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Abstract

This paper uses option prices to learn about the uncertainty surrounding the fundamen-

tal information that is revealed on earnings announcement dates. To do this, we introduce

a reduced-form model and estimators to separate the uncertainty over the information re-

vealed on earnings dates from normal day-to-day volatility. The anticipated uncertainty

estimators are easy to compute and rely only on option price information available prior to

the announcement. Empirically, we find strong support for our reduced form specification.

We find that the anticipated uncertainty is quantitatively large, it varies across time, and

is informative about the future volatility of stock price movements. Finally, we quantify

the impact of earnings annoucements on formal option pricing models.
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1 Introduction

Traditional dynamic equity price models are built from unpredictable shocks such as Brown-

ian motions or Poisson driven jumps. In these models, information is revealed either via

small normally distributed shocks or large jumps whose arrival to the market is unpre-

dictable. In contrast to these types of shocks are prescheduled events such as quarterly

earnings or macroeconomic announcements, for which the timing, but not information con-

tent, is known in advance. These predictable events and the embedded risks are important,

as they contribute a disproportionate share of total price volatility.1

Despite their importance, little is known about the anticipated uncertainty over the

price response to the information released in announcements. Estimating the uncertainty

or volatility contained in announcements using underlying price data is difficult. Unlike,

for example, stochastic volatility which can be estimated accurately using high frequency

data, ex post estimators of announcement volatility are problematic as they are based on a

single observation of the price change around the announcement and are necessarily quite

noisy.2

The main contribution of this paper is to develop, justify, and analyze estimators of

the anticipated uncertainty contained in earnings announcements. On quarterly earnings

announcement dates (EADs), the SECmandates that firms release a large amount of funda-

mental, valuation relevant, information including the income statement, the balance sheet,

the cash flow statement, and additional “forward-looking” statements.3 This valuation rele-

vant information was, to varying extents, unknown to investors prior to the announcement,

which is why stock prices have extreme movements after earnings announcements.

To estimate the anticipated uncertainty, we use option prices, which are the natural

1For example, consider the variance of IBM Corporation’s daily stock price returns. Over the period
1996 to 2004, 18.4% of the total realized variance for IBM Corporation occurred on the four quarterly
earnings announcement dates (EADs). A similar pattern occurs more generally in equity, bond and foreign
exchange markets (see, Beaver (1968), Ederington and Lee (1993), and Harvey and Huang (1991).

2This anticipated uncertainty is closely related to Brav and Heaton (2002), who develop a model with
structural uncertainty over a valuation relevant parameter. Central in their model is the ex-ante or antic-

ipated variance of the valuation relevant parameter, which is revealed at a preset time.
3As defined by the Securities Exchange Act, Section 27A, a forward-looking statement refers to, among

other things, management projections of revenues, income, earnings, capital expenditures, dividends, cap-
ital structure, or other financial items; statements regarding the plans and objectives of management for
future operations; and a statement of future economic performance of the firm or industry.
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source of information about volatility. Since Patell and Wolfson (PW) (1979, 1981), it is

well know that option prices contain information about earnings announcements, but it is

not known how to estimate the uncertainty in the announcement. The predictable timing

of the EAD generates a distinctive time series pattern in implied volatility (IV).4 Figure

1 displays this time series behavior for Intel Corporation, using data from 1996 to 2005.5

Of particular interest are the strong predictable movements: IV increases before a known

earnings announcement date and decreases afterward.

The key to using option prices as a lens to learn about anticipated uncertainty is a

reduced-form model.6 The model has two main components, a jump on earnings dates

generated by the news announcement and normal day-to-day diffusive volatility. Unlike

traditional jump models that assume jumps arrive randomly, we assume that the timing

of the jump is known, which coincides with the fact that earnings announcements are

scheduled well in advance.

To see the intuition, consider an extension of the Black-Scholes model to incorporate

deterministic jumps on EADs. In addition to the usual Brownian motion component,

assume there is a single earnings announcement in τ days and the jump size is normally

distributed with a volatility of σQ, where Q is the risk-neutral probability. Since price

changes are normally distributed (as the jump time is known), option prices are given by

a slight modification of the Black-Scholes formula. For an option expiring in T > τ days,

the IV at time t of the option expiring at time T is

σ2t,T = σ2 +

¡
σQ
¢2

T
.

From this simple model, we can see three main implications of scheduled earnings an-

nouncements: (1) option IV increases prior to an earnings announcement (as T decreases),

(2) IV falls after an earnings announcement, and (3) that the term structure of IV (IV as a

4We will refer to both Black-Scholes implied volatility and implied variance as IV, only distinguishing
the two where there is a substantive difference.

5It is common to see these implications reported in the popular press. For example, see the following
quote taken from the Options Report in the Wall Street Journal on June 27, 2005: “Option buyers ran

with athletic footwear and apparel giant Nike ahead of the company’s fourth-quarter report today. The
volatility implied by the Beaverton, Ore., company’s short-term options rose to about 29% from 22% a
week ago[...]. Today brings the potential stock catalyst of earnings, which likely accounts for the rise in
Nike’s expected stock volatility.” (Scheiber, 2005).

6The model is closely related to Piazzesi (2000, 2005), who models bond market announcements as
deterministically-timed jumps and estimates the model using interest rate, but not option price, data.
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Figure 1: Black-Scholes implied volatility for the nearest maturity at-the-money call option

for Intel Corporation from January 1996 to December 2004. The circles represent days on

which earnings announcements were released.

function of time-to-maturity) decreases with maturity. The first two of these implications

generates the distinctive pattern in Figure 1. We are also careful to account for other

realistic features such as stochastic volatility.

The primary contribution of this paper is to develop and implement estimators of the

anticipated uncertainty using option prices. We develop two estimators, one that uses

only ex ante information and one that relies on ex post information. Both estimators are

easy to compute, as they only require IVs on different dates or maturities. In theory, the

two estimators perform differently in the presence of stochastic volatility or microstructure

noise, and we argue the ex ante estimator is more robust. Because of this, we primarily focus

on the ex ante estimator, but are careful to compare the two estimators where appropriate.

Given the model and theoretical estimators, we examine the empirical evidence using a

sample of 20 firms with the most actively traded options from 1996 through 2004. Using
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actively traded firms is important to minimize any microstructure or liquidity issues such

as bid-ask spreads or non-synchronous trading, especially in the early portion of our sam-

ple when the option market had markedly lower volume. We also choose firms with low

dividends, to avoid major issues with early exercise around dividend dates.

We find broad evidence to support our reduced form specification. Analyzing the spec-

ification is important because our estimators rely on our reduced form model being a

reasonable description of the data. Using non-parametric tests, we find extremely strong

support for the three generic features of our model: that option IV increases prior to an

earnings announcement, that IV falls after an earnings announcement, and that the term

structure of IV is upwardly sloping prior to an announcement.7 We also assume that the

jump size distribution is conditionally normal, and we do not find any evidence inconsistent

with this assumption.

We find that anticipated uncertainty is statistically and economically large (the average

ex ante estimate of anticipated uncertainty is about 8%) and it varies substantially across

time (the estimates for a given firm can vary by more than a factor of three over time).

In levels, the anticipated uncertainty can be extremely large, exceeding 15%, for even the

largest firms.8 This implies that a 3-standard deviation confidence intervals for the stock

price return is ±45%! Anticipated uncertainty increases in 2000, 2001, and 2002 during the
recession and bursting of the dot-com bubble. This is not a surprise if there is a systematic

component to the uncertainty. The ex ante and ex post estimators are highly correlated:

the correlation of the mean estimates is over 94% and the pooled correlation is 70%. This

implies that both estimators work well, and the common effect is significant.

We next use historical returns to investigate the informational content of the anticipated

uncertainty, risk premia, and the abnormality of returns around earnings dates. The first

issue is informativeness, that is, the extent to which a option implied anticipated uncer-

tainty forecasts a subsequent stock price volatility. We find that the correlation across firm

averages is positive and above 50% and the correlation pooling the observations is about

28%. This implies that our estimator is informative about future movements.9

7Two of these tests are closely related to those implemented in Patell and Wolfson (1979, 1981), although
as we note below, there are important differences. Our results are much stronger evidence than those in
Patell and Wolfson.

8For example, Cisco Systems, one of the largest firms in our sample, had a number of quarters where
anticipated uncertainty was greater than 15 percent.

9Refining this, Jiang and Johannes (2006) find that the option based anticipated uncertainty estimate
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Regarding risk premia, we find no evidence for a mean stock return premia on the day

of the earnings announcements. We also find mixed, at best, evidence for a anticipated

uncertainty premium in option prices. For some firms, we find that the anticipated volatility

under the risk-neutral measure is greater than the subsequently observed volatility under

the objective measure, but the effect is not uniform. This is not surprising given our

relatively small sample, and the mixed evidence on volatility risk premia for both index

options and individual equity options. For example, there limited evidence for risk premia

for individual firms based on the differences between realized and IVs (see, e.g., Carr

and Wu (2005); Driessen, Maenhout, and Vilkov (2005); and Battalio and Schultz (2006)).

Broadie, Chernov, and Johannes (2006) discuss the mixed evidence on volatility risk premia

for index options.

Finally, we discuss the implications of our results for empirical option pricing research.

To quantify the importance of accounting for earnings announcements when pricing indi-

vidual equity announcements, we estimate stochastic volatility model with and without

jumps on earnings dates. We find that adding jumps on earnings dates provides a sub-

stantial improvement in model performance as dollar pricing errors on short-dated options

fall by about 50%. To frame our results, Bakshi and Cao (2004) find no pricing improve-

ment for at-the-money (ATM) options when adding randomly-timed jumps in prices or

volatility. This points to the first-order importance of accounting for jumps on EADs when

modeling individual equity option prices. Existing studies do not account for earnings

announcements (see, e.g., Carr and Wu (2005); Driessen, Maenhout, and Vilkov (2005)).

The rest of the paper is outlined as follows. Section 2 introduces the model, discusses

our estimators, and provides a literature review. Section 3 discusses the empirical results,

and Section 4 concludes.

2 The model

This section introduces our model for individual equity prices. Compared to indices, the

extant literature on pricing individual options is limited. For index options, there is a

reasonable agreement on a general class of models providing an accurate fit to both the

is the strongest predictor of subsequent absolute returns when compared to analyst forecast dispersion,
analyst forecast frequency, analyst forecast errors, past earnings volatility, book-to-market ratios, age of
the firm, option implied diffusive volatility, past return volatility, or turnover.
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time series of index returns and the cross-section of option prices.10 The results indicate

that factors such as stochastic volatility, jumps in prices, and jumps in volatility are present.

The main debate focuses over the magnitude and causes of risk premia.11

The literature on pricing individual equity options is less advanced. Most of the work

analyzes the behavior of the IV smile and term structure vis-à-vis the index option literature

(see, e.g., Dennis and Mayhew (2002); Bakshi, Kapadia, and Madan (2003); Bollen and

Whaley (2004); Dennis, Mayhew, and Stivers (2005)). The main conclusions are that IV

curves are flatter for individual equities than for index options and that gap between realized

and IV is smaller for individual equities (Carr and Wu (2005); Driessen, Maenhout, and

Vilkov (2005); Battalio and Schultz (2004)). Together these results indicate that any jump

or volatility risk premia are smaller for individual firms than for indices, and that jumps

in prices are less important for individual equities than for indices. To our knowledge,

the only paper analyzing formal pricing models for individual equities is Bakshi and Cao

(2004). Of note, they find little pricing improvement by adding stochastic volatility, jumps

in prices, or jumps in volatility. This is in contrast to the large pricing improvements that

these factors provide for pricing index options.

This section discusses our model in terms of the objective measure specification (Section

2.1), the risk-neutral specification (Section 2.2), develops estimators of anticipated uncer-

tainty (Section 2.3), and provides a comparison of our model and approach to the existing

literature (Section 2.4).

2.1 Objective measure specification

The first step in our specification is modeling earnings announcements. We model the re-

sponse of equity prices to an earnings release as a jump in prices. Huang (1985a) provides

an intuitive motivation for including jumps by arguing that “continuous” information struc-

tures, such as those without jumps, are ones in which “no events can take us by surprise”

(p. 61). Macroeconomic or earnings announcements are canonical examples of events that

take market participants by surprise, and thus information structures contain jumps. These

10See, e.g., Bates (2000), Andersen, Benzoni, and Lund (2001), Pan (2002), Chernov, Ghysels, Gallant,
and Tauchen (2003), Eraker, Johannes, and Polson (2003), Eraker (2004) and Broadie, Chernov, and
Johannes (2006).
11Pan (2002), Eraker (2004), and Broadie, Chernov, and Johannes (2006) provide estimates of the risk

premia embedded in options. Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman (2005)
provide evidence that demand based pressures contribute to the risk premium embedded in options.
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informational discontinuities immediately translate into discontinuities in the sample path

of prices; thus, prices are necessarily discontinuous with announcements.12

Formally, Nd
t counts the number of predictable events occurring prior to time t: N

d
t =P

j 1[τj≤t] where the τj’s are an increasing sequence of predictable stopping times repre-

senting announcements.13 Intuitively, a predictable stopping time is a phenomenon that

“cannot take us by surprise: we are forewarned, by a succession of precursory signs, of the

exact time the phenomenon will occur” (Dellacherie and Meyer 1978, p. 128).

The jump assumption is consistent with existing work analyzing announcement effects

(Beber and Brandt (2006) and Piazzesi (2005)), consistent with statistical evidence that

identifies announcements as the cause of jumps in jump-diffusion models (Johannes 2004

and Barndorff-Nielson and Shephard 2006), and is intuitively appealing. Since earnings

announcements occur either after market close (AMC) or before market open (BMO), they

often generate a visible discontinuity in economic or trading time: the market open the

following morning is often drastically different than the previous close.14 Further evidence

consistent with a jump is in PW (1984), who find that for earnings announcements during

trading hours, the bulk of the response occurs within the first few minutes. We later provide

a test of this implication.

