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Is Noise Trading Cancelled Out by Aggregation?

Abstract

Conventional wisdom suggests that investors’ independent biases would cancel out each

other and have little impact on the equilibrium at the aggregate level. In contrast to this

intuitive argument, this paper analyzes models with biased investors and finds that biases

often have a significant impact on the equilibrium even if the biases are independent across

investors. First, biases decrease the expected stock return if investors’ demand function for

the stock is convex in the biases, and increase the expected stock return if the demand function

is concave. This also provides various novel predictions on the relation between differences

of opinion and cross-sectional stock returns. Second, biases may have a significant impact

on the equilibrium due to the fluctuation of wealth distribution. In particular, this implies

mean reversion in stock returns. An initial run-up of stock price makes optimistic investors

richer, which then pushes the stock price up and leads to lower future returns. Similarly, an

initial drop of stock price leads to higher future returns.
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1 Introduction

While it is almost beyond debate that individuals have biases, there is less consensus on

whether the biases have a significant impact on the equilibrium at the aggregate level. One

conventional argument suggests that if biases are independent across investors, they generally

should not have a large impact on the equilibrium since they would cancel out each other.

While the existing behavioral finance literature has emphasized that individual biases tend

to be correlated and so cannot be cancelled out by aggregation (see, e.g., Shleifer (2000)),

this paper directly examines this aggregation argument by analyzing whether independent

biases have a large impact on the equilibrium.

In contrast to this conventional aggregation argument, the findings suggest that individ-

ual biases often have a significant impact on the equilibrium even if they are independent

across investors. To understand the intuition behind this result, let’s first recapitulate the

conventional aggregation argument. Suppose an unbiased investor’s demand for a stock is D,

which presumably is derived from utility maximization and depends on the price of the stock

and other parameters. There are N biased investors, and investor i’s demand is Di = D + ǫi,

where ǫi is a random draw from ǫ̃, which is a random variable with a mean of 0. If ǫ1, ǫ2,...,ǫN

are independent and N is large, then the aggregate demand,
∑N

i=1 Di is approximately N×D,

which is the aggregate demand in the case without biases. As a result, the biases have little

impact on the equilibrium stock price.

There are two important cases where this argument fails. First, the argument implicitly

assumes that the bias affects one’s demand in a linear way, i.e. Di is a linear function of ǫi. If,

for example, investors’ demand is a convex function of their biases, then the biases increase

the aggregate demand and so increase the stock price, even if the biases are independent

across investors. Similarly, biases decrease the stock price if the demand function is concave

in the bias. This is analogous to Jensen’s inequality: if x is a random variable and f is a convex

function, then E[f(x)] > f [E(x)]; if f is a concave function, then E[f(x)] < f [E(x)]. The

economic intuition is illustrated in the following example. Typically, an investor’s demand

for the stock is a decreasing and convex function of stock return volatility σ: D(σ) (see, e.g.,

Liu (2005)). Suppose investor i is biased about σ, that is, investor i’s perceived volatility is

σ + ǫi. Then his demand for the stock is D(σ + ǫi). Intuitively, an investor invests less in the

stock market if he overestimates the risk, i.e., ǫi > 0. Similarly, an investor invests more in
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the stock market if he underestimates the risk, i.e., ǫi < 0. Note that D is a convex function

of ǫi. This implies, as illustrated in Figure 1, that the increase of stock holding induced

by underestimation outweighs the decrease of stock holding induced by the same amount of

overestimation. As a result, biases increase the aggregate demand and hence increase the

stock price even though the biases are independent across investors and the population is

unbiased.

Figure 1: The impact of biases on demand. This figure plots an investor’s demand D as a

function of his bias ǫi. If an investor is unbiased, i.e., ǫi = 0, his demand is a. The investor’s demand

is b if he has a bias of ∆, and c if he has a bias of −∆. The convexity in the demand function implies

that c− a > a− b, that is, the increase of demand induced by −∆ outweighs the decrease of demand

induced by ∆.

0 D-D
Εi

c

a

b

DHΕiL

In order to elaborate further on the above intuition and to evaluate its implications quan-

titatively, I also analyze three examples based on a typical demand function. The analysis

shows that the impact of biases critically depends on the form of the bias. Example 1 shows

that, if investors are only biased about the expected stock return, the biases are cancelled out

by aggregation and have no impact on the equilibrium. Example 2, however, shows that if

investors are only biased about volatility, this bias can substantially increase the stock price

and so decrease the expected return. Finally, investors have two biases in Example 3: one
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bias is about the expected return and the other is about the volatility. This leads to the fol-

lowing three main predictions. 1) The biases decrease the expected return, if the correlation

between these two biases is negative, that is, investors who overestimate the expected return

tend to underestimate the volatility and vice versa. 2) Holding everything else constant, the

expected return increases with respect to the correlation. 3) The biases can increase the ex-

pected return if the correlation is high enough. The economic intuition can be illustrated in

the following example. Suppose the correlation between these two biases is negative. Then,

the investors who are optimistic about the expected return tend to underestimate the volatil-

ity. As a result, they have a high demand for the stock. On the other hand, the investors

who are very pessimistic about the expected return would like to short the stock. However,

their short position is limited since they also tend to overestimate the volatility and so feel

that the short position is risky. Therefore, the biases increase the aggregate demand and lead

to lower future returns. Similar intuition leads to the results in 2) and 3).

