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Abstract

Motivated by the prevalence of heterogeneous beliefs held by market
participants regarding future economic fundamentals, we provide an equi-
librium model to analyze the effects of belief dispersion on bond yields. Our
model shows that the disagreement among agents in regards to their expec-
tations for future interest rates raises bond prices and reduces bond yields
relative to the corresponding values in a homogeneous economy, wherein all
agents share the wealth weighted average belief. Furthermore, the relative-
wealth fluctuation caused by agents’ speculative trading amplifies shocks
to the economy and increases yield volatility. Taken together, these results
highlight the importance of incorporating belief dispersion into economic
analysis of bond yields.
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1 Introduction

Agents’ expectations about the future course of short rates is a crucial determinant of

bond yields. This idea underlies the expectations hypothesis, one of the classic theories

of the yield curve dating at least back as Fisher (1896), Hicks (1939), and Lutz (1940).

According to Lutz (1940, pp. 37), “An owner of funds will go into the long market if

he thinks the return he can make there over the time for which he has funds available

will be above the return he can make in the short market over the same time, and vice

versa.” Thus, the long rate should be determined by the agent’s expectation of future

short rates during the corresponding period. While expectations theory has attracted

numerous academic studies,1 most assume that all agents have identical expectations.2

The data easily reject the homogeneous expectations assumption. For example,

Mankiw, Reis and Wolfer (2004) show that in December 2002, the interquartile range

of inflation expectations for 2003 among professional economists in the Livingston

Survey goes from 1.5% to 2.5%. The interquartile range among the general public

in the Michigan Survey of Consumer Attitudes and Behavior goes from 0% to 5%.

Welch (2000) surveys 226 academic financial economists’ and finds that their forecasts

of 30-year equity premium vary from 2% to 13%. While surveys may not be the

most effective method for extracting agents’ expectations, these surveys demonstrate

significant belief dispersion among a broad range of respondents about the future values

of macroeconomic variables.

Is belief dispersion among market participants important for understanding bond

yields? An intuitive argument is that even when agents have heterogeneous beliefs,

markets would aggregate these beliefs and bond prices would be equivalent to those in a

homogeneous model, whereby all agents possess the average belief of the heterogeneous

economy. If this argument holds true, it justifies the common practice in the literature

of ignoring belief dispersion and simply focusing on agents’ average belief. In this

paper, we provide an equilibrium model to examine this argument.

Our model adopts the equilibrium framework of Cox, Ingersoll and Ross (1985a)

1See Campbell, Lo and MacKinlay (1997, chapter 10) for a review.
2For example, see Cox, Ingersoll and Ross (1981) and Campbell (1986).
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with log-utility agents and a constant-return-to-scale risky investment technology. Since

the risky technology represents an alternative investment channel to risk free bonds,

the expected instantaneous return from investing in the risky technology determines

the equilibrium short rate. Unlike Cox, Ingersoll and Ross (1985a), we assume that

there is an unobservable variable that determines the future returns of the risky tech-

nology and, therefore, the future short rates as well. Furthermore, we allow agents to

hold heterogeneous prior beliefs about the unobservable variable. This assumption is

consistent with the observation that agents often disagree about their expectations of

the future values of macroeconomic variables such as inflation and economic growth,

although they base these expectations on a shared information set. Dispersion in

agents’ beliefs causes them to speculate with each other in capital markets. We study

a competitive equilibrium, in which each agent optimizes consumption and investment

decisions based on her beliefs. Market clearing conditions determine the equilibrium

interest rates and bond prices.

Our model shows that the price of a bond is the wealth weighted average of bond

prices in homogeneous economies, in each of which only one type of agent is present.

Note that each agent’s bond valuation in a homogeneous economy is a convex function

of the agent’s belief about future short rates. Thus, Jensen’s inequality implies that

the bond price in a heterogeneous economy is higher than the price in a homogeneous

economy wherein the representative agent possesses the average belief of those agents in

the heterogeneous economy. In other words, dispersion in agents’ beliefs about future

short rates increases bond prices and decreases bond yields. This effect is especially

stronger for long-term bonds. Furthermore, belief dispersion increases yield volatility,

because the relative-wealth fluctuation caused by agents’ speculative trading tends to

amplify shocks to the economy. We also provide numerical examples to show that

the magnitudes of these belief dispersion effects could be substantial. Our model thus

highlights the importance of incorporating belief dispersion into economic analysis of

bond yields.

The belief dispersion effects in our model arise from the aggregation of beliefs

in equilibrium across agents. This mechanism is distinct from effects generated by
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uncertainty, i.e., the lack of confidence in expectation. Although belief dispersion

across agents and uncertainty in each agent’s belief are sometimes correlated, these

are two different concepts and can be measured separately.3 Our model predicts that

after controlling for uncertainty effects, dispersion in agents’ beliefs would decrease

bond yields and increase yield volatility. Our model also has potential implications

for monetary policies. In particular, it highlights the importance for the monetary

authority to manage the dispersion of market participants’ expectations.

Our model adds to the theoretical literature on term structure of interest rates,

e.g., Vasicek (1977), Cox, Ingersoll and Ross (1985b) and Duffie and Kan (1996), by

establishing belief dispersion as an additional determinant of bond yields. Our study

complements Williams (1977), Detemple and Murthy (1994) and Basak (2000), who

analyze the effects of heterogeneous beliefs on stock returns and short rates, but not

on bond yields. Our paper is also related to the literature that analyzes the joint

effects of heterogeneous beliefs and short-sales constraints on stock overvaluation, e.g.,

Miller (1977), Harrison and Kreps (1978), and Scheinkman and Xiong (2003). We show

that heterogeneous beliefs can increase bond prices even in the absence of short-sales

constraints. Our mechanism is based on the aggregation of convex bond valuations

across agents. Yan (2006) also uses a similar mechanism to show that noise trading in

stock markets may not be cancelled out by aggregation.

2 The Model

Our model adopts the equilibrium framework of Cox, Ingersoll and Ross (1985a) with

log-utility agents and a constant-return-to-scale risky investment technology. Unlike

their model, ours assumes that agents cannot directly observe a random variable that

drives the future expected return of the investment technology. Rather, one has to

infer its value. There are N groups of agents with different beliefs regarding this vari-

able. Because of the belief dispersion, agents speculate in capital markets. We study

a competitive equilibrium, in which each agent optimizes consumption and investment

3See Zarnowitz and Lambros (1987) for a discussion and an empirical analysis of the difference
between belief dispersion and uncertainty.
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decisions based on her own beliefs. Market clearing conditions determine the equilib-

rium short rate and bond prices.

2.1 Investment technology

We consider a production economy with a constant-return-to-scale technology. The

return of the technology follows a diffusion process:

dIt

It

= ftdt + σIdZI(t) (1)

where ft is the expected instantaneous return, σI is a volatility parameter, and ZI(t)

is a standard Brownian motion. The expected instantaneous return from the risky

technology ft follows another linear diffusion process:

dft = −λf (ft − lt)dt + σfdZf (t), (2)

where λf is a constant governing the mean reverting speed of ft, lt represents a moving

long-run mean of the risky technology’s expected return, σf is a volatility parameter,

and Zf (t) is a standard Brownian motion independent of ZI(t). As we will show

later, the expected instantaneous return of the technology ft, after adjusting for risk,

determines the equilibrium short rate.

The long-run mean lt is unobservable, and it follows an Ornstein-Uhlenbeck process:

dlt = −λl(lt − l̄)dt + σldZl(t), (3)

where λl is a parameter governing the mean-reverting speed of lt, l̄ is the long-run mean

of lt, σl is a volatility parameter, and Zl(t) is a standard Brownian motion independent

of ZI(t) and Zf (t). Since lt is the level, to which ft mean-reverts, it determines the

future values of short rates.