In addition to jumps on EADs, we follow the option pricing literature and assume there

is square-root stochastic volatility (see Heston 1993). Prices and volatility jointly solve the

following stochastic differential equations

dSt = (rt + ηsVt)Stdt+
p
VtStdW

s
t + d

µXNd
t

j=1
Sτj−

£
eZj − 1

¤¶
(1)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t ,

where all random variables are defined on the objective probability measure P, Zj|Fτj− ∼
π
¡
Zτj , τj−

¢
, cov (W s

t ,W
v
t ) = ρt, and Nd

t counts the number of earnings announcements.
15

12We generally ignore dividends, which naturally introduce a discontinuity on lump-sum ex-dividend
dates, see, Huang (1985b).
13Piazzesi (2000, 2005) introduced deterministic jumps on macroeconomic announcement dates in the

context of bond pricing.
14There is a limited after hours market for trading stock, although the characteristics of the market are

not well known (see Barclay and Henderschott (2004)). Anecdotally, volume is low and bid-ask spreads
are much larger than during trading hours. It is important to note that there is no after-hours trading of
individual equity options; trading ends with the formal close of the equity market.
15We do not consider other predictable events such as mid-quarter earnings updates, stock splits, or
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Throughout, we assume the interest rate is constant, the Feller condition holds (θvκv >

σ2v/2), and we ignore dividends for notational simplicity.

The jump size Zj = log
¡
Sτj/Sτj−

¢
captures the response of the stock price to the infor-

mation released on an EAD. As mentioned earlier, firms are required to report the current

quarter’s cash flow, balance sheet and income statement, and many firms also provide

forward-looking information. The jump sizes translate the shocks in these “fundamental”

variables that are relevant for valuation into shocks in stock prices. The jump distribution

π characterizes the random nature of the jump sizes, and therefore serves as a reduced form

of how fundamental information affects stock prices.

The anticipated volatility of Zj, σ2j = varP
¡
Zj|Fτj−

¢
, captures the anticipated uncer-

tainty over the stock price response to the information and characterizing σ
j is our primary

goal. Note that since the anticipated uncertainty is based on the response of the stock

prices to fundamental information, it only captures valuation relevant information. For

example, we do not assume that stock price uncertainty is generated by earnings forecast

errors, although these are clearly one potentially important source of uncertainty.

Before proceeding, we briefly discuss our specification and its relation to common empir-

ical work on earnings announcements. Consider the common approach in accounting and

finance of computing the “earnings response coefficient” (Ball and Brown (1968)). Given

a forecast of current earnings, Ef
τj− , stock price changes are regressed on current quarter

earnings’ surprises and an error term:

Zj = log

µ
Sτj
Sτj−

¶
= α+ β

j

³
Eτj −Ef

τj−

´
+ εj, (2)

where σε
j
is the anticipated volatility of εj and βj is the “earnings response” coefficient. The

residual captures additional information that is relevant for valuation. The earnings shocks

could contain multiple components relating to, for example, economy wide conditions,

industry factors, and firm specific factors. It is important to note that common regressors

such as earnings surprises explain a very small portion of the total variability of stock price

changes around earnings announcements. For example, adjusted R2’s in earnings surprise

regressions tend to be very small, less than 10%. For example, Imhoff and Lobo (1992)

and Ang and Zhang (2005) find R2’s of around 3% and 6%, respectively, for the univariate

regressions. Adding additional explanatory variables only increases this modestly. This

implies that the vast majority of the variability in a stock price’s response to earnings

mergers and acquisitions although these do have implications for option prices.
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announcement information is unexplained by standard regressors.

In this model, if we denote σEj as the conditional volatility of Eτj −Ef
τj−, then the total

conditional volatility can be decomposed as

σ2
j
= β2τj−

¡
σEj
¢2
+
¡
σεj
¢2
.

It is important to note that σj varies across time and firms for a variety of reasons. For

example, firm specific volatilities (σεj ) could be driven by life-cycle issues, macroeconomic

uncertainty could vary over time, or the response of investors to a given shock could change

due to time-varying risk aversion.16 In fact, there is no reason to believe that it is constant

across time. It is difficult to estimate a time-varying σ
j directly from stock prices, as

there is only one observation. Due to this most authors assume that the earnings response

coefficient and the volatility of unexpected earnings are constant. This motivates our focus

on option-based estimators of anticipated uncertainty.

Next, consider the distributional features of returns under P. Deterministic jumps

have a different impact on the return distribution than randomly-timed jumps. To see

this, assume stochastic volatility is constant. In a randomly-timed jump model such as

Merton (1976), returns are a random sum of normal distributions, generating skewness

and kurtosis. For deterministically-timed jumps, the timing is known and so returns are

a non-random sum of normals. Naturally, if the earning’s jump volatility parameter were

unknown or if the jump sizes were non-normal, then the distributions would generally be

non-normal. For example, Beber and Brandt (2006) find that the distributional shape

changes after macroeconomic announcements, which implies in the context of our model

there is an asymmetric jump distribution in the T-bond futures market. Also note that

deterministic jumps generate predictable heteroscedasticity.

Our specification is intentionally chosen to be parsimonious, as we do not include other

potential factors such as randomly-timed jumps in prices or in volatility. We do this for

two reasons. First, we are primarily interested in the impact of earnings announcements

on option prices and, as we show below, the first-order effects of deterministically-timed

jumps are on the term structure of at-the-money (ATM) IV. ATM options are not par-

ticularly sensitive to randomly-timed jumps in prices or in volatility as these primarily

impact deep out-of-the money (OTM) options (see Broadie, Chernov, and Johannes (2005)

16Jiang and Johannes (2006) find evidence that the earnings response coefficient does not change over
time.
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or Bakshi and Cao (2004)). Second, unlike indices, there is little prima facie evidence for

the importance of randomly-timed jumps in prices or volatility. The existing option pricing

literature (cited above) documents that IV curves are flatter for individual equities than

for indices, indicating that jumps in prices are less important for individual equities than

for indices. The time series of returns provides similar intuition: unlike indices, which have

strong evidence for non-normalities (for the S&P 500 index, a kurtosis of about 50 and

a skewness of minus three), individual equities generally have little skewness and only a

modest amount of kurtosis. These modest levels of kurtosis are consistent with standard

stochastic volatility models.

2.2 Risk-neutral measure

To price options, we construct an equivalent martingale measure (EMM), Q, which implies
the absence of arbitrage. The pricing approach relies on insights in Piazzesi (2000) for

asset pricing with deterministically-timed jumps. Under Q, discounted prices must be a
martingale. This requires that prices are a martingale between jump times, which is the

usual restriction that the drift of St under Q is equal to rtSt. To be a martingale at the

jump times, the pre-jump expected value of the post-jump stock price is equal to the pre-

jump stock price, that is, that EQ £Sτj |Fτj−
¤
= Sτj− since interest rate accruals do not

matter.17 Given the jump specification above, this requires that EQ £eZj |Fτj−
¤
= 1.

To construct the measure, define dQ/dP = ξT and

ξt = exp

µ
−1
2

Z t

0

ϕs · ϕsds−
Z t

0

ϕsdWs

¶YNd
t

j=1
Xξ

τj
,

where ϕt = (ϕs
t , ϕ

v
t ) are the prices of W

s
t and W v

t risk and ξτj = ξτj−X
ξ
τj
is the jump

in the pricing density. To ensure that ξt is a P−martingale, ϕ and Xξ must satisfy mild

regularity conditions. For the diffusive components, we posit flexible risk premia of the form

ϕs
t = ηsVt and ϕv

t = − (1− ρ2)
−1/2 ¡

ρηs
√
Vt +

¡
μQt − μPt

¢
/σv
√
Vt
¢
where μQt = κQv (θ

Q
v − Vt)

and μPt = κv (θv − Vt). A sufficient condition for this to be valid is that the Feller condition

holds under both measures (see, Collin-Dufresne, Goldstein, and Jones (2005) or Cheridito,

17If βt = exp
³R t

0
rsds

´
, then by the definition of the integral, βt = βt− even if interest rates are a

discontinuous function of time. This implies that EQ
h
Sτj
βτj
|Fτdj −

i
=

Sτj−

βτj−
is equivalent to EQ

£
Sτj |Fτj−

¤
=

Sτj−.
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Filipovic, and Kimmel (2006)). This implies that volatility evolves according to

dVt = κQv
¡
θQv − Vt

¢
dt+ σv

p
VtdW

v
t (Q) .

To guarantee that ξt is positive and a P−martingale at jump times, we assume

Xξ
τj
=

πQ
¡
Zτj , τj−

¢
π
¡
Zτj , τj−

¢ .
This mild condition only requires that the jump densities have common support, since π

and πQ are both positive.

Unlike diffusion models, where only the drift coefficient can change (subject to regularity

conditions), in a jump model there are virtually no constraints other than common support.

This implies that, for example, certain state variables could appear under one measure that

do not appear under the other measure or that the functional form of the distribution could

change. Throughout, we assume that the jump sizes are state independent and conditionally

normally distributed under Q : πQ
¡
Zj|Fτj−

¢
∼ N

³
−1
2

¡
σQj
¢2
,
¡
σQj
¢2´
. This implies that

there is a single parameter indexing the jump distribution on each EAD, and estimating

σQj for each earnings date is the primary focus of the paper.

At this point, note that we need not make any assumptions about π, which, in particular,

implies that the volatility of jump sizes under P could be different and that the Zj could

evolve according to a regression like equation (2). It is also important to note that there is

no prima-facie evidence for a volatility of jump sizes risk premia (which would imply that

σQj 6= σj). This sort of risk premia (as opposed to a mean stock price premia) would manifest

itself as high returns to option writers around earnings announcements. We discuss this

issue below in the empirical section.

Under Q, prices evolve according to

dSt = rtStdt+
p
VtStdW

s
t (Q) + d

µXNd
t

j=1
Sτj−

£
eZj − 1

¤¶
where the jump size distribution is given above. For pricing ATM options, the total, an-

nualized, expected risk-neutral variance of continuously compounded returns is important

and it is given by

1

T
EQ
0

∙Z T

0

Vsds

¸
+

var
³PNd

T
j=1Zj

´
T

= θQv +
V0 − θQv
κQv T

³
1− e−κ

Q
vT
´
+

PNd
T

j=1

¡
σQj
¢2

T
. (3)

Appendix A derives the characteristic function and discusses numerical option pricing in

the stochastic volatility model with jumps on earnings dates.
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2.3 Estimating anticipated uncertainty

2.3.1 Motivating the estimators

To motivate our estimators, consider the simplifying case where volatility is constant:

ST = S0 exp

∙µ
r − 1

2
σ2
¶
T + σWT (Q) +

XNd
T

j=1
Zj

¸
, (4)

Zj = −12
¡
σQj
¢2
+σQj ε and ε ∼ N (0, 1). SinceWT (Q) and

PNd
T

j=1 Zj are normally distributed

(a non-random mixture of normal random variables is normal), continuously-compounded

returns are exactly normally distributed. This implies that the price of a European call

option struck at K and expiring in Ti days is given by the usual Black-Scholes formula with

a modified volatility input. If we let BS (x, σ2T , r, Ti, K) denote the usual Black-Scholes

pricing formula, the modified volatility input is

σ2t,Ti = σ2 + T−1i

XNd
Ti

j=1

¡
σQj
¢2
.

Before introducing the estimators, we can clearly see the main implications of earnings

announcements from this formula. First, assuming a single announcement to maturity,

the moment before an earnings release, annualized IV is σ2τj−,Ti = σ2 + T−1i

¡
σQj
¢2
, and

after the announcement it is σ2τj ,Ti = σ2. This implies there is a discontinuous decrease

in IV immediately following the earnings release. Second, as we approach an EAD, IV

increases and the rate of increase is proportional to T−1i . Third, holding the number of

jumps constant, the term structure of IV decreases as the maturity of the option increases.

We test these implications later, as they are the central implications of our reduced form

model.

This also suggests at least two ways to separately estimate σ and σQj . First, given two

options maturing in T1 < T2 days and a single EAD prior to maturity, then σ2t,T1 > σ2t,T2
and we can solve the two equations in two unknowns to estimate the earnings uncertainty,

¡
σQterm

¢2
=

σ2t,T1 − σ2t,T2
T−11 − T−12

,

where we have dropped the time subscript on σQj to simplify the notation. We label this

the term structure estimator.

The time series of IVs provides another method to estimate σQj . If there is a single

earnings announcement after the close on date t (or before the open on date t + 1), then
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the IV the day after the announcement is σ2, provided there are no other announcements

prior to option maturity. Solving for σQ, we define the time series estimator,¡
σQtime

¢2
= Ti

¡
σ2t,Ti − σ2t+1,Ti−1

¢
.

We use these estimators in our empirical work.

In order to understand the estimators, we consider an example for Intel. On April 18,

2000, Intel released earnings AMC. The first two options expired in 0.0159 and 0.0952, years

(roughly 4 and 24 days) and the Black-Scholes IVs were 95.80% and 65.89%, respectively.

In this example, we use the April and May expirations. The term structure estimator is

9.60%. The IV of the short-dated option falls to 55.31% the day after the announcement and

the time series estimator is therefore 9.86%. This example is typical with both estimators

pointing to a common effect, even though the term structure estimator uses only ex ante

information, while the time series estimator uses both ex ante and ex post information.

2.3.2 The impact of stochastic volatility

In this section, we evaluate how stochastic volatility could impact our estimators. Although

there is always sampling error when estimating any parameter, it is important to document

that stochastic volatility does not cause substantial biases in our estimates. The term

structure and time series estimators are technically correct only if volatility is constant.

Using implied volatilities calculated from the Black-Scholes model is not correct if volatility

is stochastic and stochastic and mean reverting volatility could introduce movements in

IV unrelated to earnings announcements, and therefore impact the estimates. Thus, our

estimates rely on two assumptions: that Black-Scholes implied variance accurately captures

future expected variance and that the time-variation is expected variance, across either the

term structure or across time, is small.