The second case in which the aggregation argument fails is that, even if the biases affect

demand in a linear way, they may still have a significant impact on the equilibrium due to

the fluctuation of wealth distribution. The reason can be illustrated in the following simple

example. Suppose there are two investors, A and B, and both have the same amount of

initial wealth. A is optimistic about a stock and B pessimistic. At the initial date, relative

to an investor without bias, A wants to hold more stock, and B less. If the demand is a

linear function of the bias, the biases do not affect the total demand from A and B. So,

the equilibrium stock price is not affected by the biases. This is essentially the traditional

aggregation argument. The drawback of this argument arises in a dynamic setting. Suppose,

after one period, the stock price goes up. Then the optimistic investor A has a larger wealth

share relative to B since A chose to hold more stock in the previous period. Similarly, the

pessimistic investor B has a larger wealth share if the stock goes down. This implies mean

reversion in stock returns. An initial run-up of stock price makes optimistic investors richer,

which then pushes the stock price up and leads to lower future returns. Similarly, an initial

drop of stock price makes pessimistic investors richer, which then presses the stock price

down and leads to higher future returns. Note that the previous argument does not rely on

the assumption that A and B’s biases don’t change over time, and similar results arise as

long as investors’ biases are persistent over time.
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The impact from the fluctuation of wealth share can be significant after large positive or

negative stock returns, if investors’ beliefs are widely dispersed. In one example, it is shown

that the wealth fluctuation may lead to stock price “overshooting”: a large positive stock

return makes the optimistic investors relatively so rich that they may push the stock price

up so much so that the future expected return becomes negative.

This paper is related to the literature on short sales constraint and differences of opinion.

Due to short sales constraint, pessimistic investors stay out of the market and so the stock is

overvalued and tends to have lower future returns (Miller (1977), Harrison and Kreps (1978),

Scheinkman and Xiong (2003)). A large body of empirical evidence seems to be consistent

with this argument (Chen, Hong and Stein (2002), Diether, Malloy and Scherbina (2002),

Jones and Lamont (2002), Lamont and Thaler (2003), Hong, Scheinkman and Xiong (2005),

Mei, Scheinkman and Xiong (2005), and Nagel (2005)). This literature shows that even if

the population is unbiased and individual biases are independent across the population, the

biases still affect the equilibrium because the short sales constraint partially restrains the

impact from pessimistic investors. My paper complements this literature by showing that

the difference in opinions may still have a large impact on the equilibrium even without short

sales constraint. In addition to various novel predictions on the relation between differences of

opinion and stock returns, this paper also sheds some light on the potential impacts on stock

price behavior when the short sales constraint is alleviated. Analyzing a similar mechanism,

Xiong and Yan (2006) focus on the impact of heterogenous beliefs on bond yields.

This paper is also related to the literature on the impact of the fluctuation of wealth

distribution. For example, Dumas (1989), Wang (1996) and Chan and Kogan (2002) study

the impact of wealth share fluctuation induced by the heterogeneity in risk aversion. The

current paper analyzes whether independent biases are cancelled out by aggregation, and

points out that one of the causes for the failure of the traditional aggregation argument is the

impact of wealth share fluctuation induced by biases. One salient distinction is that, due to

biased beliefs, the expected stock return in my model may become negative, while this does

not happen in models with only heterogeneity in risk aversion. Shefrin and Statman (1994),

Shefrin (2005) and Yan (2005) analyze dynamic models with biased investors having log or

power utility functions, and find that, due to wealth share fluctuation, biases almost always

affect the equilibrium. This paper considers general demand functions and derives testable

predictions from wealth share fluctuation. More importantly, this paper demonstrates that
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the form of the biases plays a crucial role in determining the equilibrium and this has not

been studied in the literature.

The rest of the paper is organized as follows. Section 2 presents a one-period model to

show that the aggregation argument may fail if biases affect investors’ demand in a nonlinear

way. Section 3 presents a dynamic model to illustrate that, even if biases affect the demand

in a linear way, the aggregation argument may still fail because of the impact from wealth

share fluctuation. Section 4 concludes. All proofs are provided in the Appendix.

2 A Static Model

Let’s consider a one-period (two dates) model with t = 0, 1. There are two assets in the

economy: a riskless bond and a stock. The riskless interest rate is rf . The stock, which is

normalized to one share, is a claim to a positive dividend v1 at t = 1. There are N investors

and each is endowed with 1/N share of the stock. At t = 0, investors make portfolio decisions

and the stock price P0 is determined in the equilibrium by equating the aggregate demand

for the stock to the supply.

