
Property Rights	0.143***	0.107	0.109	0.177***	0.143**	0.143**
	[0.048]	[0.073]	[0.068]	[0.048]	[0.069]	[0.068]
Latitude	-0.045	0.076	0.106	0.261	0.462	0.462
	[0.279]	[0.286]	[0.267]	[0.289]	[0.362]	[0.364]
LandLock	0.128	0.074	0.075	-0.091	-0.119	-0.118
	[0.218]	[0.240]	[0.222]	[0.126]	[0.167]	[0.168]
Constant	1.127	1.661	1.412	1.621*	2.323**	2.298**
	[0.732]	[1.048]	[0.914]	[0.835]	[1.056]	[1.133]
Observations	50	50	50	50	50	50
R-squared	0.33	0.16	0.26	0.43	0.11	0.12
Over identification	0.159	0.627	0.012	0.24	0.03	0.05
Tests (p-value)	(0.690)	(0.428)	(0.911)	(0.624)	(0.857)	(0.828)
First Stage F-	7.08	7.13	6.13	5.66	8.41	5.68
Statistic (p-value)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
CLR Test (p- value)	0.041	0.005	0.008	0.037	0.004	0.009

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Columns 4 and 7 summarizes the dispersion of Area Elevation using the weighted variance. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero (a - 0)

 $(\beta = 0).$

Table 13. The Impact of Diversification—Value Added (DIV_VA_i) and EmploymentBased (DIV_EM_i) Measures— On Level of Assets in Deposit Money Banks, As A ShareOf Central Bank Assets—Law and Geography Specification: Alternative Measures of
Diversification.

		Diversit		L		
	LIML	LIML	LIML	LIML	LIML	LIML
	(Theil Index)	(Mean Log	(Mean Log	(Theil	(Mean Log	(Mean Log
		Deviation)	Deviation;	Index)	Deviation)	Deviation;
			Elevation			Elevation
			Variance)			Variance)
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-0.471	-0.332*	-0.198			
	[0.325]	[0.174]	[0.200]			
$DIV EM_i$				-0.449**	-0.494**	-0.317
				[0.207]	[0.216]	[0.279]
Percent Urban	0.0002	0.0001	0.001	-0.002	-0.002	-0.001
Population						
	[0.002]	[0.001]	[0.002]	[0.002]	[0.002]	[0.002]
Population	-0.0003	0.0004	0.0003	0.0004	0.0004	0.0004
Density						
	[0.0004]	[0.0005]	[0.0004]	[0.0004]	[0.0004]	[0.0005]
Log of Population	-0.015	-0.014	-0.004	-0.028	-0.034	-0.017
	[0.020]	[0.015]	[0.018]	[0.019]	[0.022]	[0.026]
English Law	-0.081	-0.061	-0.041	-0.044	-0.029	-0.035
	[0.054]	[0.039]	[0.037]	[0.042]	[0.037]	[0.037]
French Law	-0.039	-0.043	-0.030	-0.030	-0.005	-0.024
	[0.058]	[0.052]	[0.052]	[0.054]	[0.050]	[0.051]
Property Rights	0.072**	0.059*	0.061*	0.071**	0.090***	0.069**
	[0.033]	[0.031]	[0.033]	[0.031]	[0.029]	[0.031]
Latitude	-0.009	0.073	0.113	0.205	0.117	0.196
	[0.181]	[0.126]	[0.119]	[0.140]	[0.132]	[0.131]
LandLock	-0.014	-0.036	-0.034	-0.107	-0.119	-0.085
	[0.078]	[0.070]	[0.052]	[0.073]	[0.078]	[0.077]
Constant	0.000	0.000	0.756	-0.002	-0.002	1.069
	[0.002]	[0.001]	[0.585]	[0.002]	[0.002]	[0.795]
Observations	50	50	50	50	50	50
R-squared	0.39	0.45	0.49	0.40	0.44	0.46
Over identification	1.497	1.13	2.03	0.361	0.31	2.01
Tests (p-value)	(0.221)	8(0.286)	(0.18)	(0.548)	(0.578)	(0.17)
First Stage F-	7.08(0.00)	7.13 (0.00)	6.13 (0.00)	8.41 (0.00)	5.66(0.00)	5.68 (0.00)
Statistic (p-value)		× ,				
CLR Test (p-	0.189	0.183	0.442	0.101	0.13	0.387
value)						
/			1	1	1	1

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Columns 4 and 7 summarize the dispersion of Area Elevation using the weighted variance. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero $(\beta = 0)$.