Intuitively, we can interpret ft as the current level of inflation, and lt as the mone-

tary authority’s inflation target. According to this interpretation, the mean-reverting

speed of ft measures the monetary authority’s effectiveness in controlling inflation,

while the lt process is determined by the evolution of the monetary policy. Since mon-

etary authorities are often unwilling to clearly disclose their inflation targets, market

participants have to infer these targets through the observed inflation.
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We can also interpret ft as the expected growth rate of the economy, and lt as

the “optimal” growth rate that the current technology level could have achieved in

a frictionless economy. The existence of adjustment cost could prevent an immediate

adjustment of the production capacity in the economy to reflect fluctuations in technol-

ogy, causing ft to trail behind lt. According to this interpretation, the mean-reverting

speed of ft is determined by the adjustment cost, while the lt process is determined by

the evolution of technology. Since the optimal growth rate is not directly observable

to market participants, it is reasonable to assume that they derive its value through

the actual growth rate.

2.2 Agents’ learning processes

Agents understand the structure of the economy, i.e., they know the processes and

parameters in equations (1)-(3). They also observe the values of dIt/It, ft, although

not lt. There are N groups of agents with different prior beliefs about the value of lt.

We assume that agents in group i, i ∈ {1, 2, · · · , N}, have the following Gaussian prior

belief at time 0:

l0 ∼ N
(
l̂i0, γ0

)
,

where l̂i0 is the mean and γ0 is the variance. That is we allow agents in different groups

to hold different means in regards to l0, but, for simplicity, we let their belief variance

be identical.

As time goes on, agents use the observed values of ft to update their beliefs about

the current value of lt. Because agents’ prior beliefs and signals all have Gaussian

distributions, their posterior beliefs must also have Gaussian distributions. We denote

the group i’s posterior belief at time t as

lt| {fτ}t
τ=0 ∼ N

(
l̂it, γt

)
.

According to Theorem 12.7 of Liptser and Shiryaev (1977), the mean of the posterior

belief, which we later refer to as group-i agents’ belief, is determined by

dl̂it = −λl(l̂
i
t − l̄)dt +

λfγt

σf

dẐi
f (4)
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where

dẐi
f =

1

σf

[
dft + λf (ft − l̂it)dt

]
(5)

is surprise in the information flow, dft. This surprise is a standard Brownian motion

in group-i agents’ probability measure. Since agents in different groups agree on the

structure of the economy, they use the same learning rule in equation (4). They simply

use different benchmarks defined by their current beliefs to determine surprise in the

information flow, as in equation (5).

Theorem 12.7 of Liptser and Shiryaev (1977) also implies that agents in all groups

share the same belief variance and that the variance changes deterministically over

time:
dγt

dt
= −λ2

f

σ2
f

γ2
t − 2λlγt + σ2

l . (6)

As time goes to infinity, the belief variance converges to a stationary level γ̄, which is

the positive root to the following quadratic equation:

λ2
f

σ2
f

γ̄2 + 2λlγ̄ − σ2
l = 0.

Given the difference in agents’ beliefs, they have different views about the dynamics

of ft. For agents in group i,

dft = −λf (ft − l̂it)dt + σfdẐi
f (t). (7)

In the probability measure of group-i agents, equations (1), (4), and (7) describe the

evolution of the economy. There are two sources of shocks that directly affect the

markets, dZI and dẐi
f .

For our discussion, we will use the probability measure of one of the groups– group

K– as a benchmark. K could be any group in the population. We denote the difference

between the beliefs of group-i and group-K agents by

gi
t = l̂it − l̂Kt .

The following lemma describes the dynamics of the difference in beliefs with the proof

given in Appendix A.1.
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Lemma 1 gi
t changes deterministically according to

dgi
t = −

(
λl +

λ2
f

σ2
f

γt

)
gi

t dt.

Lemma 1 suggests that, over time, the difference in agents’ beliefs converges de-

terministically to zero. This feature comes from our setup, which states that agents

only differ in their prior beliefs, but that they use the same information set and the

same learning rule to update their beliefs. We view the heterogeneous-prior-belief as-

sumption as the simplest way of generating some belief dispersion among agents. The

basic mechanism in our model to demonstrate the way belief dispersion affects bond

yields also applies to other setups, even those in which heterogeneous beliefs arise from

alternative channels.4

2.3 Capital markets

The difference in agents’ beliefs can cause trading among them. In particular, agents

who are more optimistic about lt would bet on interest rates going up against more

pessimistic agents. As we discussed earlier, in each agent’s probability measure, there

are two sources of random shocks that directly affect the markets. Thus, markets

are complete if agents can trade a risk free asset and two risky assets that span the

two sources of random shocks. The existence of a bond market could make markets

complete. Thus, we analyze agents’ investment and consumption decisions, as well as

their valuations of financial securities, in a complete-markets equilibrium.

4See Morris (1995) for a lucid discussion of the heterogeneous-prior-belief assumption in eco-
nomic applications. Heterogeneous beliefs could also arise from several other channels. For example,
Scheinkman and Xiong (2003) use overconfidence, a behavioral bias in agents’ learning processes, as
cause. Overconfidence causes agents to react differently to different sources of information, and thus
generates stationary heterogeneous belief processes among agents– on one hand, agents’ beliefs might
diverge in response to a random shock; on the other hand, as in our model, the difference in their
beliefs mean-reverts to zero over time. Kurz (2001) and the references therein argue that limited data
make it difficult for rational agents to identify the correct model of the economy from alternative
ones. As a result, model uncertainty could cause them to use different learning models and therefore
to possess heterogeneous beliefs. Furthermore, Mankiw, Reis and Wolfer (2004) argue that stickiness
in agents’ information caused by the cost of collecting and processing information could also generate
heterogeneous beliefs.
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For simplicity, we introduce a zero-net-supply risk free asset and a zero-net-supply

risky financial security, in addition to the risky technology. These securities facilitate

agents’ speculation need and complete the markets in our model.5 At time t, the risk

free asset offers a short rate rt, which is determined endogenously in the equilibrium.

The risky financial securities, which we call security f , offers the following return

process:

dpf/pf = µf (t)dt + dft.

This security could be viewed as a synthetic position constructed from a dynamic

trading strategy of bonds so that the resulting return process responds proportionally

to the innovation in dft. Since investors have different opinions about dft, they disagree

on the expected return of security f . As a result, some investors want to take long

positions, while others want to take short positions. In equilibrium, µf (t) is determined

so that the aggregate demand is zero.

By substituting equation (7) into the price process of security f , we obtain that, in

the probability measure of group-i agents,

dpf/pf = µ̂i
f (t)dt + σfdẐi

f (t),

where the expected return is given by

µ̂i
f (t) = µf (t)− λf (ft − l̂it). (8)

This equation shows that agents who hold higher beliefs about lt perceive higher ex-

pected returns from security f .

We assume that all agents have logarithmic utility. Agents in group i maximize

their lifetime utility from consumption by investing in all available securities under

their beliefs:

max
{ci

t,θ
i
I ,θi

f}
Ei

∫ ∞

0

e−βtu(ci
t)dt,

5We also allow agents to short-sell the risky technology. This can be implemented by offering a
derivative contract on the return of the technology. The market clearing conditions, however, require
that agents in aggregate hold a long position in the risky technology.
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where ci is their consumption choice, θi
I and θi

f are the fractions of their wealth invested

in the risky technology and security f , Ei is the expectation operator under their

probability measure, β is their time-preference parameter, and

u(ci
t) = log(ci

t)

is their utility function. Given group-i agents’ investment and consumption strategies,

their wealth process follows

dW i
t

W i
t

=
(
rt − ci

t/W
i
t

)
dt + θi

I (dIt/It − rtdt) + θi
f (dpf/pf − rtdt)

=
[
rt − ci

t/W
i
t + θi

I (ft − rt) + θi
f

(
µ̂i

f − rt

)]
dt

+θi
IσIdZI(t) + θi

fσfdẐi
f (t). (9)

We can solve these agents’ consumption and investment problems using the stan-

dard dynamic programming approach following Merton (1971). The results for agents

with logarithmic utility are well known. They always consume wealth at a constant

rate equal to their time preference parameter:

ci
t = βW i

t.