Investor i is assumed to allocate a fraction θi of his wealth to the stock market:

θi = θ (P0, Wi, Ψ, ǫi) , (1)

where Wi is investor i’s wealth; Ψ includes parameters such as the investor’s preference

and the distribution of v1, ǫi denotes investor i’s bias and ǫi = 0 corresponds to the case

in which investor i is unbiased. The unbiased investor’s decision rule θ (P0, Wi, Ψ, 0) can be

interpreted as the one that maximizes his expected utility. θ (P0, Wi, Ψ, ǫi) can be interpreted

as the “optimal” decision from the perspective of an investor with a bias ǫi.

The demand function θ is assumed to satisfy the following conditions

∂θ

∂P0
< 0, (2)

lim
P0→∞

θ = −∞, (3)

lim
P0→0

θ = ∞. (4)

The above condition (2) implies that investors demand less stock if the stock price is higher.

For simplicity, technical conditions (3) and (4) are made to ensure the existence and unique-

ness of the equilibrium.
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Investors’ biases, ǫi for i = 1, ..., N , are independent draws from ǫ̃, which is a random

variable with

E [̃ǫ] = 0, (5)

E [θ (P0, Wi, Ψ, ǫ̃)] < ∞. (6)

Intuitively, this assumes that the biases are independent across investors and equation (5)

implies that the population is unbiased. Condition (6) is imposed for technical reasons.

In contrast to the conventional aggregation argument, the following proposition shows that

independent biases are not always cancelled out by aggregation.

Proposition 1 In the above described economy, the impact of the biases can be summarized

as follows:

i) if θ is a linear function of ǫi then the biases have no impact on the stock price;

ii) if θ is a convex function of ǫi then the biases increase the stock price;

iii) if θ is a concave function of ǫi then the biases decrease the stock price.

This proposition reveals that the conventional aggregation argument holds when the de-

mand for stock is a linear function of the bias, but not when the demand function is convex or

concave. The intuition can be illustrated by Figure 2, where θ is assumed to be a decreasing

function of ǫi. If an investor is unbiased, θ = a. The bias reduces θ from a to b if ǫi = ∆,

and increases θ from a to c if ǫi = −∆. In Panel A, θ is a linear function of ǫi, which implies

a − b = c − a. That is, the decrease of demand induced by a bias ∆ is equal to the increase

of demand induced by a bias −∆. Therefore, if investor 1 has a bias ∆ and investor 2 has a

bias −∆, the total demand from these two investors is the same as the total demand from

two unbiased investors. The same argument can be applied to the case with a large number

of investors. Therefore, the biases have no impact on the aggregate demand and so do not

affect the stock price. In Panel B, however, θ is a convex function of ǫi, and so the decrease of

demand induced by a bias ∆ is outweighed by the increase of demand induced by a bias −∆.

Therefore, the biases increase the aggregate demand and so increase the stock price. Similar

arguments can be applied to the case where θ is a concave function of ǫi, as illustrated in

Panel C. To further elaborate the above intuition and also evaluate the impact quantitatively,

I consider the following three examples.
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Figure 2: The form of the biases matters. This figure plots the demand θ as a function of the

bias ǫi. If an investor is unbiased, i.e., ǫi = 0, his demand is a. The investor’s demand is b if he has

a bias of ∆, and c if he has a bias of −∆. In Panel A, the demand function is linear, which implies

that c − a = a − b. The convexity of the demand function in Panel B implies that c − a > a − b, and

the concavity of the demand function in Panel C implies that c − a < a − b.
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2.1 Example 1

Suppose v1 is lognormally distributed: ln v1 ∼ N (v̄, σ2) and the realized stock return is

r1 ≡ ln v1

P0
. Assume an investor without biases allocates a fraction θ∗ of his wealth to the

stock market:

θ∗ =
E [r1] − rf

σ2
+

1

2
, (7)

where E [r1] denotes the expected stock return. The decision rule (7) is approximately optimal

for an investor with a logarithm preference (see Campbell and Viceira (1999)).1 If all investors

follow the decision rule (7), one can easily verify from the market clearing condition that the

stock price at t = 0 is given by

P ∗

0 = exp

(

v̄ − rf −
1

2
σ2

)

, (8)

and the risk premium of the stock is

E[r∗1] − rf +
1

2
σ2 = σ2, (9)

where the third term on the left hand side, 1
2σ2, is the standard adjustment for convexity.

Suppose investors are biased about the expected stock return

Ei[r1] = E[r1] + φǫi,

1Alternatively, one can specify a preference and derive the demand function endogenously. This approach

leads to similar insights, while the analysis becomes more cumbersome.
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that is, investor i thinks the expected return is E[r1] + φǫi, where φ ≥ 0, and ǫi, for i =

1, ..., N , are independent draws from ǫ̃, which is uniformly distributed between [−1, 1]. Hence,

investors have independent biases and the most optimistic investor overestimates the expected

return by φ while the most pessimistic investor underestimates the expected return by φ. As

a result, investor i allocates a fraction θi of his wealth to the stock market:

θi =
Ei[r1] − rf

σ2
+

1

2
. (10)

The following corollary summarizes the impact of the biases on the equilibrium.