The first issue can be addressed using the insights of Hull and White (1987) and Bates

(1995). Under mild conditions on stochastic volatility, if shocks to volatility and returns

are independent, then the stochastic volatility option price is the expectation of the Black-

Scholes price where the Black-Scholes implied variance is expected integrated risk-neutral

variance, which is given by

σ2t,T = T−1i EQ
t

∙Z Ti

t

Vsds

¸
+ T−1i

¡
σQj
¢2
.
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Based on this, it is common to assume that Black-Scholes implied variance is an accurate

proxy for expected risk neutral variance, that is,
¡
σBSt,T

¢2 ≈ σ2t,T .

The errors in assuming that
¡
σBSt,T

¢2
= σ2t,T .are generally small for ATM index options,

and will be even smaller for individual equity options. Of course, the approximation errors

can be quite large for out-of-the-money options. For ATM options, Hull and White (1987)

find the errors are less than 1% with no leverage and only 1.6% when ρ = −0.6. The errors
are even smaller for shorter maturities, which we use. For index options, the leverage effect

is estimated to be around -0.4, and the papers cited earlier argue that the leverage effect

is much smaller for individual equities.

Jumps in prices also do not substantively bias the results. Merton (1976b) found that

the errors of using the Black-Scholes model with a properly adjusted variance were ex-

tremely small, again, for ATM options.18 Chernov (2006) quantifies the approximation in

models for index option pricing with non mean-zero jumps in prices, non-zero correlation,

and jumps in volatility and concludes the bias, for at-the-money options, is negligible. Any

errors are even smaller for individual equity options, as the references cited above indicate

that the leverage effect is smaller and the importance is less for individual equity than for

indices. Since all of estimators rely on the difference between Black-Scholes implied vari-

ances, any level biases are differenced out. Thus we conclude that assuming
¡
σBSt,T

¢2
= σ2t,T

does not introduce any substantive biases.

Next, to understand the specific impact of stochastic and mean reverting volatility, we

can compute, using the stochastic volatility model specified above, expected integrated

variance:

EIVt,Ti = T−1i EQ
t

∙Z t+Ti

t

Vsds

¸
= θQv +

Vt − θQv
κQv Ti

³
1− e−κ

Q
vTi
´
. (EIV)

Since EIVt,T1 does not necessarily equal EIVt,T2 , the term structure estimator could be

polluted by mean reversion in spot volatility and similarly for the time series estimator as

EIVt,Ti and EIVt+1,Ti−1 could be different. The main factors affecting the variation in in

EIVt,Ti are the speed of mean reversion (κ
Q
v ), option maturity (Ti), and spot variance (Vt).

18Merton was surprised how small the errors were: “What I did find rather surprising is the general level
of the magnitudes of the errors. For the smallest frequency value examined, the percentage of variation
caused by the jump component had to exceed forty percent before an error of more than five percent could
be generated... In summary, the effect of specification error in the underlying stock returns on option
prices will generally be rather small... However, there are some important exceptions...deep out-of-the-
money options can have very large percentage errors.” (p. 345). Tables 3a and 3b show the errors are
typically less than one percent for short dated options.
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For example, if there is no mean reversion, then EIVt,Ti = Vt. The main issue for the term

structure (time series) estimator is how much EIVt,Ti varies across maturity (time).

Appendix C provides a detailed discussion of the performance of the two estimators in

the presence of square-root stochastic volatility. We argue that the term structure estimator

is quite robust for a number of reasons: the term structure estimator does not depend on σv
or realized shocks; diffusive volatility is very persistent which implies that κQv is very small;

the term structure of implied volatility is flat, which implies that that θQv ≈ θPv and/or that

κQv is very small; and we use short-dated options which implies that T1 and T1 are small,

typically less than 2 months.

Putting the pieces together, this implies that EIVt,T1 ≈ EIVt,T2 . To get a sense of the

nature of the biases, consider the somewhat extreme case where spot variance is either twice

or half its long-run average. In the first case, Vt = 2θQv , θ
Q
v = 0.3

2, and assume T1 = 2/52,

T2 = 6/52, κQv = 2.5, σ
Q
j = 0.08. As we show later, this value for κ

Q
v is quite high relative

to estimates based on option prices which are less than 1. For this configuration, we

have σQterm = 0.0832. If spot variance is 50% of its long run value, Vt = θQv /2, θ
Q
v = 0.3

2,

σQterm = 0.0784. These biases are small in absolute terms, but also relative to the normal

noise involved with option prices. For example, typical bid-ask spreads on individual equity

options are at least $0.05 to $0.10 on options that are often worth less than $1 or $2. Thus,

bid-ask spreads could generate larger errors.

Finally, the time series estimator is far less robust as it relies additionally on the shock

realizations over the next day. Large shocks could introduce a significant amount of noise

into the time series estimator, which are directional: large positive shocks downward-bias

estimates more than large negative shocks IV upward-bias estimates. Although we report

both, we expect the time series estimator to be noisier.

2.4 Comparison to existing literature

Our paper relates to a number of different literatures in accounting and finance. First, a

number of papers use time series data to analyze how scheduled announcements affect the

level and volatility of asset prices. For individual firms, Ball and Brown (1968), Foster

(1977), Morse (1981), Kim and Verrecchia (1991), PW (1984), Penman (1984), and Ball

and Kothari (1991) analyze the response of equity prices to earnings or dividend announce-

ments, focusing on the speed and efficiency with which new information is incorporated into

prices. This literature also include an analysis of apparant anomalous movements around
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earnings announcements (e.g., Bernard and Thomas (1990) and Chari, Jagannathan, and

Ofer (1988)).

PW (1984) is of particular interest. They study the response of individual equity prices

to earnings announcements using transaction data and find that most of the price response

occurs in the first few minutes after the release. This is important because we argue that

earnings announcements can be reasonably modeled by a discontinuous component in the

price process.

In terms of descriptive time series analysis, there is little relevant work on earnings

announcements and equity price volatility. The one published paper, to our knowledge,

that deals with these issues is Maheu and McCurdy (2004), who analyze discrete-time

GARCH models with state-dependent jumps. They find that many of the jumps they

statistically identify occurred on EADs. For example, they report that 23% of the jumps

for Intel Corporation occurred on earnings dates. They introduce a model with randomly-

timed jumps and assume the jump intensity increases on earnings dates. Cheung and

Johannes (2006) analyzes stochastic volatility models with jumps on earnings dates and

randomly timed Poisson jumps. The main findings are threefold: (1) that individual firm

volatility is more persistent than index volatility; (2) that randomly timed jumps in prices

for individual firms have mean-zero jumps; and that (3) randomly-timed jumps in prices

are less important for individual firms than for indices.

Our paper is most closely related to PW (1979, 1981), who provide early descriptive

work on the time series behavior of IV around EADs. They develop a model without jumps

that uses a specification with deterministically changing volatility. They nonparametrically

test that volatility increases prior to and decreases subsequent to earnings announcements.

PW (1979) find mixed evidence using a sample of annual earnings announcements from

1974 to 1978, while PW (1981) find relatively stronger evidence using a sample of quar-

terly earnings announcements from 1976 to 1977. The main difference between this paper

and PW (1979, 1981) is that we focus on estimating σQj , taking as granted the primary

conclusion from PW that option prices contain information about earnings announcements.

It is important to contrast our model to the model in PW (1979, 1981). Their model re-

lies on an observation in Merton (1973) that the Black-Scholes model can handle determin-

istically changing diffusive volatility. They assume that volatility, σ (t) , is a non-stochastic

function of time. The Black-Scholes IV at time zero of an option expiring at time T is¡
σBSTi

¢2
= T−1i

R T
0
σ2 (s) ds = σ2 + T−1i σ2E, where σE is the volatility on the earnings date.
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Clearly, this delivers the result that annualized volatility increases prior to, and decreases

after, an earnings release.

Despite the fact that PW’s model generates similar implications in a simple extension

of the Black-Scholes model, there are crucial theoretical differences. PW specify contin-

uous sample path stock prices subject to increased diffusive volatility around earnings

announcements, whereas in our model, there is a sample path discontinuity. Since earnings

announcements are released after the market’s close, it is clear that these movements will

often lead to a jump in trading time. It also implies that PW’s model is complete, in the

sense that options can be perfectly hedged by trading in only the underlying equity and a

money market account. PW’s (1979, 1981) model is also in contrast to the findings in PW

(1984), who document the rapid reaction of the stock prices to earning announcements.

We provide empirical evidence, based on close-to-open returns, consistent with a jump in

economic time.

Unlike PW’s model, it is straightforward to incorporate stochastic volatility into our

model. An extension of PW incorporating stochastic volatility requires deterministically-

timed jumps in stochastic volatility with deterministic sizes, and it is far more difficult to

price options in this model as the characteristic function must be computed recursively, as

opposed to our model which possesses a closed-form characteristic function. Finally, PW’s

model does not allow σE to change across measures (as it is in the diffusion coefficient).

Our jump-based model allows for flexible risk premium specifications, as the absence of

arbitrage places few constraints on the jump distributions.

There are also crucial differences between our empirical work and PW’s. First, PW

focus solely on the time series behavior of IV, and do not analyze the term structure

implications. As we note above, our primary estimator and empirical work is based on the

term structure of IV. Second, PW do not estimate σQj , and that is the main focus of our

work. Third, PW implement all of their tests on volatilities, even though the relationships

are additive in variance, not volatilities (see PW (1981, p. 442)).

Donders and Vorst (1996), Donders, Kouwenberg, and Vorst (2000), and Isakov and

Pérignon (2001) apply PW’s approach to European options markets. Whaley and Cheung

(1982) argue that the informational content of earnings announcements is rapidly incor-

porated into option prices. Jiang and Johannes (2006) analyze a number of other issues

using a broader cross-section of data. They focus on the cross-sectional evidence for pre-

dicting future returns and volatility, for the relationship between anticipated uncertainty
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and post-earnings announcement drift, and the informational content of option implied

estimates of anticipated uncertainty vis-a-vis alternative measures which include analysts

dispersion, frequency of analyst forecasts, age of the firm, time series volatility of returns,

and the standard deviation of past earnings surprises.

Our model is also closely related to Hanweck (1994).19 Hanweck finds that unemploy-

ment announcement days are more volatile for Treasury bond and Eurodollar futures than

other days, and builds an announcement based jump-diffusion model to capture this effect.

Hanweck (1994) analyzes trading strategies around the announcements, and does not find

any systematic mispricing. Ederington and Lee (1996), Beber and Brandt (2006) analyze

announcement effects in the options on Treasury bond futures market. Ederington and Lee

document that IV falls after announcements. Brandt and Beber analyze the implied pric-

ing density in options around announcements and find that, in addition to IV falling, the

skewness and kurtosis change after announcements. Beber and Brandt (2005) relate these

changes to news about the economy and argue that this effect is consistent by time-varying

risk aversion. Beber and Brandt (2006) analyze options on macroeconomic announcements

and find that the macroeconomic uncertainty is closely linked to changes in bond option

implied volatility.

Our paper is closely related, at least on an intuitive level, to a number of formal asset

pricing models. Accounting based models such as Ohlson (1995) and Feltham and Ohlson

(1995) assume that the current equity prices are a linear function of accounting variables

such as abnormal current income. Ang and Liu (2001) extend these models to general

discrete-time affine processes, while Pastor and Veronesi (2003, 2005) build continuous-

time models assuming log-normal (as opposed to linear) growth in the accounting variables.

In these models, the anticipated uncertainty over firm fundamentals (earnings, profitabil-

ity, etc.) impacts prices and is important for valuation (see Pastor and Veronesi 2005).

Fundamental uncertainty in the form of parameter or state variable uncertainty plays an

important role in the learning models of Morris (1995), David and Veronesi (2002), Veronesi

(2003), and Brav and Heaton (2002).

Pastor and Veronesi (2003, 2005) use firm age as a proxy for the uncertainty in prof-

itability while Jiang, Lee and Zhang (2006) and Zhang (2006) use variables such as firm age,

return volatility, firm size, analyst coverage, or the dispersion in analyst earnings forecasts.

19I would like to thank Bob McDonald for pointing out Hanweck (1994), which is an unpublished Ph.D.
dissertation.
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Our empirical work below extracts a market-based estimate of the uncertainty at earnings

announcements, thus providing an alternative source of information about the anticipated

uncertainty regarding a firm’s fundamentals.

3 Empirical Evidence

We obtain closing option prices from OptionMetrics for the period from 1/2/1996 to

12/30/2004. OptionMetrics is now the common data source for individual equity option

prices and has been used in a number of recent papers (e.g., Ni, Pearson, and Potesh-

man (2005), Carr and Wu (2005), Driessen, Maenhout, and Vilkov (2005)). OptionMetrics

records the best closing bid and offer price for each equity option contract traded on all

U.S. exchanges. One disadvantage of this data source is that it uses close prices, as opposed

to transaction prices. Unfortunately, this is the only widely-available source of option price

data since the close of the Berkeley Options Database in 1996. Intraday data is not publicly

available.

Due to concerns about microstructure issues such as bid-ask spread and non-synchronous

trading between the underlying and option price, we focus on the most actively traded firms.

Out of all possible firms, we use the following criterion to select 20 firms for analysis. For

the period from 1996 to 2004, we found the 50 firms with the highest dollar volume that

traded in every quarter. Next, we eliminate firms with a median dividend rate of more

than 0.75%, firms whose stock price traded below $5, firms involved in major mergers and

acquisitions, and ADRs. The focus on low dividend stocks minimizes any problems associ-

ated with pricing options on high-dividend stocks. Unlike equity indices, whose dividend

payments are usually modeled as continuous, dividends on individual equities are “lumpy.”

Regarding the low-priced stocks, there are numerical issues when computing IVs for stocks

that trade below $5 because strikes are usually in either $1 or $2.5 increments, implying

that options are often either extremely deep in or out-of-the-money and not particularly

sensitive to IV.