They invest in risky assets according to their instantaneous risk-return tradeoff (the

ratio between expected excess return and return variance):

θi
I =

ft − rt

σ2
I

, θi
f =

µ̂i
f − rt

σ2
f

. (10)

2.4 Equilibrium

We adopt a standard definition of competitive equilibrium. In the equilibrium, each

agent chooses optimal consumption and investment decisions under her beliefs, and

all markets clear. Market clearing conditions include 1) the aggregate investment to

the risky technology is equal to the total wealth in the economy; 2) the aggregate

investment to the risk free asset is zero; and 3) the aggregate investments to security

f is also zero. We describe the equilibrium in the following theorem, and provide the

proof in Appendix A.2.
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Theorem 1 The equilibrium short rate is

rt = ft − σ2
I . (11)

The µf term of the return process of security f is

µf (t) = rt +
N∑

i=1

ωi
tλf (ft − l̂it), (12)

where ωi
t is the wealth share of group-i agents in the economy:

ωi
t ≡

W i
t

Wt

, Wt ≡
N∑

i=1

W i
t .

The aggregate wealth in the economy fluctuates according to

dWt

Wt

= (ft − β) dt + σIdZI(t). (13)

In the equilibrium, group-i agents invest an amount of
λf

σ2
f

(
l̂it−

∑N
j=1 ωj

t l̂jt

)
W i

t in se-

curity f.

Equation (11) in Theorem 1 shows that the equilibrium short rate is the expected

instantaneous return of the risky technology adjusted for risk. This is because agents

would demand a higher return from lending out capital when the expected return from

the alternative option of investing in the risky technology is higher. Equation (11)

implies that the short rate fluctuates according to the following process:

drt = −λf [rt − (lt − σ2
I )]dt + σfdZf .

The short rate locally mean reverts to a time-varying long-term expected value, lt−σ2
I .

This feature of local mean reversion in the short rate has also been pointed out by

Fama (2006).

Equation(12) shows that the µf term of the return process of security f is deter-

mined by the short rate, rt, minus the wealth weighted average of agents’ beliefs about

the factor ft’s drift rate,
∑N

i=1−ωi
tλf (ft − l̂it). Equation (13) shows that the aggregate
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wealth in the economy grows at a rate determined by the return from the risky tech-

nology, ftdt + σIdZI(t), minus agents’ consumption rate, βdt. This is because that the

risky technology is the only storage technology in the economy.

Theorem 1 also shows that when group-i agents’ belief l̂it is higher than the wealth

weighted average belief of all agents in the economy
∑N

j=1 ωj
t l̂jt , they perceive a high

expected return from security f. As a result, they take a long position. The different

positions caused by agents’ belief dispersion also affects their relative wealth. We define

the wealth ratio between agents in group i and the benchmark group (group K) by

ηi
t ≡

W i
t

WK
t

.

The following Lemma characterizes the dynamics of the wealth ratio, with the proof

in Appendix A.3.

Proposition 1 In the probability measure of group-K agents, the wealth ratio process

ηi
t evolves according to

dηi
t

ηi
t

=
λf

σf

gi
tdẐK

f (t). (14)

Proposition 1 shows that the wealth ratio between agents in groups i and K is more

volatile when the difference in their beliefs gi
t is higher. If gi

t = 0, agents in the two

groups invest in the same way, thus the wealth ratio stays constant. If gi
t > 0, group-i

agents are more optimistic. As a result, they put a bigger bet on the price of security

f going up. If the shock to ft turns out to be positive, i.e., dẐK
f > 0, the wealth ratio

ηi
t would rise.

By directly solving equation (14), we further obtain that

log
(
ηi

t

)
= log

(
ηi

0

)− 1

2

∫ t

0

λ2
f

σ2
f

(
gi

s

)2
ds +

∫ t

0

λf

σf

gi
sdẐK

f (s).

The logarithm of the wealth ratio has a Gaussian distribution. In the long run, it does

not converge to any constant. Even in the limit, it has a Gaussian distribution, with a

mean of

−1

2

∫ ∞

0

λ2
f

σ2
f

(
gi

s

)2
ds
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and a variance of ∫ ∞

0

λ2
f

σ2
f

(
gi

s

)2
ds.

Since the wealth ratio converges neither to 0, nor to 1, every group will survive in the

long run.6

2.5 Stochastic discount factor

When agents are homogeneous, they share the same stochastic discount factor, which

is determined by their marginal utility of consumption in future states. With a loga-

rithmic preference, agents consume a fixed fraction of their wealth and the stochastic

discount factor is inversely related to their aggregate wealth. More specifically, the

stochastic discount factor, which we denote by MH
t , is

MH
t = e−βt u

′(ct)

u′(c0)
= e−βt c0

ct

= e−βt W0

Wt

. (15)

When agents have heterogeneous beliefs about the probabilities of future states,

they have different stochastic discount factors. However, in the absence of arbitrage,

they have to share the same security valuations. For our discussion of security prices,

we will use the stochastic discount factor of group-K agents.

Before we discuss the stochastic discount factor of group-K agents, we provide a

lemma, with the proof in Appendix A.4, relating the fluctuation in agents’ relative

wealth to the difference in their probability measures of future states.

Lemma 2 If XT is a random variable to be realized at time T > t and Ei[XT ] < ∞,

then group-i agents’ expectation of this variable at time t can be transformed into group-

K agents’ expectation through the wealth ratio process between the two groups:

Ei
t [XT ] = EK

t

[
ηi

T

ηi
t

XT

]
.

Lemma 2 shows that the wealth ratio process between agents in groups i and K acts

as the Randon-Nikodyn derivative of group-i agents’ probability measure with respect

6For more general discussion of survival issues caused by heterogeneous beliefs, see recent studies
of Kogan, et al (2005), Yan (2005), and Dumas, Kurshev and Uppal (2005).
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to group-K agents’ measure. The intuition is as follows. If group-i agents assign a

higher probability to a future state than group-K agents, these agents would invest in

such a way that the wealth ratio between them, W i/WK , is also higher in that state.

Lemma 2 further implies that, as a consequence of logarithmic preference, the ratio

of probabilities assigned by these groups to different states is perfectly correlated with

their wealth ratio.

Group-K agents’s stochastic discount factor is determined by their wealth dynam-

ics, which is affected by their trading with agents in other groups. Intuitively, group-i

agents have a larger impact on group-K agents’ wealth if group-i agents have a larger

wealth share, and/or disagree more with group-K agents. Hence, relative to the homo-

geneous economy case, group-K agents’ stochastic discount factor is affected by other

groups through two channels: each group’s wealth share and its disagreement with

group K. This intuition is made precise in the following Theorem, with the proof in

Appendix A.5.

Theorem 2 When agents have heterogeneous beliefs, group-K agents’ stochastic dis-

count factor is

Mt =

(
N∑

i=1

ωi
0

ηi
t

ηi
0

)
e−βt W0

Wt

=

(
N∑

i=1

ωi
0

ηi
t

ηi
0

)
MH

t .

At time t, the price of a financial security, which provides a single payoff XT at time

T , is given by

Pt = EK
t

[
MT

Mt

XT

]
=

N∑
i=1

ωi
tP

i
t ,

where

P i
t = Ei

t

[
MH

T

MH
t

XT

]

is the value of the security in a homogeneous economy, whereby only group-i agents are

present.

Theorem 2 shows that when agents have heterogeneous beliefs, group-K agents’

stochastic discount factor is adjusted by a factor of
∑N

i=1 ωi
0

ηi
t

ηi
0
, relative to MH

t . In

this adjustment,
ηi

t

ηi
0

represents the probability ratio between agents in groups i and
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K, while ωi
0 represents the initial wealth share of group i. Thus, the net adjustment

in the stochastic discount factor is the wealth weighted average of the probability

disagreements between agents in group K and other groups.