Corollary 1 If investors follow the decision rule (10), the equilibrium stock price and risk

premium are not affected and investors’ wealth distribution at t = 1 is given by

Wi =
v1

N
+

φP ∗

0

Nσ2
(er1 − erf ) ǫi. (11)

Since the bias in (10) affects the demand in a linear way, the aggregate demand is not

affected and so the equilibrium stock price is given by (8). Although the biases have no

impact on the equilibrium at the aggregate level, they may affect each investor’s wealth,

as shown in (11). If an investor is unbiased, i.e., ǫi = 0, his wealth at t = 1 is v1/N .

A biased investor’s wealth is generally different unless the stock return happens to be the

same as the bond return, i.e., r1 = rf . In particular, if the stock outperforms the bond,

the optimistic investors are richer relative to pessimistic investors. Similarly, the pessimistic

investors become relatively richer if the bond outperforms the stock.

2.2 Example 2

Let’s now consider the case where the unbiased investors still have a decision rule (7). In-

vestors are assumed to be biased about the standard deviation of the stock return:

σi = σ + φǫi,

where 0 ≤ φ < σ, ǫi for i = 1, ..., N , are independent draws from ǫ̃, which is uniformly

distributed between [−1, 1] . That is, investor i thinks the standard deviation of the stock

return is σi. The biases are independent across investors and the most optimistic investor

underestimates the standard deviation by φ while the most pessimistic investor overestimates

8



the standard deviation by φ. As a result, investor i allocates a fraction θi of his wealth to

the stock market:

θi =
E[r1] − rf

σ2
i

+
1

2
. (12)

The following corollary characterizes the equilibrium.

Corollary 2 If investors follow the decision rule (12), the risk premium is given by

E[r1] − rf +
1

2
σ2 = σ2 −

1

2
φ2. (13)

Since the demand is a convex function of the biases (see (12)), biases increase the aggregate

demand and so increase the equilibrium stock price and decrease the risk premium. Equations

(9) and (13) show that biases reduce the risk premium from σ2 to σ2− 1
2φ2. Suppose σ = 0.25

and φ = 0.2, that is, the true volatility is 25% while investors’ beliefs range from 5% to 45%.

Then the biases reduce the risk premium from 6.25% to 4.25%.

Merton (1980) points out that with high frequency data one can estimate volatility ac-

curately if the true volatility is slow-moving. This argument does not nullify Example 2,

which assumes investors have dispersed opinions on the standard deviation of the stock re-

turn. Rather, it helps to identify cases where Corollary 2 is relatively more important. For

example, in new industries where there is not much data, it is more likely that people end up

having different opinions about volatility. Moreover, people tend to have different opinions

about the volatility of an industry if the uncertainty of this industry tends to change dra-

matically. Therefore, Corollary 2 implies that the risk premium for these industries tends to

be lower than for those with a long and stable history.

2.3 Example 3

Let’s now consider the case where the unbiased investors still have a decision rule (7). But

investors are biased about both the expected return and the standard deviation of the stock:

Ei[r1] = E[r1] + φ1 ((1 − ρ)ǫ1i + ρǫ2i) , (14)

σi = σ + φ2ǫ2i, (15)

where 0 ≤ φ1, 0 ≤ φ2 < σ. For i = 1, ..., N , ǫ1i are independent draws from ǫ̃1, and ǫ2i are

independent draws from ǫ̃2. ǫ̃1 and ǫ̃2 are independent and uniformly distributed between
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[−1, 1]. ρ captures the correlation between an investor’s bias on the expected return and

his own bias on the volatility. That is, investor i thinks the expected stock return is Ei[r1]

and the standard deviation is σi. These biases are independent across investors. But for

each investor, his two biases might be correlated. In the case of ρ > 0, for example, if an

investor overestimates the volatility, then he also tends to overestimate the expected return.

The biases in (14)–(15) imply that investor i allocates a fraction θi of his wealth to the stock

market:

θi =
Ei[r1] − rf

σ2
i

+
1

2
. (16)

The following corollary characterizes the impact of the biases on the risk premium.

Corollary 3 If investors follow the decision rule (16), the risk premium is given by

E[r1] − rf +
1

2
σ2 = σ2 −

1

2
φ2

2 + ρφ1

(

σ

φ2

+
σ2 − φ2

2

2φ2
2

log
σ − φ2

σ + φ2

)

. (17)

The above result includes Corollaries 1–2 as two special cases: one can obtain the result

in Corollary 1 by letting φ2 go to 0 and obtain the result in Corollary 2 by setting φ1 = 0.

If investors’ biases about the expected return are independent from their biases about the

volatility, i.e., ρ = 0, only the biases about the volatility affect the stock price and the risk

premium is the same as in Corollary 2.