We also eliminate firms that underwent massive mergers over the sample, for example,

AOL-Time Warner, Exxon-Mobil and Hewlet-Packard. As shown by Subramanian (2004),

merger activity generates severe movements in IV related to the timing of the merger, the

uncertainty of the merger, and the relative sizes of the companies. These are largely unre-

lated to earnings announcements, and create havoc for our estimators which assume there
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are no other major predictable events over the life of the options. Of course, option prices

will also move based on merger and acquisition rumors. From a practical perspective, it

is also very difficult to formally account for mergers or acquisitions since deal announce-

ment and deal close dates would be required. To avoid these issues, we eliminate the firms

that underwent extremely large mergers. Since merger and acquisition activity introduce

movements in IV unrelated to earnings, it should generally have a negative impact on our

estimates as it only introduces additional noise. For these remaining firms, we computed

the average dollar trading volume and took the twenty highest firms.

The selection criteria result in the following firms, with their ticker symbols in parenthe-

ses: Apple Computer (AAPL), Altera (ALTR), Applied Materials (AMAT), Applied Micro

Devices (AMD), Amgen (AMGN), Cisco Systems (CSCO), Dell Computer (DELL), Home

Depot (HD), International Business Machines (IBM), Intel (INTC), KLA Tencor (KLAC),

Microsoft (MSFT), Micron Technology (MU), Maxim Integrated Products (MXIM), Mo-

torola (MOT), Novellus Systems (NVLS), Oracle (ORCL), Qualcomm (QCOM), Texas

Instruments (TXN), and Wal-Mart (WMT). With the exception of AMGN which is a

pharmaceutical company and HD and WMT, all of the firms are in technology related

industries. AAPL, DELL, and IBM are computer makers; MSFT and ORCL are software

companies; and ALTR, AMAT, AMD, INTC, KLAC, MU, MXIM, MOT, NVLS, and TXN

are semiconductor companies.

For these firms, we download option price information (strike, maturity, implied volatil-

ity, etc.) for all available option contracts. The implied volatilities are based on the

midpoint of the best bid and offer prices, and are adjusted for dividends and the Amer-

ican feature. We eliminate any strike/maturity combinations with zero volume, zero IV,

or maturities of greater than one year. We next eliminate options with less than three

days to maturity, as microstructure issues can be magnified with extremely short-dated

options. For example, bid-ask spreads often become very large as a percentage of the op-

tion price. Eliminating options with very short maturities potentially has two negative

effects on our results. First, short-dated options are the most informative about earnings

announcements, and replacing them with less informative longer dated options would have

a negative effect on our results. Second, longer-dated options have lower trading volume

and higher bid-ask spreads, which also should, if anything, adversely impact our results.

The impact of removing these options is minor, as none of our results change either quan-

titatively or qualitatively if we include these short-dated options. The results are available
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upon request.

For every day in our sample and every expiration date, the options were sorted by

moneyness. Based on this sort, we record the IVs for the three strikes that are closest to

the money. We focus on ATMmoney options because they are the most actively traded and

provide the cleanest information on expected volatility. For each strike and maturity, the

IVs of the call and put need not be identical, due to the American feature or microstructure

noise such bid-ask spreads or stale quotes. Since OptionMetrics reports close prices, stale

option quotes are a particular concern. For example, Battalio and Schultz (2006) argue

that the presence of stale option quotes biases tests of put-call parity. To minimize this

effect, we average the IV of the call and put options for the strike that is closest to-the-

money for a given maturity, which mitigates a large portion of any stale quote problem.20

If the differences in call and put IV are extremely large, we eliminate this maturity from

our dataset.

Our estimators require both the date and exact time of the earnings announcement.

Nearly all earnings announcements are either after market close (AMC) or before market

open (BMO). We obtain earnings announcement dates and/or times from multiple sources:

Thomson-First Call, IBES, Compustat, and Fulldisclosure.com. We found that there was

substantial disagreement over the dates and/or exact release times.21 If any of sources

disagreed over the date or time of an announcement, we used Factiva to find the news

release to obtain the correct data and time. The earnings date is defined as the last closing

date before earnings are announced. The vast majority of the announcements were AMC

instead of BMO.

Earnings dates occur in a very predictable pattern. For example, Intel announces earn-

ings on the second Tuesday of month following the end of the calendar quarter. Cisco’s

quarters end one month later than most firms, and they typically announce on Tuesday

20Too see how this removes a large portion of the issues with respect to stale quotes, consider the following

example. Suppose that you have at-the-money call and put option with T − t = 1/12, St = $20,σ = 20%
and the interest rate is 5%. The call and put prices are $0.5024 and $0.4193. If we assume that option
quotes do not change (they are priced assuming the stock price is $20) and that the closing stock price
is actually $20.10, the IVs are not 20 percent, but rather 22.28 for the call and 17.918 for the put. This
generates a serious problem for tests of put-call parity, such as those in Battalio and Shultz (2006). Our
procedure of averaging the call and put IVs, generates an implied volatility of 20.09 percent, which is very
close to the true IV. In practice, averaging also reduces problems with bid-ask spreads. Pan and Poteshman
(2006) use a similar procedure.
21We thank James Knight of Citadel Asset Management for pointing these database errors out to us.
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of the second week following the end of the quarter. Based on our data, it is not possible

to generically confirm that the actual earnings dates correspond to the exact dates that

were ex ante expected. There are three factors that lead us to believe this is not a serious

concern. First, Bagnoli, Kross, and Watts (2002) find that from 1995 to 1998 there was an

increase in the number of firms announcing on time and large firms with active analyst cov-

erage tend to miss their expected announcement date less often than smaller firms. Second,

we searched Factiva for each earnings announcement for possible evidence of missed dates

yet did not find any evidence of missed anticipated earnings dates. Given both the short

sample and the relatively large sized firms in our sample, this is not surprising. Third, as

discussed in Appendix A, the exact timing is immaterial if there is uncertainty regarding

the date, provided the distribution of jump sizes does not change.

Options expire on the third Friday of every month. For all firms, the majority of options

traded are in the shortest maturity expiration cycle, until a few days prior to expiration,

when traders commonly “roll” to the next maturity cycle. Since firms’ quarterly earnings

announcements are dispersed over a three to four week interval, the time-to-maturity of

the options on the EAD varies across firms. In principle, one could create a composite,

constant-maturity observation by interpolating between different strikes and maturities.

This cannot be done in our setting because interpolation is problematic in sharply-sloped

term structure of IV environments as it requires an arbitrary weighing of each observation.

This would severely blur the impact of earnings announcements, as it would average out

the precise differences in IV across maturities we seek to explain.

Table 1 provides basic summary statistics for the firms in our sample. The first thing

to note is how high earnings day volatility (column 3) is relative non earnings day volatility

(column 4). In terms of variance ratios (column 5), they average over five and one firm,

IBM, is 13.88. This implies that one earnings date delivers more than 5 days worth of

variance on average. To put this into context for IBM, this implies that 18.3% of the total

annualized variance of returns is due to four days per year. For other firms, roughly 8% of

total variance arrives on the four earnings dates. Thus, earnings announcements explain a

large, disproportionate share of volatility.

Our model for earnings announcements returns assumes that, conditional on volatility,

returns are normally-distributed. However, since volatility changes across EADs, returns

will be non-normal. Columns 6 and 7 document that there are some mild non-normalities

on earnings date, as expected. Finally, the last two columns display non-normalities for the
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non earnings dates. As mentioned earlier, we only consider pure stochastic volatility models

and do not consider models with randomly-timed jumps in returns. Prima facie evidence

for jumps in returns is often a strong asymmetry or excess kurtosis in the distribution of

equity returns. For example, it is common for broad equity indices such as the S&P 500 to

have significant negative skewness and positive kurtosis, indicative of rare jumps that are

very negative.

Table 1 indicates that there are not strong unconditional non-normalities in our sample,

with the exception of APPL and to some extent HD. The levels of non-normalities are

consistent with standard stochastic volatility models which generate kurtosis in the range

of five to 10. Even if there were random jumps, the lack of strong skewness indicates that

they are close to mean-zero, and the results of Merton (1976b) indicate that this will not

impact our options based estimators, as we use ATM options.

The lack of non-normality for individual firms should not be surprising. The average

daily volatility across firms is about 4%, which implies that a three standard deviation

confidence band is ±12%. Normal time-variation in volatility could explain most of the
large moves without requiring jumps. This is in strong contrast to equity indices, which

have relatively low daily volatility (for the S&P 500, 1%) but have very large moves relative

to this volatility (i.e., the crash of 1987). This is consistent with the observation in Bakshi,

Kapadia, and Madan (2003), that IV curves for individual equities are quite flat across

strikes compared to those for aggregate indices.

Finally, Appendix C provides an intuitive test of our central modeling assumption:

that earnings announcements induce a jump or discontinuity in economic trading time.

Intuitively, jumps are outliers, or rare movements. Utilizing close-to-open and open-to-

close returns, we find that the standard deviation of close-to-open returns on earnings

days is more than three times higher than on non-earnings days, indicative of outliers or

“abnormally” large movements on earnings days. The standard deviation of open-to-close

returns is only slightly higher for earnings days. This is consistent with the presence of

jumps induced by earnings announcements and largely inconsistent with the continuous

sample path model in PW (1979, 1981).

3.1 Nonparametric tests

The anticipated uncertainty estimators assume the reduced formmodel incorporating deter-

ministic jumps is a reasonable description of reality. In this section, we provide formal tests
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EAD Rank EAD NonEAD Var EAD EAD NonEAD NonEAD

Vol Vol Ratio Skew Kurt Skew Kurt

AAPL 16 8.62 3.69 5.46 0.05 5.59 -3.19 74.64

ALTR 20 7.97 4.46 3.19 -0.15 6.31 -0.05 8.57

AMAT 10 5.94 3.86 2.37 0.79 6.52 0.21 7.35

AMD 12 9.99 4.39 5.19 0.28 6.17 -0.31 12.15

AMGN 13 5.45 2.63 4.31 -0.50 6.18 0.09 8.27

CSCO 1 6.74 3.25 4.32 0.53 7.34 0.06 9.06

DELL 6 7.09 3.21 4.87 -0.51 6.02 -0.10 8.25

HD 15 4.71 2.41 3.80 -0.74 6.41 -1.28 25.85

IBM 4 7.64 2.05 13.90 -0.37 5.47 0.12 8.37

INTC 3 6.98 3.01 5.38 -0.12 7.02 -0.40 10.33

KLAC 18 6.39 4.37 2.13 -0.26 6.55 0.28 7.59

MOT 14 9.35 3.09 9.15 -0.56 6.27 -0.37 11.25

MSFT 2 6.45 2.26 8.11 0.13 6.64 -0.16 8.85

MU 11 8.18 4.30 3.62 -0.52 6.63 0.06 7.89

MXIM 19 7.14 3.95 3.27 -1.69 9.10 0.29 7.35

NVLS 17 10.65 4.37 5.94 -0.68 7.69 0.41 8.28

ORCL 5 11.24 3.52 10.19 -0.63 7.72 0.06 8.85

QCOM 7 9.18 3.89 5.58 0.74 8.23 0.19 8.68

TXN 8 7.59 3.47 4.69 -0.11 6.91 0.20 6.98

WMT 9 3.01 2.10 2.05 -0.41 3.65 0.07 8.09

Table 1: Summary statistics for the underlying returns for the firms in our sample for

the period January 1996 to December 2004. The columns are as follows: option volume

rank, earnings announcement day volatility, non earnings announcement day volatility, the

variance ratio between returns on earnings and non-earnings announcement days, the EAD

return skewness, the EAD return kurtosis, the non-EAD return skewness, and non-EAD

return kurtosis. The kurtosis statistics is the raw statistics, not excess kurtosis.
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of three main implications of the model: (1) IV increases prior to an earnings announce-

ment; (2) the term structure of IV is downward sloping just prior to the announcement;

and (3) IV decreases subsequent to the announcement.

The statistical tests we use are the Fisher sign test and Wilcoxon signed rank test,

which test whether or not a series of observations are positive or negative. Hollander and

Wolfe (1999) provide a textbook discussion of the tests. The tests are nonparametric in

the following sense. Under the null of no difference in IV (earnings announcements have no

impact) the Wilcoxon signed-rank test assumes the distribution is symmetric around zero,

while the Fisher test assumes the median is zero. The tests are nonparametric in that they

place no other restrictions on the distribution other than independent observations and the

symmetry/median restriction. For example the shape (normal versus t-distribution) and

variance could change from observation to observation. We naturally use the one sided

tests to examine whether volatility increases or decreases, depending on the implication.

We follow PW (1979, 1981) who also used the Fisher and Wilcoxon tests, in their case,

to analyze implications (1) and (3). Our implementation is different from PW because

we use differences in variance (as opposed to volatilities), as this is the implication of the

model. The Fisher test gives the same result using either volatilities or variances, as it only

depends on signs and is invariant to monotonic transformations.

It is important to understand how the presence of stochastic volatility could affect these

tests. Stochastic volatility models assume that Vt moves around independently of earnings

announcements, mean-reverting with random shocks. Thus, even if earnings announce-

ments are important, normal time-variation in volatility could result in either an increase

or decrease in volatility prior to an EAD, an increasing or decreasing term structure of IV

at an EAD, or an increase or decrease in IV subsequent to an EAD. Thus, stochastic volatil-

ity would introduce additional noise, biasing our tests toward not rejecting, increasing the

chances of Type II errors (not rejecting a false null). If, however, anticipated uncertainty

plays a dominant role (as Figure 1 would suggest), the stochastic volatility should have little

effect as the time or maturity variation in EIVt,Ti is swamped by the impact of anticipated

uncertainty.