Theorem 2 further shows that the price of a financial security is the wealth weighted

average of each group’s valuation of the security in a corresponding homogeneous econ-

omy. This result allows us to decompose the security price in a heterogeneous economy

into prices in homogeneous economies.

3 Bond Yields

In this section, we first derive a bond pricing formula in homogeneous economies, and

then combine the formula with Theorem 2 to analyze the effects of heterogeneous beliefs

on bond yields.

3.1 Bond pricing with homogeneous agents

We consider a homogeneous economy with only group-i agents. These agents have

access to the risky technology. They can also trade the risk free short rate and security

f . All agents share the same belief about the unobservable factor lt. The mean and

variance of their belief are given in equations (4) and (6). We derive bond prices in

this economy by using the stochastic discount factor in equation (15). An analytical

formula is given in the following proposition, with the proof in Appendix A.6.

Proposition 2 In a homogeneous economy with only group-i agents, the price of a

zero coupon bond at time t with a maturity τ is determined by

BH(ft, l̂
i
t, τ, γt) = exp

[
−a(τ)ft − b(τ)l̂it−c(τ, γt)

]

where

a(τ) =
1

λf

(
1− e−λf τ

)
, (16)

b(τ) =
1

λl

(
1− e−λlτ

)
+

1

λf − λl

(
e−λf τ − e−λlτ

)
, (17)
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and c (τ, γt) satisfies the following partial differential equation:

∂c (τ, γt)

∂τ
− λl l̄b(τ) +

1

2
σ2

fa
2(τ) +

λ2
fγ

2
t

2σ2
f

b2(τ) + λfγta(τ)b(τ) + σ2
I

+

(
λ2

f

σ2
f

γ2
t + 2λlγt − σ2

l

)
∂c (τ, γt)

∂γt

= 0.

If the agents’ belief variance γt is equal to its stationary level γ̄, we have an explicit

solution for c :

c(τ, γ̄) =

τ∫

0

[
λl l̄b(s)− 1

2
σ2

fa
2(s)− λ2

f γ̄
2

2σ2
f

b2(s)− λf γ̄a(s)b(s)− σ2
I

]
ds.

Proposition 2 implies that the yield of a τ -year bond in a homogeneous economy

Y H(ft, l̂
i
t, τ, γt) = −1

τ
log

(
BH

)
=

a(τ)

τ
ft +

b(τ)

τ
l̂it+

c(τ, γt)

τ

is a linear function of two fundamental factors: ft and l̂it. This specific form belongs

to the general affine structure proposed by Duffie and Kan (1996). Balduzzi, Das and

Foresi (1998) have also analyzed a two-factor term structure model of interest rates,

similar to the one above. However, they neither derive investors’ learning processes,

nor address the effects caused by heterogeneous beliefs.

The loadings of the bond yield on the two factors are plotted in Figure 1. The load-

ing on ft, a(τ)/τ , has a value of 1 when the bond maturity τ is zero and monotonically

decreases to zero as the maturity increases, suggesting that short-term yields are more

exposed to fluctuations in ft. The intuition of this pattern works as follows. ft is the

expected instantaneous return from the risky technology, which is a close substitute of

investing in short-term bonds. As a result, the fluctuation in ft has a greater impact

on short-term yields. As bond maturity increases, the impact of ft becomes smaller;

on the other hand, agents’ expectation of future returns from the risky technology

becomes more important.

Agents’ belief about lt determines their expectation of future returns from the risky

technology, because lt is the level, to which ft mean-reverts. The loading of the bond

yield on l̂it, b(τ)/τ , has a humped shape. As the bond maturity increases from 0 to an
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intermediate value, b(τ)/τ increases from 0 to a positive value less than 1, suggesting

that agents’ expectation has a greater impact on longer term yields. As the bond

maturity increases further, b(τ)/τ drops. This is caused by the mean reversion of lt,

which makes any shock to lt eventually die out. This force makes the yields of very long-

term bonds have low exposure to agents’ belief about lt. If lt has no mean-reversion

(λl = 0 ), the factor loading b(τ)/τ is a monotonically increasing function of bond

maturity.

It is important to note that the bond price is a convex function of agents’ belief:

BH(ft, l̂
i
t, τ, γt) ∼ e−b(τ)l̂it .

This property is a natural outcome of the fact that bond prices are a convex function

of bond yields which are determined by agents’ expectation of future interest rates.

As will become clear in the next subsection, this price convexity implies that belief

dispersion is an important determinant for bond yields in a heterogenous economy.

3.2 Effects of belief dispersion

We can now combine Proposition 2 with Theorem 2 to analyze the effects of hetero-

geneous beliefs on bond yields. Consider a heterogeneous economy with N groups. At

time t, their beliefs of lt are l̂1t , · · · , l̂Nt , and their wealth shares in the economy are

ω1
t , · · · , ωN

t . Then, the price of a τ -year zero-coupon bond is

Bt =
N∑

i=1

ωi
tB

H(ft, l̂
i
t, τ, γt), (18)

where BH(ft, l̂
i
t, τ, γt) is given in Proposition 2. The bond price in the heterogeneous

economy is the wealth weighted average of each group’s bond valuation in a homoge-

neous economy. The implied bond yield is

Yt(τ) = −1

τ
log (Bt)

=
a(τ)

τ
ft+

c(τ, γt)

τ
− 1

τ
log

[
N∑

i=1

ωi
te
−b(τ)l̂it

]
.
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Note that Yt is not a linear function of agents’ beliefs l̂1t , · · · , l̂Nt , that is, the bond yield

in the heterogeneous economy has a non-affine structure. Proposition 3 characterizes

the impact of belief dispersion on bond yields, with the proof in Appendix A.7.

Proposition 3 Bond prices in a heterogeneous economy are higher than those in a

homogeneous economy whereby all agents hold an identical belief equal to the wealth

weighted average belief in the heterogeneous economy.

Proposition 3 shows that bond prices in a heterogeneous economy are not the same

as those in a homogeneous economy where all agents hold the average belief of the het-

erogeneous economy. The failure of the homogeneous economy to capture bond prices

in the heterogeneous economy lies in the aggregation of non-linear bond valuations

across agents.7 The intuition can be illustrated by the following example. Suppose

there are two groups, groups 1 and 2, with an equal wealth at time t, and with a belief

of l1 and l2, respectively. Figure 2 shows that the bond price would be Bi (i = 1, 2) if

the economy is populated by group-i agents only. Equation (18) implies that the bond

price in this heterogeneous economy is B, the average of B1 and B2. If all the investors

have the average belief l∗ = (l1 + l2)/2, the bond price would be B∗. As noticed before,

the bond pricing function BH(ft, l̂
i
t, τ, γt) is convex with respect to l̂it. Hence, Jensen’s

inequality implies that averaging bond valuations across groups (B) is higher than B∗,

the bond price that would prevail if all agents have the average belief. That is, belief

dispersion increases bond prices and reduces bond yields.

It is also interesting to note that the impact of belief dispersion is small for short

term bonds and the impact disappears for short rate, i.e. when the maturity approaches

zero. The reason is as follows. As the bond maturity τ goes down to zero, b(τ) converges

to zero, as can be seen in equation (17). This implies that the bond price convexity is

small for short-term bonds and disappears when bond maturity approaches zero.

Belief dispersion not only affects the level of bond yields, but also increases their

conditional volatility. We show this result in the following proposition, and provide

7Since markets are complete in the heterogeneous economy, one can construct a representative-
agent to compute the equilibrium (Basak, 2000). However, the representative agent does not have the
average belief, instead she possesses stochastic weights that incorporate each agent’s belief.
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the proof in Appendix A.8.

Proposition 4 The conditional volatility of the bond yield Yt(τ) in a heterogeneous

economy is higher than the corresponding one in a homogeneous economy, whereby all

agents hold an identical belief.