More interesting results arise when the biases about the expected return and the biases

about the volatility are correlated. Suppose σ = 0.25, φ2 = 0.2. That is, investors’ beliefs

about the volatility range from 5% to 45% when the true volatility is 25%. Figure 3 plots the

premium against the correlation ρ for different values of φ1. It shows that the risk premium

of the stock increases substantially with respect to ρ. Suppose φ1 = 5%, that is, investors’

biases about the expected return range from an overestimation of 5% to an underestimation

of 5%. The stock risk premium increases from 1.1% to 7.4% when ρ increases from −1 to

1. The impact of the correlation ρ is more significant when the biases about the expected

return are bigger. For example, in the case of φ1 = 10%, when ρ increases from −1 to 1,

the stock risk premium increases from −2% to 10.5%. It is interesting to note that the risk

premium is negative when ρ = −1, and this happens without short sales constraint. In the

case of ρ = 0, the risk premium is 4.25%, which is the same as the risk premium in the case

of φ1 = 0, φ2 = 0.2. Therefore, only the biases about the volatility affect the equilibrium

when these two biases are independent.
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Figure 3: The risk premium and the correlation. This figure plots the risk premium of the

stock on ρ, the correlation between the biases on the expected stock return and the biases on the

volatility. For example, ρ > 0 implies that investors who overestimate the expected stock return also

tend to overestimate the stock volatility. Parameter values: σ = 0.25, φ
2

= 0.2.

-1 -0.5 0.5 1
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The underlying driving force here is similar to that in Proposition 1. If ρ < 0, θi is

a convex function of ǫ2i and the convexity decreases the risk premium. In addition, the

convexity decreases with respect to ρ and hence the risk premium increases with respect to ρ.

Finally, θi may become concave in ǫ2i when ρ is high enough and this explains why the biases

increase the risk premium when ρ is high enough. For example, in the case of φ1 = 5%, the

risk premium is higher than 6.25%, the risk premium that would prevail when all investors

are unbiased, if ρ > 0.63.

The economic intuition is also straightforward. In the case of ρ < 0, for example, if an

investor overestimates the expected stock return he tends to underestimate the volatility.

Hence this investor has a high demand for the stock. On the other hand, if an investor

underestimates the expected return, he would like to short the stock. However, his short

position is limited since he also tends to overestimate the volatility and so feels the short
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position is risky. Therefore, the biases increase the aggregate demand and lead to a lower, or

even negative, risk premium. For a similar argument, if ρ is large enough the biases decrease

the aggregate demand and lead to a higher expected return. Note that the negative risk

premium happens here in the equilibrium without short sales constraint. The pessimistic

investors choose to limit their short position because they feel it is risky rather than that it

is prohibited.

2.4 Discussions of the static model

Examples 1–3 demonstrate that whether biases affect the equilibrium critically depends on

the form of the biases, and that biases can have a large impact on the equilibrium even if

they are independent across investors and the population is unbiased. This suggests that the

traditional aggregation argument might have understated the importance of individual biases

for asset pricing.

These examples also have implications on cross-sectional expected returns. If investors

are only biased about the volatility, a stock’s expected return tends to be lower if investors’

beliefs about the volatility are more dispersed. Moreover, if investors are biased about both

the expected return and volatility, the correlation between these two biases plays a key role in

determining the expected return. Holding everything else constant, the higher the correlation

between these two biases, the higher the expected stock return.

It is also interesting to compare these implications with the literature on short sales con-

straint and differences of opinion, which shows that short sales constraint makes it more

difficult for pessimistic investors to express their view on the stock market, and so higher

dispersion in beliefs leads to lower future returns (e.g., Miller (1977), Harrison and Kreps

(1978), Scheinkman and Xiong (2003)) A large body of empirical evidence also seems to sup-

port this theory (Chen, Hong and Stein (2002), Diether, Malloy and Scherbina (2002), Jones

and Lamont (2002), Lamont and Thaler (2003), Hong, Scheinkman and Xiong (2005), Mei,

Scheinkman and Xiong (2005), and Nagel (2005)). The analysis in Examples 1–3 comple-

ments this theory by showing that the dispersion in opinions alone may have a large impact

on the expected stock return even when short sales constraint is not stringent. Example 3 also

has a new prediction that if investors’ opinions are dispersed about both the expected return

and the volatility, then the expected stock return is positively related with the correlation
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between these two biases.

In the above examples, independent biases are cancelled out by aggregation only when

the biases affect the demand in a linear way, as illustrated in Example 1. The next section

shows, however, that even the biases in Example 1 can significantly affect the stock price in

a dynamic setting.

3 A Dynamic Model

There are two periods (three dates) t = 0, 1, 2. The riskless interest rate is rf for both

periods. In the first period, the stock is a claim to a positive dividend v1 at t = 1. There are

N investors and each is endowed with 1/N share of the stock. The stock price at t = 0, P0, is

determined in the equilibrium by equating the aggregate demand and supply. At t = 1, after

v1 is realized, investors can trade another stock, which is a claim to a positive dividend v2 at

t = 2. The stock price P1 is also determined by equating the aggregate demand and supply.