To implement the tests, we use average call and put IV for the closest to-the-money

strikes. For the time series tests, we are always careful to insure that we are comparing

changes in IV for the same expiration cycle, so that we do not switch from one maturity

to another. We always use the changes in IV for the shortest maturity option such that
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on the EAD there is more than three days to maturity. The results are even stronger if

we use options maturing in less than three days. To test the increase prior to earnings we

use a two week change in ATM IV, although the results are the same if we use the change

over one week. For the decrease in IV, we use the one day change from before to after the

earnings announcement. If data is missing for the shortest-dated maturity, we move one

day in either direction. For the term structure tests, we use ATM options for the first two

available maturities.

Table 2 reports the test p−values for the three hypotheses. The tests reject all of the
hypotheses at conventional levels of significance, with the only exceptions the Fisher term

structure test for WMT. As we will see in the next section, WMT has the lowest anticipated

uncertainty of all firms, and therefore, stochastic volatility will introduce relatively more

noise for WMT than other firms. Such strong rejections are surprising given our relatively

small sample size (36 earnings dates) and provide support for our reduced-form model and

the importance of jumps on EADs. The results are strongest for the highest volume firms

in our sample. For CSCO, DELL, IBM, INTC, MSFT, and ORCL, the highest p-value is

4.36× 10−5. The first test is the most likely to be noisy due to stochastic volatility as the
standard deviation of two week changes is quite large.

One potential concern is that the increase in IV and declining term structure of IV

prior to earnings could be driven by issues related to expiration cycles: as the time-to-

maturity decreases, option IV tends may increase. There are three reasons this is not a

major concern. First, and most importantly, if this is the case, it would have a mixed

impact on our tests. While it would bias the pre-earnings increase and term structure test

towards rejection, it would have the opposite effect on the time series test subsequent to

earnings, as the maturity bias would increase IV rather than decrease it. The fact that the

time series test of no decrease in IV subsequent to an EAD is rejected for every single firm,

and that the p−values for the decrease tend to be the lowest of the three tests, implies that
this is not a particularly important issue.

Second, none of our conclusions change if you remove all options with a maturity of

less than one week. For both individual firms and for the pooled data, the tests still

overwhelmingly reject the null of no effect. Third, many of the firms with the lowest

average time-to-maturity (INTC or CSCO) are those with the highest volume implying

that any liquidity effects (which could explain the PW finding) in short-dated options will

be minimal. For firms with a long average time-to-maturity such as IBM, MSFT and ORCL
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Increase Prior to EAD Term Structure at EAD Decrease after EAD

Wilcoxon Fisher Wilcoxon Fisher Wilcoxon Fisher

AAPL 6.03E-7 6.46E-6 3.73E-7 1.14E-7 1.08E-7 9.71E-9

ALTR 4.89E-5 1.56E-4 2.42E-6 9.71E-6 1.32E-6 1.14E-7

AMAT 5.57E-7 9.71E-9 1.25E-7 1.05E-9 8.4E-8 1.46E-11

AMD 1.54E-6 9.71E-9 6.77E-5 1.16E-3 8.4E-8 1.46E-11

AMGN 1.51E-2 1.44E-2 2.08E-6 9.71E-9 1.18E-7 5.38E-10

CSCO 3.44E-7 1.14E-7 8.4E-8 1.46E-11 8.4E-8 1.46E-11

DELL 1.37E-5 6.46E-6 2.69E-8 1.05E-9 1.08E-7 5.38E-10

HD 1.49E-3 5.97E-4 7.32E-6 3.83E-7 1.66E-6 9.71E-9

IBM 6.03E-7 5.38E-10 5.75E-7 2.04E-9 8.4E-8 1.46E-11

INTC 8.4E-8 1.46E-11 1.46E-11 5.38E-10 8.4E-8 1.46E-11

KLAC 7.95E-4 1.97E-3 5.42E-4 5.97E-4 2.49E-7 6.46E-6

MOT 1.66E-6 1.14E-7 3.8E-6 5.46E-6 1.27E-5 1.46E-11

MSFT 5.44E-6 6.46E-6 3.02E-6 3.48E-5 7.07E-7 1.46E-11

MU 1.37E-5 9.71E-9 1.06E-6 2.31E-7 8.4E-8 5.38E-10

MXIM 3.92E-2 1.44E-2 1.68E-5 9.71E-7 1.27E-5 6.46E-6

NVLS 2.24E-6 9.71E-9 3.0E-5 5.84E-5 7.07E-7 1.14E-7

ORCL 1.54E-6 1.14E-7 4.36E-5 3.83E-7 8.4E-8 1.46E-11

QCOM 3.54E-6 0.0144 1.24E-7 2.91E-11 2.7E-7 1.14E-7

TXN 4.15E-3 1.97E-3 9.38E-7 2.09E-7 3.18E-7 9.71E-9

WMT 3.78E-6 1.14E-7 0.0195 0.148 6.53E-7 1.14E-7

Table 2: Wilcoxon and Fisher nonparametric test p-values testing the increase in implied

volatility in the two weeks prior to an earnings announcement, the decreasing term structure

of implied volatility prior to the earnings announcements, and the decrease in implied

volatility after the earnings announcement.
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(20, 20, and 13 days, respectively), the tests strongly reject. Thus, time-to-maturity biases

could not explain our results.

It is difficult to imagine an alternative to our explanation for the strong predictable

behavior in IV. One potential explanation is Mahani and Poteshman (2005), who document

that retail investors increase holdings of options on growth stocks prior to EADs. If supply

is not perfectly elastic, increases in investor demand translate into increases in prices and IV

(see also Garleanu, Pedersen, and Poteshman (2005)). If, for some reason, retail investors

were to sell their entire positions the following day (and there is no evidence this occurs),

prices and IV would similarly fall subsequent to the earnings announcement. Could the

demand of retail investors generate the magnitudes observed in the data? For example,

in the Intel example, could retail investor behavior generate the pattern in IVs in the

introduction, whereby the first two IVs were 95% and 65% and the short-dated volatility

falls to 55%?

We find it implausible that retail investors have this great of an impact for three reasons.

First, returns on EADs are far more volatile than returns on other dates. This naturally

leads to an increase in IV prior to and decrease in IV subsequent to an EAD as shown by our

model. Second, retail investors make up a small portion of option market volume (about

10-15% according to Mahani and Poteshman (2005)). Third, while net demand factors are

statistically important, it is unlikely that they could explain the large movements in IV

around earnings dates. The results in Bollen and Whaley (2004) indicate that net buying

pressure of calls and puts significantly impacts changes in IV, but Garleanu, Pedersen, and

Poteshman (2005) find that the magnitude of the effect to be quite small. For the S&P 500

index, doubling open interest in a day increases IV by 1.8%, which is within the bid-ask

spread, and they find the impact is smaller for individual stocks.

Overall, the results provide extremely strong statistical evidence in support of our

reduced-form model and its main implications. Option IV increases leading into earnings

announcements, the term structure declines for the first two maturities, and IV decreases

subsequent to the earnings announcement. Given this support, we next turn to the analysis

of the anticipated uncertainty estimators.
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3.2 Characterizing anticipated uncertainty

3.2.1 Anticipated uncertainty estimates

Tables 3 and 4 summarize the term structure and time series estimates using the same data

that was used in the previous section. For each firm, we report summary statistics of the

estimates for each company over time (mean, median, standard error, and quantiles). All

numbers are in volatility units which is conservative due to Jensen’s inequality.22

Table 3 indicates that anticipated uncertainty estimates using the term structure ap-

proach are large, both economically and statistically, which is consistent with the earlier

nonparametric tests. Across firms, the average anticipated uncertainty is 7.93% and for

nearly all firms, the mean is greater than the median, indicating that anticipated uncer-

tainty has positive skewness. The upper quantile indicates that the anticipated uncertainty

can be quite large: an anticipated uncertainty of 12% implies that an expected 3 standard

deviation confidence band is ±36%. This implies that the large moves observed around
EADs may be largely anticipated. The estimates also vary across firms.23 AMD, MU,

and ORCL averaging over 10%, while WMT average on 3.4%. One obvious explanation

for the differences is that retailers release monthly sales data, so there is substantially less

uncertainty for these firms.

The large anticipated uncertainty estimates can easily explain the spikes in Figure 1.

Consider the following example. Assume the annualized diffusive volatility is constant

at 40%, which implies the daily diffusive volatility is about 2.5% (0.40/
√
252). If the

anticipated uncertainty is 10%, then the annualized IV of an ATM option expiring in

one-week is about 92% prior to the announcement and then subsequently falls to 40%.

To quantify the economic impact, consider an ATM call and straddle position with

one-week to maturity (τ = 1/52), an interest rate of 5% and St = 25. Prior to the

announcement, the call and straddle values were about $1.53 and $3.03, respectively. As-

suming the stock price did not change the following day, the prices after the announcement

22Jensen’s inequality implies that the average of the standard deviations is less than the square root of
the average variances since ⎛⎝N−1

NX
j=1

σj

⎞⎠2

< N−1
NX
j=1

σ2j .

23Jiang and Johannes (2006) provide a detailed analysis of the cross-sectional information contained in
fundamental uncertainty estimates using a large cross-sectional sample.
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Term Mean Median Std. Error 25% 75% Err1 Err2

AAPL 8.83 8.33 0.52 6.73 10.21 2 0

ALTR 9.60 9.42 0.88 6.91 11.44 3 0

AMAT 8.85 9.22 0.44 7.05 10.32 0 0

AMD 10.65 10.41 0.67 8.32 12.92 0 0

AMGN 5.75 5.44 0.41 4.74 6.86 1 0

CSCO 8.50 7.50 0.60 6.14 10.90 0 0

DELL 7.57 7.61 0.53 5.44 9.20 1 0

HD 5.05 4.85 0.32 4.18 5.47 2 0

IBM 6.31 5.44 0.40 4.83 7.76 0 0

INTC 8.29 7.53 0.45 6.61 9.34 0 0

KLAC 7.32 6.07 0.77 4.05 9.79 4 0

MOT 9.27 9.27 0.68 6.65 11.28 0 0

MSFT 5.17 5.29 0.36 3.87 6.49 0 0

MU 10.71 9.85 0.83 6.47 13.65 1 0

MXIM 8.11 7.59 0.67 5.66 9.55 5 1

NVLS 8.54 7.56 0.66 5.92 10.48 3 0

ORCL 10.09 9.55 0.69 7.49 11.31 0 0

QCOM 8.58 7.71 0.74 5.56 11.17 3 1

TXN 7.70 7.21 0.56 5.16 9.49 2 0

WMT 3.40 2.99 0.41 2.18 3.75 3 0

Pooled 7.93 7.30 0.15 5.12 10.17 1.5 0.05

Table 3: Fundamental uncertainty estimates using the term structure approach. The

columns provide (from left to right), the mean estimates volatility across earnings dates,

the median estimate, the standard error of the mean, the 25 percentile, and the 75 per-

centile. Err1 counts the number of days in which σt,T1 < σt,T2 and Err2 counts the number

of days where σt,T1 − σt,T2 < −5%.
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fall to $0.68 and $1.65, an almost 50% decrease due to the drop in volatility. If, however,

the stock price fell 20% (a two standard deviation move), then the positions are worth $0.0

and $5.03. For the straddle, the loss is almost 40%, showing the severe risks associated

with writing options around EADs. We will discuss the evidence on option returns around

earnings dates below.

The last two columns in Table 3 decompose any problem dates. The column labeled

Err1 counts the number of EADs for which σt,T1 < σt,T2, in contrast to our maintained

assumption. The results indicate that on average there are 1.5 problematic announcements

per firm out of 36. A small number of errors are not at all surprising for a number of reasons.

First, they are not evenly distributed, as the five largest firms, CSCO, IBM, INTC, MSFT,

and ORCL had no problem dates and 19 of the 30 problem dates occurred for the five

firms with the lowest trading volume (AAPL, ALTR, KLAC, MXIM, and NVLS). This

suggests that microstructure or liquidity issues are likely responsible. Second, though rare,

the magnitudes of these errors were also extremely small. Err2 counts the number of these

errors for which σt,T2 − σt,T1 > 5%. Out of the 30 errors, only two were greater than 5%.

As a comparison, option bid-ask spreads for the maturities we use are around 5%, in terms

of IV. This is especially be relevant for firms with low anticipated uncertainty (HD and

WMT), as the differences in IVs for options on these firms are smaller. Finally, the time

series estimator was positive for two-thirds of the error dates. Together, this indicates

that the errors in the term structure estimator are likely driven by microstructure or data

recording errors.

Table 4 provides the time series estimator results. The times series estimates are quan-

titatively and qualitatively similar to the term structure estimates. The average term

structure estimate across firms is 7.93%, compared to 7.76% for the time series estimate,

which is not statistically different. Again, the means are larger than the medians, indicat-

ing positive skewness. The fact that averages are not statistically or economically different

indicates that were are capturing a strong common effect. Also, if either the term structure

or time series estimators had biases, the estimators would generate different results, which

they do not. This is reassuring.