Proposition 4 shows that when agents differ in their beliefs, bond yields become

more volatile. This effect arises from an amplification mechanism generated by agents’

relative-wealth fluctuation. Loosely speaking, bond yields are determined by agents’

average belief about future short rates weighted by their wealth. Since agents who

are more optimistic about future short rates bet on the rise of interest rates against

those pessimistic agents (Theorem 1), any positive news about future short rates would

cause wealth to flow from pessimistic agents to optimistic agents, making optimistic

beliefs carry greater weights in bond yields. This relative-wealth fluctuation amplifies

the effect of the initial news on bond yields.

3.3 An example

To further characterize the effects of belief dispersion, we derive bond yields and yield

volatility in a specific case with a continuum of groups. Then, we illustrate the effects

of heterogeneous beliefs for various model parameters. We assume that at time t,

each group’s belief can take a value in the range [l∗ −∆, l∗ + ∆] and that all groups

have the same belief variance of γt. In addition, the wealth share across groups has a

uniform distribution over the feasible range of beliefs. Note that this uniform wealth

distribution can only hold for this instant, and would change to another distribution

as wealth flows across groups with trading gains and losses. The following proposition

gives analytical formulas for bond prices, bond yields and yield volatility in this case,

with the proof in Appendix A.9.

Proposition 5 The price of a τ -year zero-coupon bond is

Bt = BH(ft, l
∗, τ, γt)K [b(τ)∆] ,
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where K (x) = ex−e−x

2x
is an increasing function. The bond yield is

Yt = Y H
t − 1

τ
log

{
exp [b(τ)∆]− exp [−b(τ)∆]

2b(τ)∆

}
, (19)

where Y H
t = Y H(ft, l

∗, τ, γt) is the bond yield in a homogeneous economy whereby all

agents hold the average belief l∗. The conditional volatility of the bond yield is

ν(τ) =
a(τ)σ2

f + λfb(τ)γt + λfξ

τσf

, (20)

where

ξ =
1

b(τ)
− eb(τ)∆ + e−b(τ)∆

eb(τ)∆ − e−b(τ)∆
∆

increases with ∆.

To illustrate the magnitudes and some basic properties of the belief dispersion

effects, we choose the following set of parameters. First, we set the mean-reversion

parameters as

λf = 1, λl = 0.02.

These numbers imply that it takes ln(2)/λf = 0.69 year for the difference between

the short rate and its long-run expected value to converge by half, while it takes

ln(2)/λl = 34.66 years for the effect of a shock on the long-run expected value to die

out by half. The length of these periods are consistent with the finding of Fama (2006)

that the long-run expected value of short rate varies over time and is highly persistent.

From equation (19), these two mean-reversion parameters, together with the magnitude

of belief dispersion, determine the effect of belief dispersion on bond yields. We will

vary these parameters around the chosen values to examine their impact.

The other parameters affect the benchmark bond yields in the homogeneous econ-

omy, but not the impact of belief dispersion on bond yields. There are three sources

of random shocks in our model, shocks to the return of the risky technology, to its

instantaneous expected return, and to the long-run mean of the expected return. We

choose the following volatility parameters for these shocks:

σI = 0.03, σf = 0.03, σl = 0.01.
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We choose γt as its stationary level γ̄, and the remaining parameters as

ft = 0.03, l∗ = 0.06, l̄ = 0.08.

Figure 3 illustrates the yield curve and the conditional volatility curve for four dif-

ferent values of ∆, the half distance between the most optimistic and pessimistic beliefs.

When there is no belief dispersion (∆ = 0), the yield curve, which is Y H(ft, l̂
∗, τ, γt)

of homogeneous economies, has a typical shape– it increases from 3% to 5.5% for ma-

turities between 0 and 10 years, and then decreases slightly from 10 years to longer

maturities. When the belief dispersion increases (∆ takes values of 2%, 4% and 6%),

the yield curve, as Yt(τ) given in equation (19), shifts lower. The reduction in bond

yields is small for maturities shorter than 5 years. This is because that the price con-

vexity of short-term bonds with respect to bond yields is small. The impact of belief

dispersion becomes much more dramatic for longer maturities. When ∆ = 6%, the

reduction in bond yields could be larger than 80 basis points for maturities longer than

20 years.

When there is no belief dispersion (∆ = 0), the conditional volatility curve, which

we denote as νH(τ), decreases from 3% to 1% as bond maturity increases from 0 to

30 years. The downward slope is generated by the mean reversion of the fundamental

factors, ft and lt. Belief dispersion always raises the yield volatility, which is given as

ν(τ) in equation (20), and this effect is substantial. When ∆ = 6%, the yield volatility

increases from 3% to 4.5% as bond maturity goes from 0 to around 7 years, and then

gradually decreases to 3.5% as bond maturity increases up to 30 years.

Figure 4 shows the impact of λl, the mean reversion parameter of the long run mean

of the expected instantaneous return of the risky technology, on the belief dispersion

effects on 20-year bond yield and its conditional volatility. For each of the three values

of belief dispersion (∆ = 2%, 4%, 6%), the yield reduction and the volatility increase

caused by belief dispersion decrease monotonically with λl. This is because that as λl

becomes larger, lt reverts faster to its long-run mean. As a result, the belief dispersion

among agents is shorter lived and therefore has weaker effects on bond yields and yield

volatility.
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Figure 5 shows the impact of λf , the mean reversion parameter of the expected

instantaneous return of the risky technology, on the belief dispersion effects on 20-

year bond yield and its conditional volatility. Contrary to the impact of λl, the yield

reduction and the volatility increase caused by belief dispersion increase monotonically

with λf . This is because that as λf becomes larger, ft reverts faster to lt. As a result,

agents’ disagreement about lt becomes more important for the market dynamics and

therefore has stronger effects on bond yields and yield volatility.

3.4 Discussion

The existence of heterogeneous beliefs is evident in the data. Survey data provide a

direct method for examining agents’ beliefs. Mankiw, Reis and Wolfers (2004) give

a thorough analysis of agents’ disagreement about inflation expectations in several

surveys. In Figure 6, we show time-series plots of belief dispersion from their paper.

It directly reveals several patterns. There is substantial belief dispersion among both

professionals and the general public, and the belief dispersion in each of the surveys

varies dramatically over time. The interquartile range of inflation expectation among

the general public, as shown in the Michigan Survey, fluctuates from as high as 10%

in the early 1980s to around 4% in the early 2000s, while the interquartile range

among professionals, as shown in the Livingston Survey and the Survey of Professional

Forecasters, varies from above 2% to 0.5% in the same period. Although the dispersion

among the general public is higher than that among professionals, their time-series

patterns are similar. Kurz (2001) finds substantial and persistent forecast dispersion

of future GDP growth in the Blue Chip Economic Indicators survey of major U.S.

corporations and financial institutions. The 5% to 95% forecast range in his sample

varies around 2% per annum from 1990 to 2001. Furthermore, Welch (2000) shows

that academic financial economists’ forecasts of 30-year equity premium range from

2% to 13%.8

8Heterogeneous beliefs could also be extracted from financial market data. As shown in our model,
heterogeneous beliefs lead to trading among market participants in bonds and financial derivatives.
As a result, one can estimate the degree of belief dispersion from the observed trading volume and
price patterns. While market data are more reliable than surveys, the extraction of beliefs relies on
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The substantial amount of belief dispersion displayed in the various survey data

invites future studies of the impacts of belief dispersion on other economic variables

such as bond yields and yield volatility. Our model suggests that if the belief dispersion

among agents unexpectedly increases at one instant, bond yields would decrease and

yield volatility would increase. Furthermore, these effects are stronger for bonds with

longer maturities. Thus, over time, we expect yields of risk-free long-term bonds to

move negatively with agents’ belief dispersion about future inflation or GDP growth.

We also expect the conditional volatility of the yields to move positively with the belief

dispersion.

Belief dispersion is often taken for granted as a symptom of greater uncertainty.

However, these are two distinct concepts. Belief dispersion captures the interpersonal

variation in expectations, while uncertainty represents the intrapersonal variation.