Investors’ decision rule is as follows. At time t (t = 0, 1), investor i allocates a fraction θit of

his wealth to the stock market:

θit = a (Pt, Ψt) + ǫi, (18)

where Ψt (t = 0, 1) includes parameters such as the distribution of vt+1; ǫi for i = 1, ..., N ,

are independent draws from ǫ̃ with E [̃ǫ] = 0 and V ar[̃ǫ] = σ2. In addition, a (Pt, Ψt) satisfies

the following conditions:

∂a (Pt, Ψt)

∂Pt

< 0, (19)

lim
Pt→∞

a (Pt, Ψt) = −∞, (20)

lim
Pt→0

a (Pt, Ψt) = ∞. (21)

The above condition (19) assumes that investors demand less stock if the stock price is

higher. For simplicity, technical conditions (20) and (21) are imposed to ensure the existence

and uniqueness of the equilibrium. I now characterize the equilibrium and postpone further

discussions of the model to Section 3.2.

Let’s first compute the stock prices when all investors are unbiased, i.e., ǫi = 0 for

i = 1, ..., N . The market clearing conditions imply that the stock price at t = 0, P ∗

0 , solves

a (P ∗

0 , Ψ0) = 1, (22)
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and the stock price at t = 1, P ∗

1 , solves

v1a (P ∗

1 , Ψ1) = P ∗

1 . (23)

Let’s now characterize the equilibrium when investors have biases described in (18). Note

from equation (18) that investors’ demand is a linear function of the bias. Hence, Proposition

1 implies that the stock price at t = 0 is not affected by the biases and is determined by (22).

Then one can easily verify that investor i’s wealth at t = 1 is

Wi1 =
v1

N
+

1

N
P ∗

0 (er1 − erf ) ǫi, (24)

where r1 ≡ ln v1

P0
is the stock return for the first period. Note that if investor i has no bias,

that is ǫi = 0, then his wealth at t = 1 is v1/N . Therefore, although the biases don’t affect

the stock price at t = 0, they affect investors’ wealth distribution at t = 1, except in the

special case of r1 = rf , that is, the ex post stock return happens to be the same as the riskless

bond return.

Equation (24) also reveals that a biased investor may go bankrupt, that is, his wealth may

become negative. Intuitively, if an investor is optimistic about the stock, he might borrow in

the bond market to invest in the stock market. This makes it possible that his wealth could

become negative. Similarly, a pessimistic investor may short the stock and so his wealth may

become negative. While the bankruptcy issue is interesting on its own right, this paper only

focuses on the case where no investor goes bankrupt, that is, for i = 1, ..., N ,

v1

N
+

1

N
P ∗

0 (er1 − erf ) ǫi > 0. (25)

The following proposition characterizes the stock price at t = 1.

Proposition 2 Suppose investors follow the decision rule (18). Under the condition (25),

the equilibrium stock price at t = 1, P1 solves the following equation

v1a (P1, Ψ1) + P ∗

0 (er1 − erf )σ2 = P1. (26)

Therefore, biases affect P1 if and only if r1 6= rf :

P1 > P ∗

1 if r1 > rf , (27)

P1 = P ∗

1 if r1 = rf , (28)

P1 < P ∗

1 if r1 < rf . (29)
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This proposition shows that even if biases affect demand in a linear way, they still affect

the equilibrium if the stock return in the first period is different from the bond return. The

intuition can be illustrated as follows. Suppose there are two investors A and B, and both

have the same initial wealth. A is optimistic about the stock and B pessimistic. Hence A

demands more stock and B less. If the biases affect the demand in a linear way as assumed

in (18), they do not affect the aggregate demand and so have no impact on the stock price at

t = 0. Suppose the first period stock return is higher than the bond return (r1 > rf ). Then,

A becomes richer relative to B since A chose to hold more stock at t = 0. As a result, the

optimistic investor A has a larger wealth share and this pushes the stock price up (equation

(27)). Similarly, if the first period stock return is lower than the bond return (r1 < rf ),

the pessimistic investor B has a larger wealth share and this leads to a lower stock price

(equation (29)). In the special case where the stock return happens to be the same as the

bond return (r1 = rf ), the wealth share is not affected and so the stock price is the same as

in the benchmark case (equation (28)). The following example further elaborates the above

intuition and also evaluates the impact quantitatively.

3.1 Example 4

Let’s now consider an example of the above model. Suppose v1 and v2 are lognormally

distributed: ln v1 ∼ N (v̄, σ2), and ln v2 ∼ N (ln v1, σ
2). Investors’ decision rule is as follows.

At time t (t = 0, 1), if an investor is unbiased, he allocates a fraction θ∗t of his wealth to the

stock market:

θ∗t =
Et[rt+1] − rf

σ2
+

1

2
.