The correlation between the time series and term structure estimates are also high. The

correlation across firms of the mean anticipated uncertainty estimates using the two meth-

ods is 92%. To decompose the correlations a bit further, column 6 in Table 4 provides the

within firm, across time correlation between the term structure and time series estimates,
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Time Mean Median Std. Err 25 75 Corr1 Err1 Err2 No Data

AAPL 9.23 8.35 0.75 6.16 11.15 48.5 3 0 0

ALTR 9.49 9.00 0.76 6.24 12.14 77.2 4 1 0

AMAT 9.76 10.22 0.51 6.98 11.70 57.6 1 0 1

AMD 12.60 12.16 1.56 8.40 13.95 33.4 6 1 7

AMGN 5.40 5.14 0.41 4.03 7.00 32.2 2 1 0

CSCO 8.05 7.35 0.50 5.58 9.46 88.2 0 0 0

DELL 7.83 8.05 0.50 6.04 9.49 68.3 1 0 1

HD 4.30 3.74 0.35 3.11 4.85 85.7 3 1 2

IBM 6.41 6.02 0.47 4.86 8.54 73.9 1 0 2

INTC 7.83 7.04 0.52 5.87 9.17 73.2 1 1 0

KLAC 7.22 6.37 0.69 4.85 9.49 71.5 8 3 0

MOT 8.72 8.84 0.61 6.49 11.07 88.9 4 1 3

MSFT 6.25 5.68 0.40 4.97 7.32 53.7 6 1 0

MU 9.44 9.06 0.59 8.10 11.26 49.6 2 0 5

MXIM 6.47 6.05 0.57 4.99 7.55 73.5 4 2 0

NVLS 7.94 7.49 0.62 5.54 10.02 55.1 6 3 1

ORCL 8.90 8.75 0.68 6.41 10.96 73.0 3 2 2

QCOM 8.66 7.73 0.61 6.19 10.48 85.6 0 0 1

TXN 6.94 6.04 0.52 4.77 9.32 73.0 3 0 1

WMT 3.25 2.46 0.59 1.65 3.84 82.3 13 0 3

Pooled 7.76 7.07 0.16 5.09 9.89 69.4 3.55 0.85 1.45

Table 4: Fundamental uncertainty estimates using the time series approach. The columns

provide (from left to right), the mean estimates volatility across earnings dates, the median

estimate, the standard error of the mean, the 25 percentile, and the 75 percentile. Corr1
gives the within firm correlation between the time series and term structure estimator,

conditional on both existing. Err1 counts the number of days in which σt,T1 < σt,T2 and

Err2 counts the number of days where σt,T1−σt,T2 < −5%. The column labeled “No Data”
indicates that there were not options available that satisfied the requirement for computing

the time series estimator.
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conditional on both estimates being positive. In general, the correlations are quite high

and the pooled correlation is 69.4%.

An analysis of problematic dates for the time series estimator reveals that the time

series estimator is less reliable than the term structure estimator for two reasons. First,

looking at the error columns in Table 4, we see that the overall error rate for the time series

estimator is more than twice the rate for the term structure estimator. More importantly,

the there are now more dates on which σt,T1 is substantially lower than σt,T2 . As in the case

of the term structure estimator, both the total errors and the large errors are concentrated

in the lower volume firms (KLAC, MXIM, and NVLS). Second, there are now a number of

dates on which we not able to find implied volatilities before and after the announcement

for the same maturity. These were heavily concentrated in the beginning of the sample. For

example, seven of the first ten EADs for AMD resulted in no available pairs for estimation

and 23 out of the 29 problem dates were in the first three years of the sample.24 The

increased error rate for the time series estimator is also consistent with the arguments in

Appendix C, which document that firms with very high volatility (e.g., KLAC, MXIM,

AMD, NVLS) or very low anticipated uncertainty (e.g., WMT) will have noisier time series

estimates.

In what remains, we use only the term structure estimates of anticipated uncertainty

because they are far more accurate and the are based solely on ex ante data.

3.2.2 Information content of anticipated uncertainty

Given the estimates of σQj , we can investigate a number of interesting implications including

time-variation of anticipated uncertainty and risk premia, the informational content of the

jump-volatility estimates, and model specification.

We note that there is an interesting time-variation in the jump volatilities. Table 5

provides a year-by-year summary of the estimates using the term structure method for

each firm in our sample. Across firms, we find that the expected, ex ante uncertainty

associated with earnings announcements was highest in 2000-2002 and was significantly

lower in 1996-1999 and 2003-2004. The magnitude of the effect is substantial: the average

24One explanation for this is that prior to August 1999, options were not cross-listed on different ex-
changes. The practice was changed after a Department of Justice lawsuit in summer of 1999 accused the
major exchanges of collusion in restricting listings to only one exchange. After 1999 OptionMetrics can
use the best bid and offer from all four major exchanges, reducing and data errors.
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in 2000-2002 was 39% higher than in the other years.

This time-variation in anticipated uncertainty is closely related to Pastor and Veronesi

(2005) in two ways. First, in their simple model, investors learn about a fixed parameter,

and because of this uncertainty declines monotonically for a given firm across time. Our

results indicate that anticipated varies substantially within a firm across time. This could

be easily accommodated in a straightforward extension of Pastor and Veronesi (2005) that

allows for the mean-level of profitability to be a mean-reverting state variable, as in Veronesi

(2003). Second, Pastor and Veronesi (2005) argue that aggregate uncertainty regarding firm

profitability was much higher around 2000 than in other periods and this uncertainty can,

to a large extent, explain observed valuations. In a time series analysis of the NASDAQ

Composite index, they find that the implied uncertainty is an order of magnitude higher

in 1999-2001 (see, e.g., their Figure 8). We also find that uncertainty over fundamentals,

as measured by σQj , was higher in 2000-2002, but the magnitude is somewhat smaller than

Pastor and Veronesi (2005).

There are also issues related to risk premia, associated with the jumps on EADs. These

risk premia could appear in different forms. Our model assumes that jumps to continuous-

compounded returns under the Q-measure are normally distributed with a volatility of σQj ,
but places few restrictions on the behavior under the objective measure. If we assume that

the functional form of the distribution remains normal under P, then a mean jump risk
premia would imply that the mean sizes of the jumps under P are positive. Similarly, if
there is risk premium attached the volatility of jump sizes, we would expect that σQj > σPj .

To analyze these issues, we use equity returns for the day after the earnings announce-

ment, and provide a number of different metrics. We first examine the issue of a mean-jump

risk premia. Unlike a jump-mean risk premium for randomly-timed jumps, which appears

in the form of a negative risk-neutral mean jump sizes, the risk-neutral mean jump sizes

are constrained under Q. Therefore, to analyze a mean-jump risk premium, we have to
estimate the mean under the objective measure. Simple announcement day returns are

problematic as volatility, σj, can be time-varying and we therefore compute standardized

returns. If log
¡
Sτj+1/Sτj−

¢
is the return on the day after the announcement, then

Jτj+1 =
log
¡
Sτj+1/Sτj−

¢q¡
σQj
¢2
+ σ2/252

is the standardized return, where σQj is the estimate of anticipated uncertainty and σ2 is

the diffusive volatility, both estimated from option prices.
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Year/Firm 1996 1997 1998 1999 2000 2001 2002 2003 2004

AAPL 9.65 7.57 9.52 7.12 10.33 13.34 7.24 6.75 8.58

ALTR 9.58 7.39 11.09 11.36 13.38 12.37 11.15 6.45 3.66

AMAT 10.24 10.15 8.59 8.78 11.59 9.43 8.04 5.79 7.05

AMD 8.36 8.06 13.54 7.36 15.88 12.82 10.75 11.01 8.03

AMGN 5.36 4.50 5.10 7.93 9.63 6.21 4.30 3.97 4.47

CSCO 6.50 7.89 5.65 6.01 10.69 11.61 13.87 8.12 6.11

DELL 8.84 9.02 8.37 10.97 9.21 6.50 6.10 3.32 4.75

HD 3.53 5.02 4.57 3.96 7.45 5.01 5.71 5.16 4.79

IBM 7.05 7.40 4.87 5.94 8.84 8.56 5.72 4.84 3.58

INTC 8.74 7.80 6.67 8.34 9.57 10.34 10.05 6.96 6.16

KLAC 5.98 7.73 10.24 5.17 10.05 6.54 11.50 3.37 6.27

MOT 9.24 6.63 8.69 6.43 9.61 12.75 12.02 8.27 9.82

MSFT 5.40 3.96 5.73 4.79 7.07 5.38 5.66 5.21 3.33

MU 8.75 11.01 9.56 10.07 18.43 11.05 11.84 10.88 6.75

MXIM 11.57 6.81 7.18 8.55 11.31 9.44 8.47 6.20 3.90

NVLS 9.59 7.30 6.66 5.34 9.10 12.04 11.08 6.90 6.79

ORCL 8.74 6.82 10.01 12.54 12.36 14.76 12.74 7.61 5.21

QCOM 6.71 9.16 5.74 8.05 15.07 9.50 10.29 5.30 5.75

TXN 7.79 4.56 5.96 4.53 9.84 11.02 9.92 6.94 7.53

WMT 3.00 3.20 3.14 2.77 6.22 3.61 3.59 2.15 2.67

Pooled 7.84 7.20 7.56 7.42 10.67 9.57 8.94 6.29 5.78

Table 5: Estimates of the volatility of the jump generated by earnings announcements

based on the term structure across time for each firm. Each year, we average the earnings

announcement jump size for each firm. The pooled row gives pooled averages.
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Qvol Pvol Corr2 t-stat Std Skew Kurt KS JB

AAPL 10.02 8.84 40.3 0.44 0.92 0.15 2.35 0.85 0.57

ALTR 11.52 8.09 5.6 0.71 0.94 -0.03 4.06 0.26 0.63

AMAT 9.92 5.94 18.4 1.66 0.63 0.96 4.34 0.03 0.03

AMD 12.16 9.99 23.4 -1.80 1.06 -1.90 10.05 0.05 0.00

AMGN 6.74 5.51 47.3 1.17 0.86 0.05 2.35 0.57 0.63

CSCO 9.66 6.74 37.5 -0.05 0.74 -0.15 2.55 0.40 0.72

DELL 8.71 7.17 44.4 0.05 0.90 0.43 2.58 0.64 0.48

HD 5.79 4.83 8.8 -0.58 0.95 -0.91 3.27 0.31 0.12

IBM 7.08 7.64 33.4 0.54 1.18 -0.22 2.12 0.37 0.42

INTC 9.11 6.98 37.4 -0.02 0.74 0.07 2.88 0.58 0.93

KLAC 9.39 6.42 48.5 -0.51 0.81 -1.30 6.02 0.48 0.00

MOT 10.65 9.35 41.6 -1.14 1.04 —1.16 4.82 0.55 0.00

MSFT 6.08 6.45 33.5 -0.62 1.14 -0.25 2.26 0.34 0.48

MU 12.42 8.22 15.6 -2.40 1.00 -2.80 14.10 0.01 0.00

MXIM 9.60 7.05 24.3 -0.49 0.73 -0.11 5.71 0.07 0.03

NVLS 10.35 10.70 -11.4 -0.19 1.32 -1.22 5.64 0.84 0.00

ORCL 11.39 11.24 3.4 -0.18 1.35 -2.14 10.46 0.65 0.00

QCOM 10.23 8.94 10.0 1.62 1.10 1.43 5.93 0.25 0.00

TXN 8.96 7.57 30.2 0.90 0.92 0.15 2.71 0.49 0.82

WMT 4.59 2.74 12.3 0.93 0.78 -0.69 3.61 0.24 0.27

Pooled 9.21 7.52 28.6 -0.00 0.95 -0.48 4.89 0.39 0.31

Table 6: Summary statistics (minimum, maximum, standard deviation, skewness, and

kurtosis) of returns on the day after an earnings announcement. The first two columns are

raw statistics, and the other columns are for returns scaled by ex-ante predicted volatility.

The minimum, maximum, and volatilities are in percentage values. The last three columns

provide the t-statistic for a zero mean and p-values for the Kolmogorov-Smirnov and Jarque-

Bera tests for normality, respectively.
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The column labeled ‘t−stat’ in Table 6 provides the t−statistics for the standardized
means. There is little evidence for any premia in average returns, in the sense that one

cannot reject the hypothesis that the average standardized return. 11 firms have negative

returns and 9 have positive returns. Using the exact critical values for the t-statistic,

none of the statistics are significant using a one-sided tests, although MU and MAD are

marginally significant in a two-sided t-test. The lowest t-values occur for the largest firms,

CSCO, DELL, IBM, INTC, MSFT, and ORCL. This insignificance is not a surprise, given

the high volatility of returns on EADs. Overall, we conclude there is no evidence for

jump-mean risk premia.

Consider next the evidence for a risk premium attached to volatilities, which would

manifest itself via σj < σQj .
25 We will analyze this issue from three different perspectives.

First we compare the observed volatility of returns under P with the average ex ante
expected daily volatility of returns under Q, by computing the expected volatility under Q
(denoted in Table 6 as ‘Q-vol’) from the options data and the realized volatility under P
from returns (denoted in Table 6 as ‘P-vol’). It is difficult to form a formal test for equality

across these two estimates, as both are estimated, and the variances are changing over

time. Standard tests are for equality of variances from two populations with an assumed

constant variance. Overall, Q-volatility is about 1.7% higher than P-volatility, but the effect
is not uniform. For most of the firms, the average Q-volatility is larger than the average
P-volatility, but for other firms, such as IBM, MSFT, NVLS, or ORCL, the difference is
negative or close to zero. There does not appear to be a level effect, asQ-volatility is greater
than P-volatility for both high and low volatility firms. Thus, there is some evidence for a
anticipated uncertainty premia, but certainly not uniform evidence. These results could be

sensitive to outliers, as the mean estimate of σQj is more than 0.6% higher than the median.

A potentially more powerful diagnostic is to compute the standard deviation of Jτj+1,

which accounts for time-variation in the volatilities and is less sensitive to outliers. This

metric is important as the standard deviation of Jτj+1 is one, under our model specification

assuming no risk premium. This metric is given in column 6 of Table ??.Overall, the pooled
statistics indicate that there is slight evidence for a volatility risk premium, as the pooled

standard deviation is 0.95. However, many of the results differ from the previous test.

For example, AMD, MOT, MU, and QCOM had Q-volatility greater than P−volatility,
25There is some evidence for a risk premium attached to the volatility of jump sizes using index options,

see Broadie, Chernov, and Johannes (2006).
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but now have std
¡
Jτj+1

¢
> 1. Other firms such as ORCL, which had roughly equivalent

Q-volatility and P-volatility, now have a std
¡
Jτj+1

¢
> 1. Again, this provides inconclusive

evidence for a volatility risk premium.