Zarnowitz and Lambros (1987) clarify this conceptual difference, and empirically exam-

ine it using survey data from the Survey of Professional Forecasters. Since this survey

also asks respondents to supplement their point estimates with estimates of the proba-

bility that GDP and the implicit price deflator will fall into various ranges, Zarnowitz

and Lambros measure uncertainty from these probability estimates. By comparing the

uncertainty measure with measures of interpersonal forecast dispersion, they only find

weak evidence that uncertainty and belief dispersion are positively correlated.

Several empirical studies, e.g., Levi and Makin (1979), Bomberger and Frazer

(1981), and Zarnowitz and Lambros (1987), have examined the relationship between

dispersion of inflation forecasts in survey data and interest rates. Most of these stud-

ies focus on short rates instead of bond yields (or long rates), with the exception of

Bomberger and Frazer (1981). Consistent with our model, this study finds that 3 to

5 year rate and 10 year rate are both negatively related to the dispersion in inflation

forecasts. Furthermore, the existing studies typically do not differentiate effects caused

by belief dispersion from those caused by uncertainty. Our model predicts the exis-

tence of belief dispersion effects, even after controlling for uncertainty. The task of

identifying the belief dispersion effects is left for future empirical studies.

specific model assumptions and is subject to potential mis-specifications.
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Our model also has potential implications for monetary policies. A monetary au-

thority usually only directly controls the overnight interest rate. For the overnight

interest rate to affect long term interest rates and other prices, the links rely almost

entirely on market expectations for the future course of short-term rates. Many mone-

tary economists have pointed out the importance of managing market expectations in

monetary policies, e.g., Blinder (1998), Bernanke (2004), Svensson (2004), and Wood-

ford (2005). Consistent with this view, our model shows that dispersion in market

expectations can directly affect long-term interest rates and increase their volatility.

If the objective of monetary authorities is to stabilize prices, our model suggests that

they should pay close attention to dispersion in market expectations, and reduce this

dispersion at their capacity. This argument thus supports the establishment of a re-

liable communication channel between the monetary authority and the market. As

observed by Bernanke (2004), this practice would increase policy transparency and

achieve a closer alignment between market expectations and the policymakers’ views.

Our model points out an additional dimension of consideration– the reduction in dis-

persion of market expectations and the subsequent speculative trading.

4 Conclusion

In this paper, we provide an equilibrium model to analyze the effects of agents’ belief

dispersion on bond yields. Our model shows that the price of a bond is the wealth

weighted average of bond prices in homogeneous economies, in each of which only one

type of agent is present. Since bond prices in homogeneous economies are convex func-

tions of agents’ beliefs about future economic growth rates, belief dispersion increases

bond prices and decreases bond yields. This effect is stronger for longer maturity bonds.

Furthermore, the relative-wealth fluctuation caused by agents’ speculative trading am-

plifies shocks to the economy and therefore increases yield volatility. Taken together,

these results highlight the importance of incorporating belief dispersion into economic

analysis of bond yields.
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A Appendix

A.1 Proof of Lemma 1

According to the learning process described in equation (4), the belief dynamics of

groups i and K are

dl̂it = −λl(l̂
i
t − l̄)dt +

λfγt

σ2
f

[
dft + λf (ft − l̂it)dt

]
,

dl̂Kt = −λl(l̂
K
t − l̄)dt +

λfγt

σ2
f

[
dft + λf (ft − l̂Kt )dt

]
.

Taking the difference between these equations, we obtain

dgi
t = −

(
λl +

λ2
f

σ2
f

γt

)
gi

tdt.

A.2 Proof of Theorem 1

The market clearing conditions require that the aggregate investment to the risky

technology is equal to the total wealth in the economy:

N∑
i=1

θi
I(t)W

i
t = Wt.

By substituting agents’ investment strategy in equation (10) and dividing both sides

by Wt, we obtain that

ft − rt

σ2
I

N∑
i=1

ωi
t = 1.

Since
∑N

i=1 ωi
t = 1, we have that rt = ft − σ2

I .

The market clearing conditions also require that the aggregate investment to the

security f is zero:
N∑

i=1

θi
f (t)W

i
t = 0.

By substituting agents’ investment strategy in equation (10) and dividing both sides

by Wt, we obtain that

N∑
i=1

ωi
t

µ̂i
f − rt

σ2
f

=
N∑

i=1

ωi
t

µf (t)− λf (ft − l̂it)− rt

σ2
f

= 0.
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Thus,

µf (t) = rt +
N∑

i=1

ωi
tλf (ft − l̂it).

Since the risky technology is the only storage tool in the economy and every agent

consumes a fraction β of her wealth, the aggregate wealth fluctuates according to

dWt

Wt

= dIt/It − βdt = (ft − β) dt + σIdZI(t).

According to equation (10), agents in group i put
µ̂i

f−rt

σ2
f

fraction of their wealth in

security f. Using equations (8) and (12), we can expand the dollar amount of their

position as

µ̂i
f − rt

σ2
f

W i
t =

λf

σ2
f

[
l̂it−

N∑
j=1

ωj
t l̂

j
t

]
W i

t .

A.3 Proof of Proposition 1

By substituting agents’ consumption and investment strategies into equation (9), we

obtain the following wealth process for group-i agents:

dW i
t

W i
t

=


rt − β +

(
ft − rt

σI

)2

+

(
µ̂i

f − rt

σf

)2

 dt

+
ft − rt

σI

dZI(t) +
µ̂i

f − rt

σf

dẐi
f (t). (21)

We obtain group-K agents’ wealth dynamics from equation (21):

dWK
t

WK
t

=


rt − β +

(
ft − rt

σI

)2

+

(
µ̂K

f − rt

σf

)2

 dt

+
ft − rt

σI

dZI(t) +
µ̂K

f − rt

σf

dẐK
f (t). (22)

According to equation (5),

dẐi
f (t)− dẐK

f (t) = −λf

σf

(
l̂it − l̂Kt

)
dt = −λf

σf

gi
tdt.
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By substituting dẐi
f (t) above into equation (21), we obtain

dW i
t

W i
t

=


rt − β +

(
ft − rt

σI

)2

+

(
µ̂i

f − rt

σf

)2

 dt

−λf

σ2
f

gi
t

(
µ̂i

f − rt

)
dt +

ft − rt

σI

dZI(t) +
µ̂i

f − rt

σf

dẐK
f (t). (23)

Under group-K agents’ probability measure, applying Ito’s lemma to ηi
t we obtain

dηi
t

ηi
t

=
dW i

t

W i
t

− dWK
t

WK
t

+

(
dWK

t

WK
t

)2

−
(

dWK
t

WK
t

)(
dW i

t

W i
t

)
.

By substituting
dW i

t

W i
t

and
dW K

t

W K
t

in equations (22) and (23) into the equation above and

by using an additional fact that

µ̂i
f − µ̂K

f = λfg
i
t,

we obtain that
dηi

t

ηi
t

=
λf

σf

gi
tdẐK

f (t).

A.4 Proof of Lemma 2

For any random variable XT with Ei[XT ] < ∞, we can define YT =
W i

T

W i
t
XT . Suppose

there is a financial security which is a claim to the cash flow YT . Then investor i’s

valuation for this security is

Ei
t

[
u′(ci

T )

u′(ci
T )

YT

]
= Ei

t

[
ci
t

ci
T

YT

]
= Ei

t

[
W i

t

W i
T

YT

]
,

where the second equality follows from his consumption rule ci
t = βW i

t . Similarly,

investor K’s valuation for this security is EK
t

[
W K

t

W K
T

YT

]
. In the absence of arbitrage,

investor i and K should have the same valuation, that is

Ei
t

[
W i

t

W i
T

YT

]
= EK

t

[
WK

t

WK
T

YT

]
.

Substituting the expression of YT into the above equation, we obtain

Ei
t [XT ] = EK

t

[
ηi

T

ηi
t

XT

]
.
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A.5 Proof of Theorem 2

We can derive the stochastic discount factor from group-K agents’ marginal utility.