Investors are biased about the expected return, that is, investor i thinks the expected return

is

Ei
t [rt+1] = Et[rt+1] + φǫi,

where φ ≥ 0 and ǫi, for i = 1, ..., N , are independent draws from ǫ̃, which is uniformly

distributed between [−1, 1]. Therefore, investor i allocates a fraction θi
t (t = 0, 1) of his

wealth to the stock market:

θi
t =

Ei
t [rt+1] − rf

σ2
+

1

2
.
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As illustrated in Example 1, the biases have no impact on the stock price at t = 0, which is

given by (8), and the wealth distribution at t = 1 is given by (11). The following discussion

will focus on the case where no investor goes bankrupt at t = 1, that is, for i = 1, ..., N ,

v1

N
+

φP ∗

0

Nσ2
(er1 − erf ) ǫi > 0. (30)

Corollary 4 Under condition (30), the expected stock return at t = 1, E1 [r2], is given by

E1 [r2] − rf +
1

2
σ2 − γσ2e−E1[r2] =

φ2

3γσ2

(

erf−r1 − 1
)

, (31)

hence,
∂E1 [r2]

∂r1

{

< 0 if φ > 0
= 0 if φ = 0

. (32)

This corollary shows that the expected stock return depends on “past stock performance.”

Figure 4 plots the expected stock return in the second period E1 [r2] on the realized stock

return in the first period r1. As suggested by (32), the plot for the case of φ = 0 is flat,

implying that the expected stock return at t = 1 does not depend on the realized stock

return for the previous period. For the cases with φ > 0, the plots are downward-sloping,

suggesting that, in the presence of biases, stock returns have a “mean reversion property”:

a higher stock return in the first period implies a lower expected stock return in the second

period. Intuitively, the run-up in stock price in the first period means that optimistic investors

have a larger wealth share t = 1. This pushes up the stock price and leads to a lower expected

stock return. Similarly, the drop in stock price in the first period makes pessimistic investors

relatively richer. This leads a lower stock price and hence a higher expected return for the

second period.

Figure 4 also reveals that the biases have a large impact on the expected stock return only

when investors’ beliefs about the expected return are highly dispersed and the stock return

in the previous period is large. This is because the underlying drive force is the fluctuation

of investors’ wealth share, and the fluctuation is significant only when investors have widely

dispersed opinions and the stock price has a big rise or drop. In fact, Figure 4 also shows

that the stock price may “overshoot” in the sense that the expected stock return in the

second period may become negative. Suppose φ = 0.2, that is, the most optimistic investor

overestimates the expected return by 20% and the most pessimistic investor underestimates

the expected return by 20%. Figure 4 shows that if the first period stock return is 30%, then
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Figure 4: The expected future return and the past return. This figure plots the expected

stock return in the second period E1[r2] on the realized stock return in the first period r1. Parameter

values: rf = 2%, σ = 0.25.
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expected stock return for the second period is −0.4%. Note that, in the case without biased

investors, the expected return for the second period is 4.8% irrespective of the stock return

in the first period.

This example provides testable cross-sectional and time series predictions on stock re-

turns. Cross-sectionally, if investors’ beliefs are highly dispersed, then stocks with high past

returns tend to have low future returns. Over time series, the model predicts a negative

autocorrelation for stocks with dispersed opinions. It is important to note that since these

impacts arise due to the fluctuation in wealth distribution, they tend to be small except for

the following two cases. First, the impact can be large at long horizons since the wealth share

fluctuation can be significant at long horizons. One caution for this implication is that it

also relies on the assumption that investors’ biases are persistent over long horizons. Second,

the impact can be significant at short horizons after a large rise or drop in stock price when

investors’ beliefs are widely dispersed. This case might be more relevant for new industries

or technologies, on which people tend to have different assessments.
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3.2 Discussions of the dynamic model

The above assumptions on the stock are non-standard: the stock at t = 0 is the claim to v1,

while the stock at t = 1 is the claim to v2. This structure, together with the asset allocation

rule (18), shuts down investors’ intertemporal consideration. This allows me to illustrate the

interaction between biases and the fluctuation of wealth distribution in a transparent way;

the intertemporal consideration, while interesting on its own right, obscures this interaction.

One consequence of these assumptions is that the stock in the first period and the stock in

the second period are different stocks since they are claims to different dividends. Hence one

interpretation of the previously described “mean reversion” property is that a higher past

stock return implies a lower expected future return for other newly issued “similar” stocks.

For example, large past returns in one industry implies that if a private firm in that industry

goes public, its valuation tends to be high and the expected return from the IPO tends to

be low. An alternative and more standard way to model the stock is to assume the stock

is a claim to two dividends: one at t = 1 and one at t = 2. Although this assumption

introduces additional intertemporal consideration, the main driving force remains the same:

past performance changes investors’ wealth distribution, which in turn affects the equilibrium

stock price.

Another important feature of the model is that it assumes that an investor’s bias at t = 0

is the same as his bias at t = 1. This assumption can be relaxed. In fact, as long as investors’

biases are persistent over time, they will have an impact on the stock price. To illustrate

this, let’s modify the decision rule (18) as follows. Investor i allocates a fraction θit (t = 0, 1)

of his wealth to the stock market:

θit = a (Pt, Ψt) + ǫit, (33)

where, for i = 1, ..., N , ǫi0 are independent draws from ǫ̃0, ǫi1 are independent draws from ǫ̃1

and

E

(

ǫ̃0
ǫ̃1

)

=

(

0
0

)

,

V ar

(

ǫ̃0
ǫ̃1

)

= σ2

(

1 c
c 1

)

.