	Dependant Variable: The Level Of Private Sector Credit, As A Share of GDP (LIML) (2)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of Central Bank Assets (LIML) (3)	Dependant Variable: The Level Of Private Sector Credit, As A Share of GDP (LIML) (4)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of Central Bank Assets (LIML)	Dependant Variable: The Level Of Private Sector Credit, As A Share of GDP (LIML) (6)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of Central Bank Assets (LIML) (7)
	Davaloning	Davaloning	Expanded	(S) Expanded	1080g	(7)
	Countries	Countries	Expanaea Sample	Sample	19005	19805
DIV VA _i	-3.359	-1.965**	-2.944*	-2.091	-2.666***	-2.035***
1	[2,437]	[0.883]	[1.564]	[1.558]	[0.907]	[0.686]
Urban Population (Percent)	-0.003	0.0004	0.003	0.002	-0.0001	0.001
	[0.004]	[0.002]	[0.002]	[0.002]	[0.002]	[0.001]
Population Density	-0.00008	0.0002	0.001***	0.0004**	0.0004	0.000
	[0.0003]	[0.0002]	[0.0003]	[0.0001]	[0.0003]	[0.000]
Log of Population	-0.065	-0.022	-0.028	-0.042	-0.024	-0.024
	[0.042]	[0.022]	[0.037]	[0.039]	[0.027]	[0.023]
Constant	3.452	2.219**	2.272	2.532	2.148**	2.181***
	[2.229]	[0.919]	[1.527]	[1.574]	[0.916]	[0.717]
Observations	31	31	71	71	49	49
R-squared	0.47	0.31	0.12	0.14	0.52	0.35
Over identification Tests (p-value)	1.91 (0.167)	0.046 (0.831)	1.542 (0.214)	3.622 (0.57)	0.049 (0.825)	0.125 (0.723)
First Stage F- Statistic (p-value)	2.58 (0.09)	2.58 (0.09)	4.20 (0.01)	4.20 (0.01)	4.95 (0.012)	4.95 (0.012)
CLR Test (p- value)	0.111	0.180	0.051	0.101	0.015	0.034

Table 14. The Impact of Diversification—Value Added (DIV_VA_i) Measure— On Financial Development—Base Specification: Alternative Samples.

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero ($\beta = 0$).

	Dependant	Dependant	(Dependant	(Dependant
	Variable: The	Variable: The	Variable: Deposits	Variable: Deposits
	Level of Assets in	Level of Assets in	in Money Banks.	in Money Banks.
	Deposit Money	Deposit Money	As A Share of	As A Share of
	Banks, As A Share	Banks, As A Share	GDP	GDP
	Of GDP	Of GDP	(LIML)	(LIML)
	(LIML)	(LIML)		
	(2)	(3)	(4)	(5)
$DIV VA_i$	-3.191***		-2.101**	
	[1.211]		[0.921]	
DIV_EM_i		-3.770**		-2.270*
		[1.735]		[1.215]
Percent Urban	-0.001	-0.007	-0.001	-0.005
Population				
	[0.003]	[0.005]	[0.002]	[0.004]
Population Density	0.0004	0.001**	0.0003	0.001*
	[0.0003]	[0.0008]	[0.0003]	[0.0003]
Log of Population	-0.032	-0.092*	-0.036	-0.068*
	[0.033]	[0.055]	[0.027]	[0.041]
English Law	-0.089	0.061	-0.024	0.078
	[0.172]	[0.172]	[0.130]	[0.129]
French Law	-0.054	0.039	-0.038	0.024
	[0.157]	[0.166]	[0.123]	[0.127]
Property Rights	0.135***	0.183***	0.098**	0.127***
	[0.050]	[0.057]	[0.040]	[0.034]
Latitude	0.127	0.576	0.016	0.314
	[0.298]	[0.350]	[0.221]	[0.246]
LandLock	0.141	-0.093	0.105	-0.035
	[0.194]	[0.170]	[0.188]	[0.143]
Constant	2.332*	3.590*	1.851*	2.430
	[1.332]	[2.067]	[1.040]	[1.480]
Observations	50	50	50	50
R-squared	0.46	0.41	0.37	0.39
Over identification	0.00	1.45	0.075	1.76
Tests	(0.995)	(0.24)	(0.78)	(0.18)
(p-value)				
First Stage F-	4.48	3.03	4.48	3.03
Statistic	(0.02)	(0.06)	(0.02)	(0.06)
(p-value)				
CLR Test (p-value)	0.021	0.037	0.069	0.141