Group-K agents’ consumption is

cK
t = βWK

t =
ωK

t∑N
i=1 ωi

t

βWt =
βWt∑N
i=1 ηi

t

.

The implied stochastic discount factor is

Mt = e−βt u
′(cK

t )

u′(cK
0 )

= e−βt W
K
0

WK
t

= e−βt W0

Wt

∑N
i=1 ηi

t∑N
i=1 ηi

0

= e−βt W0

Wt

N∑
i=1

(
ηi

0∑N
i=1 ηi

0

ηi
t

ηi
0

)

=

(
N∑

i=1

ωi
0

ηi
t

ηi
0

)
e−βt W0

Wt

.

Direct algebra substitutions provide that

MT

Mt

=

(
N∑

i=1

ωi
t

ηi
T

ηi
t

)
e−β(T−t) Wt

WT

.

Thus, at time t, the price of a financial security that pays off XT at time T is

Pt = EK
t

[
MT

Mt

XT

]

= EK
t

[(
N∑

i=1

ωi
t

ηi
T

ηi
t

)
e−β(T−t) Wt

WT

XT

]

=
N∑

i=1

ωi
tE

K
t

[
ηi

T

ηi
t

e−β(T−t) Wt

WT

XT

]
.

Since
ηi

T

ηi
t

is the Randon-Nikodyn derivative of group-i agents’ probability measure with

respect to the measure of group-K agents (Lemma 2),

EK
t

[
ηi

T

ηi
t

e−β(T−t) Wt

WT

XT

]
= Ei

t

[
MT

Mt

XT

]
.

Thus,

Pt =
N∑

i=1

ωi
tP

i
t ,
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where

P i
t = Ei

t

[
MT

Mt

XT

]

is the price of the security in a homogeneous economy where only group-i agents are

present.

A.6 Proof of Proposition 2

When only group-i agents are present in the economy, their bond valuation is given by

Bi = Ei
t

[
MH

T

MH
t

]
= Ei

t

[
e−β(T−t) Wt

WT

]
.

The bond price must be a function of the following variables:

Bi = BH
(
ft, l̂

i
t, τ, γt

)
,

where ft and l̂it are random factors, while τ and γt are deterministic. Applying Ito’s

lemma provides

dBH

BH
=

[
−λf (ft − l̂it)

BH
f

BH
− λl(l̂

i
t − l̄)

BH
l

BH
+

1

2
σ2

f

BH
ff

BH
+

1

2

λ2
fγ

2
t

σ2
f

BH
ll

BH
+ λfγ

BH
fl

BH

]
dt

+

[
σf

BH
f

BH
+

λfγt

σf

BH
l

BH

]
dZ

′
f (t) +

[
dγt

dt

BH
γ

BH
− BH

τ

BH

]
dt

The bond price has to satisfy the following relationship with the stochastic discount

factor:

Ei
t

(
dBH

BH

)
+ Ei

t

(
dMH

MH

)
+ Ei

t

(
dBH

BH
.
dMH

MH

)
= 0.

This is equivalent to the following differential equation:

−λf (ft−l̂it)
BH

f

BH
−λl(l̂

i
t−l̄)

BH
l

BH
+

1

2
σ2

f

BH
ff

BH
+

λ2
fγ

2
t

2σ2
f

BH
ll

BH
+λfγt

BH
fl

BH
−ft+σ2

I−
BH

τ

BH
+

dγt

dt

BH
γ

BH
= 0.

(24)

We conjecture the following solution

BH
(
ft, l̂

i
t,τ, γt

)
= e−a(τ)ft−b(τ)l̂it−c(τ,γt).
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By substituting the conjectured solution and dγt

dt
in equation (6) into the differential

equation in (24), we obtain

[a′(τ) + λfa(τ)− 1] ft + [b′(τ)− λfa(τ) + λlb(τ)] l̂it

+

[
∂c (τ, γt)

∂τ
+

(
λ2

f

σ2
f

γ2
t + 2λlγt − σ2

l

)
∂c (τ, γt)

∂γt

−λl l̄b(τ) +
1

2
σ2

fa
2(τ) +

λ2
fγ

2
t

2σ2
f

b2(τ) + λfγta(τ)b(τ) + σ2
I

]
= 0

For the equation to hold, each of the square bracket terms must be zero.

Thus, a(τ) and b(τ) satisfy the following differential equations

a′(τ) + λfa(τ)− 1 = 0,

b′(τ)− λfa(τ) + λlb(τ) = 0,

subject to the boundary conditions

a(0) = b(0) = 0.

Solving these equations provides

a(τ) =
1

λf

(
1− e−λf τ

)
,

b(τ) =
1

λl

(
1− e−λlτ

)
+

1

λf − λl

(
e−λf τ − e−λlτ

)
.

c (τ, γt) satisfy the following partial differential equation

∂c (τ, γt)

∂τ
+

(
λ2

f

σ2
f

γ2
t + 2λlγt − σ2

l

)
∂c (τ, γt)

∂γt

−λl l̄b(τ) +
1

2
σ2

fa
2(τ) +

λ2
fγ

2
t

2σ2
f

b2(τ) + λfγta(τ)b(τ) + σ2
I = 0

subject to the boundary condition

∀γ > 0, c(0, γ) = 0.
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If the variance of agents’ belief is equal to its stationary level γt = γ̄. This implies
dγt

dt
= 0. Hence the above partial differential equation collapses into the following

ordinary differential equation

dc (τ, γ̄)

dτ
= λl l̄b(τ)− 1

2
σ2

fa
2(τ)− λ2

f γ̄
2

2σ2
f

b2(τ)− λf γ̄a(τ)b(τ)− σ2
I ,

subject to c (τ, γ̄) = 0. This equation has the following explicit solution:

c (τ, γ̄) =

τ∫

0

[
λl l̄b(s)− 1

2
σ2

fa
2(s)− λ2

f γ̄
2

2σ2
f

b2(s)− λf γ̄a(s)b(s)− σ2
I

]
ds.

A.7 Proof of Proposition 3

Define l∗t as the wealth-weighted belief in the heterogeneous economy:

l∗t =
N∑

i=1

ωi
t l̂it.

Since each group’s wealth share ωi
t is non-negative and all the wealth shares sum up

to one, mathematically we can treat the wealth share distribution just as a probability

distribution. Then, the convexity of an exponential function implies that

N∑
i=1

ωi
t exp

[
−b(τ)l̂it

]
≥ exp

[
−b(τ)

N∑
i=1

ωi
t l̂

i
t

]
= exp [−b(τ)l∗t ] .

The inequality holds strictly if l̂1t , · · · , l̂Nt are not equal to each other. Using this

inequality, the price of a τ -year bond in a heterogeneous economy satisfies

Bt =
N∑

i=1

ωi
t exp

[
−a(τ)ft − b(τ)l̂it−c(τ, γt)

]

= exp [−a(τ)ft−c(τ, γt)]
N∑

i=1

ωi
t exp

[
−b(τ)l̂it

]

≥ exp [−a(τ)ft−c(τ, γt)] exp [−b(τ)l∗t ] = BH (ft, l
∗
t ,τ, γt) .

The expression in the last line above is exactly the bond price in a homogeneous

economy whereby all agents hold the average belief l∗ of the heterogeneous economy.

30



A.8 Proof of Proposition 4

According to Theorem 2, the equilibrium bond price is

Bt =
N∑

j=1

ηj
t∑N

i=1 ηi
t

BH
(
ft, l̂

j
t , τ, γt

)
.

The bond yield

Yt(τ) = −1

τ
log Bt.