We provide one final test for a anticipated uncertainty volatility premium. If σQj > σj,

then writing straddles should be a profitable. To analyze this, we compute the returns

to an investor who purchases an ATM call and put at the midpoint of the close price

prior to the earnings announcement and sells these options at the midpoint of the close

price on the first day after the announcement. We enforce the same data restrictions used

previously, and are careful to be sure that the prices we use are for the same strike and

maturity. In the interest of space constraints, we do not report all of the results and rather

give a brief summary. The results indicate that returns to straddles are -1.21%, and the

median return is -8.05%. This would be consistent with σQj > σPj . However the returns are

extremely volatility and non-normal. The raw standard deviation of the option returns is

39.18%, which is not surprising given the embedded leverage in options. The Sharpe ratio

is not statistically significant. The skewness is 10.2 and the kurtosis is 177.3, indicating

that extremely large positive returns are likely. Taken together, the option returns do not

provide any evidence that σQj > σPj . It is also important to note that the slightly larger

estimates of σQj could reflect a Peso-type problem. Options market participants may have

expect a large movement, but these were not always realized. Moreover, since the observed

returns are conditionally normally distributed, it would not be surprising even with a large

σQj to have a relatively small observed return.

Overall, we conclude that there is no convincing evidence for mean or volatility premia

attached to anticipated uncertainty. This could be due to the very low signal-to-noise

ratio present in the data or, alternative, that firm-specific anticipated uncertainty can be

diversified cross-sectionally. It is important to note that there are also arguments that

would support a anticipated uncertainty premium. For example, jumps are difficult to

hedge which could lead to a premium. Similarly, the demand-based arguments in Bollen and

Whaley (2004) or Garleanu, Pedersen, and Poteshman (2005) indicate that a combination of

demand pressure and unhedgeable risks could create excess option-IV. One factor mitigating

both of these explanations is the potential for option writers to diversify this risk away, by

writing options across many different firms. These results are also related to Ni, Pan, and

Poteshman (2006), who analyze the relationship between volatility demand constructed

from trading volume and predictable movements in realized and implied volatility.
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Another important issue to analyze is predictive content: does a high σQj predict that

subsequent returns are volatile? It is difficult to analyze this in a time series context because

one cannot estimate a time-varying σPj based on a single observation. To analyze this issue,

we report the cross-sectional correlation between Q-vol and P-vol and the firm specific

and pooled correlations bectween
¯̄
rτj ,τj=1

¯̄
and σQj . The cross-sectional correlation between

Q-volatility and P-volatility is 79%, indicating that high Q-vol firms tend to be high P-vol
firms. A more interesting statistic is the correlation between

¯̄
rτj ,τj+1

¯̄
and σQj , reported as

Corr2 in Table ??. The correlations are positive and strongly significant (at the 1% level)

for the largest five firms (CSCO, DELL, IBM, INTC, and MSFT) and for AAPL, AMGN,

KLAC and MOT, but are marginally significant or insiginificant for the other firms. The

average pooled correlation is 28% and is highly significant.

To understand the significance of these results, we need to understand the properties of

the statistic. As an example, suppose that log
¡
σQj
¢
∼ N

¡
2, (0.25)2

¢
, which generates an

average anticipated uncertainty of about 7.75%, and that rτj+1 ∼ N
³
0,
¡
σQj
¢2´
. Then, the

population correlation between
¯̄
rτj ,τj=1

¯̄
and σQj is about 30%, with substantial uncertainty

as a (5, 95)% quantile is (−0.01, 0.56) in samples of our size. Thus, the range of values
are in fact completely consistent with the model. Jiang and Johannes (2006) provide an

alternative test of informativeness based on a large cross-section and find that anticipated

uncertainty is the strongest predictor of absolute returns when compared to a number of

other predictors including historical volatility, option implied diffusion volatility, analyst

dispersion, age of the firm, market-to-book ratios, etc. Together, these results indicate that

our anticipated uncertainty estimates are informative about future realized returns.

Finally, we consider some general specification tests. Our model implies that the stan-

dardized returns, Jτj+1, are normally distributed. To investigate non-normalities, we report

the skewness and kurtosis statistics, as well as the p-values for the Kolmogorov-Smirnov

and Jarque-Bera tests, two common tests for non-normalities. The skewness and excess

kurtosis statistics indicate that any departures from normality are modest, with a few

exceptions of AMD, MU and ORCL. As formal tests of non-normalities, we consider the

Kolmogorov-Smirnov and Jarque-Bera tests. The Kolmogorov-Smirnov and Jarque-Bera

tests often disagree (one is significant the other is not) and there is only significant depar-

tures for both for AMAT and MU. For the other firms, the results are either mixed (one

test does and the other does not) or both are insignificant. For the pooled sample overall,

there is not evidence for non-normalities. This evidence is reassuring as there is not strong
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evidence that the jumps come from a non-normal distribution.

4 Stochastic volatility models with deterministic jumps

The previous analysis assumes option prices are fit without error, as implied volatility

is used to solve for the earnings jump volatility and diffusive volatility. A different but

important issue is how relevant are anticipated jumps for pricing options. By pricing

options, we consider the performance of reduced-form models in terms of standard metrics

such as pricing errors.

Previous research on pricing individual equity options finds that additional components

such as stochastic volatility, randomly-timed jumps in prices, and randomly-timed jumps in

volatility offer only a limited benefit for pricing at-the-money options, while there is greater

improvement for deep out-of-the money options. This is summarized best in Bakshi and

Cao (2004) who consider a extensions of Black-Scholes. They argue that “all generalizations

to Black-Scholes are equivalent for options with moneyness between 0.97-1.0 and between

0.94-0.97. The maximum improvement in these moneyness groups is 2-3% between the DPS

(Duffie, Pan, and Singleton) and any other option model. Therefore, in contrast to index-

options, model generalizations are unable to produce a large improvement for near-money

individual equity options” (p. 14).

Our previous analysis would suggest that incorporating earnings announcements would

improve the pricing of at-the-money options, which are the most liquidly traded contracts.

The intuition for the improvement is clear. For example, a pure stochastic volatility model

will have difficulty around earnings announcements because short dated options are very

expensive (as implied volatility is very high) relative to longer dated options (for which

implied volatility is relatively low). A stochastic volatility model has only a single degree

of freedom (spot volatility, Vt) to fit these points, and therefore a natural tension arises in

the model around earnings dates. Introducing jumps on EADs will eliminate this tension.

As a benchmark model, we consider the stochastic volatility model developed in Section

3.2 and estimate versions with and without deterministically-timed jumps. A stochastic

volatility model (with constant parameters) allows us to impose a consistent model across

dates, strikes, and time-to-maturity. Implicitly, in the analysis based on our extension of

Black-Scholes, we placed no constraints on the speed of mean-reversion or the long-run

level of Vt.
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Our primary goal is to quantify the pricing improvements generated by jumps on

EADs.26 To do this, we use the entire time series of ATM call options from 1996 through

2004 to estimate the model. We use multiple maturities and the closest to-the-money call

option for each maturity. This procedure imposes that the model parameters are con-

stant from 1996 to 2004, in contrast to the usual calibration approach which re-estimates

parameters every time period (daily, weekly, etc.).

We estimate the parameters and volatility by minimizing scaled option pricing errors.27

Ideally, one would estimate the model using, in addition to option prices, the time series

of returns. Existing approaches include EMM (Chernov and Ghysels 2000), implied-state

GMM (Pan 2002), MCMC (Eraker 2004), or the approximate MLE approach of Aït-Sahalia

and Kimmel (2006). These approaches are in principle statistically efficient, however the

computational demands of iteratively pricing options for each simulated latent volatility

path and parameter vector lead to implementations with short data samples and few options

contracts (typically one per day).

To describe our approach, let C
¡
St, Vt,Θ

Q, σQτn, τn,Kn

¢
denote the model implied price

of a call option struck at Kn and maturing in τn days, where ΘQ =
¡
κQ, θQ, σv, ρ

¢
and

σQτn =
©
σQj : t < j < t+ τn

ª
. We maximize the objective function

log
£
L
¡
ΘQ, σQτn , Vt

¢¤
=

− TN

2
log
¡
σ2ε
¢
− 1
2

TX
t=1

NX
n=1

"
CMar (t, τn,Kn)− C

¡
St, Vt,Θ

Q, σQτn , τn,Kn

¢
σεSt

#2
where CMar (t, τn,Kn) is the market price of an option at time t, struck atKn, and maturing

at time τn. Since we use a long time series of option prices, normalizing by the stock price

26Although common in the literature, we do not perform an out-of-sample pricing exercise. As noted in
Bates (2003), these tests, in general, are not particularly useful for analyzing model specification: “Perhaps
the one test that does not appear to be especially informative is short-horizon “out-of-sample” option pricing
tests...” (p. 396). In our setting, out-of-sample exercises are more difficult due to the time-heterogeneity:
since σQj varies across earnings dates, an out-of-sample test would require estimating this parameter in
addition to Vt.
27We initially tried to follow Bates (2000) and impose time series consistency on the volatility process,

by including a term in the likelihood incorporating the transition density of variance increments. This
additional term penalizes the estimates if the volatility process is not consistent with its square-root
dynamics. However, it was not possible to obtain reliable estimates due to the computational burdens
involved in the optimization problem.
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is important to impose stationarity. Without this constraint, the objective function would

be concentrated on option values during periods when the stock price is relatively high.

Our objective function weighs long-dated options relatively more than short-dated op-

tions, as long-dated options are more expensive. If this has an effect on our results, it

tends to reduce the importance of earnings announcement jumps as the objective function

is tilted toward long-dated options. Alternatives would include minimizing IV deviations

or percentage pricing errors. We experimented with percentage pricing errors and found

the differences were generally small.

We initially tried to estimate ρ, however, it is not possible to identify this parameter

based on ATM options as it does not have a significant impact on option prices.28 It can be

identified primarily from out-of-the-money options and from the joint time series of returns

and volatility increments. We imposed the constraint that ρ = 0 throughout. As seen in

the results below, there are similar issues identifying σv in the cross-section.

We require daily data in order to track the performance of the models around EADs.

To our knowledge, no calibration procedures have used daily data over long time samples.

For example, Pan (2002) uses two option prices sampled weekly over a five year period,

Eraker (2004) uses a single option price for every day over a four year period, and Bates

(2000) uses all options sampled weekly from 1988 to 1993.

The computational burdens of using daily data on multiple option contracts for an

eight-year period is extreme. With three option prices on each day and eight years of

daily data, we have to numerically compute more than 6000 option prices at each iteration

of the optimization routine. To ensure that we effectively search the parameter space,

we start the optimization from numerous different starting values on multiple machines

and randomly perturb the variance and parameters in order to ensure that the algorithm

efficiently searches. Due to these computational burdens, we only consider two of the largest

companies, CSCO and INTC, although we conjecture that the results are representative

for other firms also.
28To see this, consider two option maturities, one and three months, and assume κv = 1, θ = 0.302,

σv = 0.20, and V0 = 0.302. This implies that the current and long run mean of volatility is 30%. The price
of a one month, at-the-money option if ρ = −0.50, 0, or +0.50 is 3.320, 3.321, and 3.323, respectively, and
the Black-Scholes implied volatilities are 29.95, 29.96 and 29.97. For the three month option, the prices
and implied volatilities are 5.563, 5.567, and 5.574 and 29.86, 29.88, and 29.92. Clearly, the effect is very
small and, moreover, in an estimation procedure in which other parameters and volatility are estimated,
it is not identified based on at-the-money options.
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κQv θQv
√
θv σv σe σQj L(Θ, Vt)

SV 0.8086 0.1296 0.3600 0.0000 0.3579 — -2412.3

CSCO 0.0337 0.0111 — 0.0015 0.1446 —

SVEJ 0.8188 0.1429 0.3778 0.0000 0.2834 0.0691 -1024.6

0.0579 0.0798 — 0.0013 0.1046 0.0610

SV 0.8241 0.0796 0.2821 0.0000 0.2995 — -1471.3

INTC 0.0302 0.0207 — 0.0007 0.0711 —

SVEJ 0.8118 0.0768 0.2772 0.0000 0.2289 0.0558 369.8

0.453 0.0233 — 0.0027 0.0673 0.0220

Table 7: Parameter estimates and standard errors for Apple, Amgen, Cisco, Intel and

Microsoft. For each firm and model, the first row contains the parameter estimate and the

second row the estimated standard error. The standard errors for σε are multiplied by 100.

Estimation results for Cisco and Intel are in Tables 7, 8, and 9. Table 7 provide para-

meter estimates, standard errors based on a normal likelihood function, and log-likelihood

function values for the SV model and the extension with jumps on earnings dates (SVEJ).

Although not reported, a likelihood ratio test overwhelmingly rejects the restrictions that

the jump volatilities are zero, as it is clear that there are massive pricing improvements

from adding jumps on EADs.

All of the parameter estimates are plausible, with the exception of σv. For all models

and firms, the Feller condition trivially holds under Q, which implies that risk-neutral
volatility is well behaved.29 For both models, the estimates of κQv are similar, about 0.8.

This low level of risk-neutral persistence is consistent with time series studies (Cheung and

Johannes (2006)), but is also intuitive, especially over this sample period, from 1996 to

2004. In the middle of our sample, volatility was very high, but was low at the beginning

and the end. A high volatility of κQv implied that volatility rapidly mean-reverts, which

would make it difficult to fit high and low volatility periods with a constant long-run mean

29For certain models, Pan (2002) and Jones (2003) find evidence for explosive risk-neutral volatility for
equity indices.
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-5 -4 -3 -2 -1 0 +1

Short SV 0.5350 0.5827 0.5882 0.5856 0.6785 0.7916 0.1605

SVEJ 0.1581 0.1729 0.1917 0.1655 0.1750 0.2834 0.1582

CSCO Med SV 0.0853 0.1225 0.0714 0.0714 0.0931 0.0925 0.0738

SVEJ 0.0860 0.0959 0.0686 0.0535 0.0832 0.0771 0.0478

Long SV 0.1271 0.1181 0.1667 0.1667 0.3127 0.3462 0.1169

SVEJ 0.0891 0.074 0.0767 0.0801 0.0890 0.1030 0.1085

Short SV 0.4925 0.5741 0.5729 0.6659 1.0251 1.3883 0.2041

SVEJ 0.1420 0.1448 0.1439 0.1929 0.4403 0.5844 0.2956

INTC Med SV 0.0997 0.0988 0.1221 0.1408 0.0938 0.1332 0.1097

SVEJ 0.1164 0.1398 0.1159 0.1134 0.1230 0.1779 0.2174

Long SV 0.1607 0.2138 0.1914 0.2326 0.2986 0.3884 0.0713

SVEJ 0.0978 0.1042 0.1199 0.0926 0.1848 0.2166 0.1272

Table 8: Absolute pricing errors around earnings announcements. The columns are indexed

relative to the earnings date (e.g., −2 indicates two days prior to an EAD and 0 indicates
an EAD). The maturities are short (5 to 15 days), medium (16 to 35 days), and long (more

than 35 days).