Robust standard errors in brackets; * significant at 10%; ** significant at 5%; *** significant at 1%. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Under the weak instrument assumption, the null hypothesis in the CLR Test [conditional likelihood ratio test (Moreira (2003))] is that the diversification point estimate is zero ($\beta = 0$).

VI. REFERENCES

Acemoglu, Daron and Zilibotti, Fabrizo. "Was Prometheus Unbound by Chance? Risk, Diversification, and Growth." *Journal of Political Economy*, August 1997, 105(4), pp. 709-51

Acemoglu, Daron; Simon Johnson and James A. Robinson. 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation." *American Economic Review*. 91:5, pp 1369-401.

Aw, W.B. "Highway Construction Cost Model for Sector Planning in Developing Countries.: S.M thesis. Cambridge Mass.: Massachusetts Institute of Technology, 1981.

Barro, Robert and Xavier Sala-i-Martin. 2003. Economic Growth. MIT Press.

Beck, Thorsten, Asli Demiguc-Kunt, and Ross Levine, 2003, "Law, Enforcements and Finance, *Journal of Financial Economics*, 70, pp137-181.

Beck, Thorsten, Ross Levine and Norman Loyaza. 2000. Finance and Sources of Growth,: *Journal of Financial Economics*, 58:261-300

Bound, J., D.A. Jaeger and R.M. Baker (1995). "Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogenous Explanatory Variables Is Weak," *Journal of the American Statistical Association* 90, 443-450.

Center for International Earth Science Information Network (CIESIN) of Columbia University. 2003.

Cutler, David and Edward Glaeser. "Are Ghettos Good or Bad?", *Quarterly Journal of Economics*, 112(3), August 1997, 827-872.

Davidson, R. and J. MacKinnon. 1993. <u>Estimation and Inference in Econometrics</u>. New York: Oxford University Press.

Fujita, M., Krugman, P. and Anthony Venables. 1999. "The Spatial Economy: Cities, Regions and International Trade. Cambridge Mass: MIT Press.

Gallup, John Luke; Sachs, Jeffrey and Andrew Mellinger. 1998. "Geography and Economic Development" *National Bureau of Economic Research* WP No. 6849.

Greenwood, Jeremy and Boyan Jovanovic. "Financial Development, Growth and the Distribution of Income." *Journal of Political Economy*, vol. 98, No. 5. October 1990 pp 1076-1107.

Harrigan, James and Egon Zakrajzek. 2000. "Factor Supplies and Specialization in the World Economy" *NBER Working Paper No.* 7848.

Highway Research Board. <u>The AASHO Road Test</u>. National Research Council, Special Report 61E, Publication no. 944. Washington D.C. 1962.

Hoxby, Caroline M.. "Does Competition Among Public Schools Benefit Students and Taxpayers?" *American Economic Review*, *90*, 2000

Imbs, Jean and Wacziarg, Romain. "Stages of Diversification." *American Economic Review*, March 2003, 93(1), pp. 63-86.