That is, at each period, the biases are independent across investors. For each investor,

however, his biases might be correlated over time. If, for example, c > 0, then investors’
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biases are positively correlated over time. That is, if investor i is optimistic at t = 0, i.e.,

ǫi0 > 0, then he also tends to be optimistic at t = 1, i.e., ǫi1 tends to be positive. The decision

rule (33) includes the one in (18) as a special case of c = 1. Similar arguments lead to the

result that the biases affect P1 if and only if c 6= 0.

It is also interesting to note that even in the case of c = 0, biases may still affect the stock

price if the decision rule in (33) is generalized to

θit = a (Pt, Wit, Ψt) + ǫit. (34)

Note that in (33), the fraction of the wealth that an investor allocates to the stock market does

not depend on his wealth level. While this property generally arises from utility maximization

for standard preferences such as power utility, it certainly is violated empirically (see, e.g.,

Heaton and Lucas (2000)). Note that, at t = 1, an investor’s demand for the stock is

Wi1a (P1, Wi1, Ψ1). Suppose Wi1a (P1, Wi1, Ψ1) is a convex function of Wi1. This implies

that the increase of demand induced by a positive shock to wealth is larger than the decrease

of demand induced by a negative shock. As a result, the biases increase the aggregate demand

for the stock and so increase the stock price at t = 1. Similarly, the biases decrease the stock

price if Wi1a (P1, Wi1, Ψ1) is a concave function of Wi1.

The impact of wealth share fluctuation has been studied in different contexts. For exam-

ple, Dumas (1989), Wang (1996) and Chan and Kogan (2002) study the impact of wealth

share fluctuation induced by the heterogeneity in risk aversion. The model in this section

analyzes the impact of independent biases. The most salient distinction between my model

and the previous models is that due to biased beliefs, the expected stock return may become

negative, but this does not happen in models with only heterogeneity in risk aversion.

4 Conclusion

One conventional argument suggestions that if biases are independent across investors, they

should not have a large impact on the equilibrium at the aggregate level since they would

cancel out each other. This paper formally analyzes this argument and shows that it fails

for the following two main reasons. First, if biases affect investors’ demand in a non-linear

way, they may have a significant impact on the equilibrium even if the biases are independent

across investors and the population is unbiased. Second, even if the biases affect investors’
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demand linearly, the aggregation argument may still fail due to the fluctuation of wealth

share in a dynamic setting.

This paper also provides various novel testable cross-sectional and time-series predictions

on stock returns. Moveover, since all the analysis in this paper is conducted without the

assumption of short sales constraint, it also sheds light on the potential impacts on stock

returns when short sale constraint is alleviated.
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Appendix

Proof of Proposition 1

Equating the aggregate demand and supply for the stock, we obtain

N
∑

i=1

P0

N
θi = P0.

This implies

1

N

N
∑

i=1

θi = 1.

When N is large, the above expression becomes

E [θ (P0, Wi, Ψ, ǫ̃)] = 1. (35)

If all investors are unbiased, the stock price solves

θ (P0, Wi, Ψ, 0) = 1. (36)

Jensen’s inequality implies that

E [θ (P0, Wi, Ψ, ǫ̃)] = θ (P0, Wi, Ψ, 0) if θ is linear in ǫ̃, (37)

E [θ (P0, Wi, Ψ, ǫ̃)] > θ (P0, Wi, Ψ, 0) if θ is convex in ǫ̃, (38)

E [θ (P0, Wi, Ψ, ǫ̃)] < θ (P0, Wi, Ψ, 0) if θ is concave in ǫ̃. (39)

Equations (35)–(39) lead to the results in Proposition 1.

Proof of Corollary 1

Substituting (7) into (36), after some algebra, we obtain (8)–(9). At t = 1, the stock’s

liquidation value is v1. So the allocation rule (10) leads to the result in (11).

Proof of Corollary 2

Substituting (12) into (36), we obtain

∫ 1

−1

(

E[r1] − rf

(σ + φx)2
+

1

2

)

1

2
dx = 1.

After some algebra, we obtain (13).
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Proof of Corollary 3

Substituting (16) into (36), we obtain

∫ 1

−1

∫ 1

−1

(

E[r1] + φ1 ((1 − ρ)y + ρx) − rf

(σ + φx)2
+

1

2

)

1

4
dxdy = 1.

After some algebra, we obtain (13).

Proof of Proposition 2

Under the condition (25), the market clearing condition at t = 1 is

N
∑

i=1

Wi1θi1 = P1.

When N is large the above equation leads to (26). Comparing (23) and (26) leads to (27)–

(29).

Proof of Corollary 4

Equation (31) is a special case of (26). Differentiating (31) leads to (32).
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