To compute the conditional volatility of the bond yield, we examine the diffusion terms

of log Bt by applying Ito’s lemma. To save space, we skip all the drift terms in the

equations below.

d log Bt ∝ 1

Bt

dBt

∝
N∑

j=1

BH
(
ft, l̂

j
t , τ, γt

)

Bt

d
ηj

t∑N
i=1 ηi

t

+
1

Bt

N∑
j=1

ηj
t∑N

i=1 ηi
t

dBH
(
ft, l̂

j
t , τ, γt

)

∝
N∑

j=1

BH
(
ft, l̂

j
t , τ, γt

)

Bt

ωj
t

[
dηj

t

ηj
t

−
N∑

i=1

ωi
t

dηi
t

ηi
t

− a(τ)dft − b(τ)dl̂jt

]

By substituting
dηj

t

ηj
t

, dft, and dl̂jt into the expression above, we obtain

d log Bt ∝
N∑

j=1

BH
(
ft, l̂

j
t , τ, γt

)

Bt

ωj
t

λf

σf

[
l̂jt −

N∑
i=1

ωi
t l̂

i
t − a(τ)

σ2
f

λf

− b(τ)γt

]
dZ

1

f

We define

l∗t =
N∑

i=1

ωi
t l̂it (25)

as the wealth weighted average belief of agents, and

l∗∗t =
N∑

i=1

BH
(
ft, l̂

i
t, τ, γt

)

Bt

ωi
t l̂it. (26)

as the average belief weighted by different groups’ contribution to the bond price. By

using the fact that
∑N

j=1

BH(ft,l̂
j
t ,τ,γt)

Bt
ωj

t = 1. we obtain that

d log Bt ∝ λf

σf

[
l∗∗t − l∗t − a(τ)

σ2
f

λf

− b(τ)γt

]
dZ

1

f .

31



Thus, the conditional volatility of the bond yield Yt(τ) is

|a(τ)σ2
f + λfb(τ)γt + λf (l∗t − l∗∗t ) |

τσf

. (27)

If l∗t − l∗∗t ≥ 0, then the bond yield volatility increases with l∗t − l∗∗t .

Based on the definitions of l∗t and l∗∗t ,

l∗t−l∗∗t =
N∑

i=1

ωi
t l̂it


1−

BH
(
ft, l̂

i
t, τ, γt

)

Bt




=
1

Bt

N∑
i=1

ωi
t l̂it

[
Bt −BH

(
ft, l̂

i
t, τ, γt

)]

=
exp [−a(τ)ft−c(τ , γt)]

Bt

N∑
i=1

N∑
j=1

ωi
tω

j
t l̂it

[
e−b(τ)l̂jt − e−b(τ)l̂it

]
.

By symmetry, if we swap i and j in the summations of the previous equation, it should

remain the same:

l∗t−l∗∗t =
exp [−a(τ)ft−c(τ , γt)]

Bt

N∑
i=1

N∑
j=1

ωi
tω

j
t l̂jt

[
e−b(τ)l̂it − e−b(τ)l̂jt

]
.

Thus, by taking the average of the last two equations, we have

l∗t−l∗∗t =
exp [−a(τ)ft−c(τ , γt)]

2Bt

N∑
i=1

N∑
j=1

ωi
tω

j
t

(
l̂it − l̂jt

) [
e−b(τ)l̂jt − e−b(τ)l̂it

]
≥ 0.

The inequality above strictly holds if there is any disagreement among agents. Thus,

any belief dispersion among agents will cause l∗t−l∗∗t to be positive, therefore increasing

the bond yield volatility.

A.9 Proof of Proposition 5

The price of a τ -year bond is

Bt =
1

2∆

∫ l∗+∆

l∗−∆

exp [−a(τ)ft − b(τ)x−c(τ, γt)] dx.

After some algebra, we obtain

Bt = BH(ft, l
∗
t , τ, γt)K [b(τ)∆] ,
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where K (x) = ex−e−x

2x
. It is direct to verify that K (x) is an increasing function. Thus,

the bond price increases with ∆, the dispersion in agents’ beliefs. The bond yield is

Yt = −1

τ
log [Bt]

= Y H
t − 1

τ
log

{
exp [b(τ)∆]− exp [−b(τ)∆]

2b(τ)∆

}
.

To derive the conditional volatility of the bond yield, we need to compute the

agents’ average belief weighted by their wealth and by their contribution to the bond

price, as l∗t and l∗∗t in equations (25) and (26). It is direct to show that l∗t =l∗ and

l∗∗t =

∫ l∗+∆

l∗−∆

BH (ft, x, τ, γt)

Bt

x

2∆
dx

= l∗+
1

b(τ)
− eb(τ)∆ + e−b(τ) ∆

eb(τ)∆ − e−b(τ)∆
∆.

Thus,

l∗t − l∗∗t =
1

b(τ)
− eb(τ)∆ + e−b(τ)∆

eb(τ)∆ − e−b(τ)∆
∆.

By substituting l∗t − l∗∗t into equation (27), we obtain the conditional volatility of the

bond yield.
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Figure 1: The factor loadings of bond yields in homogeneous economies. a(τ)/τ is the
loading on ft, the expected instantaneous return of the risky technology, while b(τ)/τ
is the loading on l̂it, agents’ belief about the long-run mean of ft.
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Figure 2: An illustration of the belief dispersion effect on bond prices. This figure plots
bond pricing function BH(ft, l̂

i
t, τ, γt) against l̂it. There are two groups, groups 1 and

2, with an equal wealth at time t, and a belief of l̂1t = l1 and l̂2t = l2, respectively. Bi

(i = 1, 2) is the bond price that would prevail if the economy is populated by group-i
agents only. From equation (18), the bond price in this heterogeneous economy is B,
the average of B1 and B2. B∗ is the bond price that would prevail if all the agents
have the average belief l∗ = (l1 + l2)/2.
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Figure 3: The effects of belief dispersion on yield curve and conditional volatility curve.
This figure is based on the following model parameters: λf = 1, λl = 0.02, σI =
0.03, σf = 0.03, σl = 0.01, ft = 0.03, l∗ = 0.06, l̄ = 0.08, and γt = γ̄. The top
panel shows the bond yields, Y (τ) in equation (19), while the bottom panel shows
the conditional yield volatility, ν(τ) in equation (20), with respect to different bond
maturities between 0 and 30 years, for four different values of ∆, the half distance
between the most optimistic and pessimistic beliefs.
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Figure 4: λl and the effects of belief dispersion on bond yields and yield volatility. λl

is the mean reversion parameter of the long run mean of the expected instantaneous
return of the risky technology. This figure is based on the following model parameters:
λf = 1, σI = 0.03, σf = 0.03, σl = 0.01, ft = 0.03, l∗ = 0.06, l̄ = 0.08, and
γt = γ̄. The top panel shows the impact of belief dispersion on 20-year bond yield,
Y (20) − Y H(20), while the bottom panel shows the impact of belief dispersion on
conditional volatility of the yield, ν(20)− νH(20), with respect to different values of λl

between 0 and 0.1, for three different values of ∆, the half distance between the most
optimistic and pessimistic beliefs.
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Figure 5: λf and the effects of belief dispersion on bond yields and yield volatility.
λf is the mean reversion parameter of the expected instantaneous return of the risky
technology. This figure is based on the following model parameters: λl = 0.02, σI =
0.03, σf = 0.03, σl = 0.01, ft = 0.03, l∗ = 0.06, l̄ = 0.08, and γt = γ̄. The top panel
shows the impact of belief dispersion on 20-year bond yield, Y (20) − Y H(20), while
the bottom panel shows the impact of belief dispersion on conditional volatility of the
yield, ν(20)− νH(20), with respect to different values of λf between 0 and 2, for three
different values of ∆, the half distance between the most optimistic and pessimistic
beliefs.
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Figure 6: Belief dispersion in surveys of inflation expectations. This figure is extracted
from Figure 3 of Mankiw, Reis and Wolfer (2004). The Michigan Survey surveys a cross-
section of the general public of their expected price changes over the next 12 months.
The Livingston Survey covers economists working in industry of their expectation of
the Consumer Price Index over this quarter, in 2 quarters and in 4 quarters. The
Survey of Professional Forecasters covers market economists of their expectations of
the CPI level in 6 quarters.
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