Jensen, Michael and Meckling, William. 1976. "Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure." *Journal of Financial Economics* 3 pp 305-60.

Kalemil_Ozcan, Sebnem; Sorensen, Bent E. and Yosha, Oved. "Risk Sharing and Industrial Specialization: Regional and International Evidence." *American Economic Review*, June 2003, 93(1), pp 903-918

Kelejian, H.H. 1971. "Two Stage Least Squares and Econometric Systems Linear in Parameters but Non-Linear in Endogenous Variables." *Journal of the American Statistical Association*, 66, pp 373-384

Kennedy, William P. Industrial Structure, Capital Markets, and Origins of British Economic Decline. Cambridge: Cambridge University Press, 1987.

Kim, Sukko. "Expansion of Markets and the Geographic Distribution of economic Activities: The Trends in U.S. Regional Manufacturing Structure, 1860-1987. "*Quarterly Journal of Economics,* November 1995, 110(4), pp.881-908.

King, R.G. and R. Levine. 1993. "Finance and Growth: Schumpeter Might be Right" *Quarterly Journal of Economic*, 108: 717-738.

Krugman, Paul. "Increasing Returns, Monopolistic Competition, and International Trade." *Journal of International Economics*, November 1979, 9(4), pp. 469-79.

. Geography and trade. Cambridge, MA:MIT Press, 1991

and Anthony J. Venables. 1995. "Globalization and the Inequality of Nations," *Quarterly Journal of Economics*. 110:4 pp 857-80

La Porta, R., Lopez-de-Sailanes, F., Shleifer, A., Vishny, R.W., 1998. Law and Finance. *Journal of Political Economy* 106, 113-1155

____. 1997. Legal Determinants of External Finance. Journal of Finance 52, 668-726

. 1999. The Quality of Government. *Journal of Law, Economics, and Organization* 15, 222-279.

Levine, Ross. "Finance and Growth: Theory, Evidence, and Mechanisms" forthcoming *Handbook of Economic Growth*.

. 2005(b). "Law, Endowments and Property Rights" *Journal of Economic Perspectives*, vol. 19, no. 3. pp 61-88.

North, Douglass C., and Thomas, Robert P. *The Rise of the Western World: A New Economic History*. Cambridge: Cambridge University Press 1973.

Obstfeld, Maurice. "Risk-Taking, Global Diversification, and Growth." *American Economic Review*, December 1994, 84(50 pp 1310-29.

Olson, D.M. et. al. 'Terrestrial coercions of the world : A new map of life on Earth. *BioSceince* 51(11): pp 933-938.

Paterson, W.D.O. <u>The Highway Design and Maintenance Standards Model (HDM-III)</u>, <u>Volume III, Road Deterioration and Maintenance Effects: Models for Planning and</u> <u>Management.</u> Washington, D.C.: Transportation Department, World Bank, 1987.

Saint-Paul, Gilles. "Technological Choice, Financial Markets and Economic Development." *European Economic Review*, May 1992, 36(4), pp. 763-81

Sayers, M, T.D. Gillespie, and W.D.O. Paterson. "Guidelines for the Conduct and Calibration of Road Roughness Measurements." Technical Report no. 46 Washington D.C.:World Bank, 1986

Stock, J., J. Wright and M. Yogo. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments". *Journal of Business & Economic Statistics*, Oct 2002; 20 pp 518-529.

Tsunokawa, K. "Evaluation and Improvement of Road Construction Cost Models." Unpublished Draft Working Paper. 1983. Washington D.C.: World Bank

United Nations Industrial Development Organization. *Industrial Statistics Database, 3-digit level of ISIC Code.* Vienna: United Nations Industrial Development Organization Press, 2003.

Wooldridge, Jeffrey. 2002. <u>Econometric Analysis of Cross Section and Panel Data.</u> 2002. MIT Press.

World Bank. World Development Indicators. 2003.

Wringely, Edward A. Continuity, Chance and Change: The Character of the Industrial Revolution in England. Cambridge: Cambridge University Press, 1988.