θQv . For example, since θ
Q
v is an average of the two periods, when spot Vt is high, a high

value of κQv would imply a lower implied volatility in longer-dated options. As mentioned

earlier, the volatility term structure (outside of months with EADs) is quite flat. The only

way to fit these periods is to decrease the level of mean-reversion.

The estimates of θQv imply plausible values for the long-run mean of volatility,
p
θQv .

The long-run volatility in both models is roughly similar, although the parameter estimates

have a much larger standard error in the SVEJ model. Unlike θQv and κ
Q
v , σv is not identified

at-the-money options. Moreover, this parameter is only partially identified from out-of-the

money options (see the discussion in Broadie, Chernov, and Johannes (2006)). ATM option

prices are driven primarily by expected future volatility and from (3) it is clear that this

parameter does not affect expected future volatility. The parameter σv can most easily be

identified by the time series of IVs and to a some extent from out-of-the-money options.

We manually verified that changing its value does not impact the objective function. Its

primary source of identification is the time-series of returns and/or volatility.

The sixth column of Table 7 provides the average estimate of σQj , denoted σQ, for each
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firm with the average standard error reported below. To frame the results, recall that the

average jump volatility for CSCO and INTC based on the term structure estimator was

8.5 and 8.2, respectively. The results are similar, although the jump sizes based on the full

estimation are lower. There are at least two explanations for why the estimates of σQj differ.

First, the time series and term structure estimators of the previous section use one and two

options, respectively, whereas the full estimation results use information contained in all

options that are affected by earnings announcement jumps. This means that on each day

at least three options are affected and an earnings announcement will have a significant

impact on options for at least a month prior to the announcement. One explanation

could be that investor’s perceptions of σQj in the days and weeks prior to the earnings

announcement, leading to slightly lower estimates and high standard errors. Third, the

stochastic volatility model imposes that the parameters in the model are constant through

time, whereas the term structure and time series estimators allow expected volatility to

differ at each announcement. Due to this, the estimates based on the extension of the

Black-Scholes model are less constrained and are less subject to potential misspecification.

Table 9 provides the dollar pricing errors for the days surrounding an earnings announce-

ment. For each model, we report pricing errors for short maturity options (five to 15 days),

medium maturity options (15 to 35 days), and for long term options (more than 35 days).

The columns indicate the days relative to the earnings announcement. For example, ‘0’ is

the day of the earnings announcement (both firms had announcements before the market

open) and ‘+1’ is the day after the announcement. Due to expiration cycles, there may be

fewer options available for the shortest maturity category for the day of the announcement,

and the day after, as we do not use options with maturities under three days.

For all of the firms, there is a significant pricing difference between the SV and SVEJ

models, especially for short-dated options. In the week leading up to the earnings an-

nouncement, the reduction in pricing errors is on the order of 50%. As an example, the

mean-absolute pricing errors for short-dated CSCO options fall in the three days leading up

to the earnings announcement from 0.5882, 0.5856 and 0.6785 in the SV model to 0.1917,

0.1655, and 0.1750 in the SVEJ model. For most firms and days, there is also a noticeable

improvement in the pricing of the long-dated options. Also note the U-shaped pattern of

errors in the SV model, with large errors for the short maturity options, smaller errors for

the medium maturity options, and large errors for the longer dated options. This is the

tension mentioned earlier, as the SV model has a difficult time handling the term structure
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Maturity 3 < τ < 15 16 < τ < 35 τ > 35

MAE ME MAE ME MAE ME

CSCO SV 0.3533 0.1195 0.2630 0.0254 0.1842 -0.0181

SVEJ 0.2684 0.0952 0.2106 0.0172 0.1559 -0.0149

INTC SV 0.3470 0.2394 0.1763 0.0090 0.1454 -0.0289

SVEJ 0.2670 0.1846 0.1621 0.0873 0.1320 -0.0526

Table 9: Overall mean and mean absolute pricing errors for Cisco and Intel for three

maturity categories.

of implied volatility around EADs.

Table 9 provides mean and mean absolute pricing errors for the entire sample. The mean

errors are heavily influenced by a few large outliers, so we focus on the mean-absolute errors.

Using mean absolute errors, there is clearly a substantial pricing improvement for all of the

firms and for all of the maturities. For example, the improvement for Cisco is 35%, 25%,

and 18% for the three maturities.

This results indicate that incorporating jumps on EADs provide first order pricing

improvement for pricing options not only around EADs, but over the entire sample as well.

This contrasts with the results in Bakshi and Cao (2004), who find that components such

as jumps in prices or in volatility provide little benefit for pricing at-the-money options.

The results also have important implications for other papers that use options on individual

equities, but do not account for earnings announcements (Carr and Wu (2004) or Driessen,

Maenhout Vilkov (2005)).

5 Conclusions

In this paper, we develop models incorporating earnings announcements for pricing options

and for learning about the uncertainty embedded in an individual firm’s earnings announce-

ment. We take seriously the timing of earnings announcements and develop a model and

pricing approach incorporating jumps on EADs. Jumps on EADs are straightforward to

incorporate into standard option pricing models. Based on these models, we introduce

estimators of the uncertainty surrounding earnings announcements and discuss the general
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properties of models with deterministically-timed jumps.

Empirically, based on a sample of 20 firms, we find that earnings announcements are

important components of option prices, we investigate risk premiums, and we analyze the

underlying assumptions of the model. To quantify the impact on option prices, we calibrate

a stochastic volatility model and find that accounting for jumps on EADs is extremely

important for pricing options. Models without jumps on EADs have large and systematic

pricing errors around earnings dates. A stochastic volatility model incorporating earnings

jumps drastically lowers the pricing errors and reduces misspecification in the volatility

process.

There are a number of interesting extensions. First, we are interested in the empirical

content of σQj in comparison to other measures of earnings uncertainty such as firm age,

analyst dispersion, or analyst coverage. Our measure provides a market-based alternative to

these existing measures. Jiang and Johannes (2006) pursue this line of research. Second, we

are interested in understanding the ex ante information in macroeconomic announcements.

Ederington and Lee (1996) and Beber and Brandt (2006) document a strong decrease in IV

subsequent to major macroeconomic announcements, which is the same effect we document

for earnings announcements. It would be interesting to estimate the bond-market jump

uncertainty ex ante, and understand how it varies over the business cycle. Third, it would

be interesting to use a more elaborate model incorporating jumps in prices and investigate

risk premia using both the time series of returns and the cross-section of option prices. We

leave these issues for future research.
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A Transform analysis

This appendix provides the details of computing the option transforms. First, to price

options, we need to evaluate the conditional transform of log (ST ). By the affine structure

of the problem, we have that for a complex valued c,

ψ (c, St, Vt, t, T ) = EQ
t [exp (−r (T − t)) exp (c · log (ST ))]

= exp (α (c, t, T ) + β (c, t, T )Vt + c · log (St))

where β (c, t, T ) and α (c, t, T ) are given by:

βv (c, t, T ) =
c (1− c)

£
1− eγv(T−t)

¤
2γv −

¡
αv − κQv

¢
[1− eγv(T−t)]

α (c, t, T ) = α∗ (c, t, T )−
Nd
TX
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t +1

c

2

¡
σQj
¢2
+
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2
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where

α∗ (c, t, T ) = rτ (c− 1) + −κ
Q
v θ

Q
v

σ2v

∙¡
αv − κQv

¢
τ + 2 ln

µ
1− αv − κQv

2γv
(1− eγvτ )

¶¸
,

τ = T − t, γv =
£¡
σvρc− κQv

¢
+ c (1− c)σ2v

¤1/2
, and αv = γv + σvρc.

The transform of log(St) with deterministic jumps has a particularly simple structure

under our assumptions. To see this, note that

log (ST ) = log (St) +

Z T

t

µ
r − 1

2
Vs

¶
ds+

Z T

t

p
VtdW

s
t +

Nd
TX

j=Nd
t +1

Zj

= log
³eST´+ Nd

TX
j=Nd

t +1

Zj

where log
³eST´ is the traditional affine component. If we assume that the deterministic

jumps are conditionally independent of the affine state variables, then the transform of

log (ST ) is just the product of the traditional affine transform and the transform of the
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deterministic jumps:

EQ
t [exp (−r (T − t)) exp (c · log (ST ))]

=EQ
t

h
exp (−r (T − t)) exp

³
c · log

³eST´´iEQ
t

⎡⎣exp
⎛⎝c

Nd
TX

j=Nd
t +1

Zj

⎞⎠⎤⎦
=exp [α∗ (t) + β (t) · Vt + c · log (St)] exp

¡
αd (t)

¢
where EQ

t

h
exp

³
c
PNd

T

j=Nd
t +1

Zj

´i
= exp

¡
αd (t)

¢
for some state-independent function αd ,

α∗ (t) = α∗ (c, t, T ), and β (t) = β (c, t, T ). This implies that only the constant term in the

exponential is adjusted. Thus, option pricing with earnings announcements requires only

minor modifications of existing approaches.

This pricing model has an additional implication of note. Since only the total number

of jumps over the life of the contract matter, the exact timing of the jumps does not,

provided that the distribution of jump sizes does not change. It is not hard to show

that if, for example, there is a probability p that the firm announces on a given date and

(1− p) that they announce the following day, the transform is unchanged provided the

jump distribution does not change.

The discounted log stock transform below is the key piece in transform based option

pricing methods. In a two-factor stock price model in an affine setting we know the form

includes two loading functions for each of the factors.

ψ(c, St, Vt, t, T, r) = exp (−r(T − t) + α(c, t, T ) + β(c, t, T )Vt + c · logSt)

where c is complex-valued. Duffie, Pan, Singleton (2000) and Pan (2002) price call options

by breaking up the claims into two components, the all-or-nothing option minus the binary

option. Pan (2002) describes methods of bounding the truncation and sampling errors

involved with numerical inversion of transform integrals for these claims. Instead, we follow

Carr-Madan (1999) and Lee (2004) and compute the Fourier transform of the call option.

This reduces the problem to one numerical inversion and improves the characteristics of

the integrand thus reducing sources for error and computational demands.

We now briefly describe Carr-Madan’s results. If we let C(k) be the call option with

a log strike k. We introduce the dampened call price, c(k) with a dampening coefficient

α > 0 which forces the square integrability of the call price transform. We also require

E[Sα+1] <∞, which can be verified with the log stock price transform We find that α = 2
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performs well. If we let the dampened call price be given by c(k) ≡ exp(αk)C(k), the

Fourier transform of c(k) is defined by

ψc(v) =

Z ∞

−∞
exp (iαv) c(k)dk. (5)

The Fourier transform of c(k) is given by

ψc(v) =
ψ(v − i(α+ 1), St, Vt, t, T, r)

α2 + α− v2 + i(2α+ 1)v
, (6)

where some of the arguments are suppressed on the left hand side for notational simplicity.

To invert the dampened call price to get the call price, we use the inversion formula,

C(k) =
exp(−αk)

π

Z ∞

0

Re[exp(−iαk)ψc(v)]dv. (7)

Obviously, in practice, we must truncate this indefinite integral and the log stock price

transform can be used again to find an appropriate upper limit. Carr and Madan (1999)

show the following the inequalities:

|ψc(v)|2 ≤
E[Sα+1]

(α2 + α− v2)2 + (2α+ 1)2v2
≤ A

v4
(8)

and |ψc(v)| ≤
√
Av−2. The integral tail can be bounded by the right hand side which isZ ∞

a

|ψc(v)|dv <
√
A

a
. (9)

If we set A = E[Sα+1] the upper limit a can be selected for a general ε truncation bound,

a >
exp(−αk)

√
A

πε
. (10)

Once an upper limit is selected, any numerical integration method can be used. We use

an adaptive quadrature algorithm that uses Simpson’s Rule, with one step of Richardson

extrapolation. The integral grid is iteratively changed until the value converges where the

improvements are less than a specified value, which controls the error. We find that this

provides accurate prices and is computationally attractive.
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B Black-Scholes and stochastic volatility

This appendix analyzes the impact of stochastic volatility on the earning announcement

jump estimators. Standard stochastic volatility models imply that volatility has predictable

components with the potential for large and asymmetric shocks. The time series and term

structure estimators formally assumed a constant expected diffusive volatility and this

assumption could create problems.

To understand these issues, assume that there are two ATM options available at two

maturities, T1 and T2, and there is one earnings announcement between time r and T2 > T1.

For generality, consider a square-root stochastic volatility model augmented with randomly-

timed jumps in the variance:

dVt = κQv
¡
θQv − Vt

¢
dt+ σv

p
VtdW

v
t + d

³PNt

j=1Z
v
j

´
,

where the shocks are all independent, Zv
j > 0 with mean μQv , Nt is Poisson with intensity

λQv , and all random variables are defined under Q. It is important to note we have no
evidence that the variance for individual equities jumps, however, we include it here for

completeness to understand its potential impact.

Both the term structure and time series estimators rely on differences between the

implied variances of two option maturities. To understand how stochastic volatility affects

these estimators, we need to compute EQ
t

hR t+Ti
t

Vsds
i
and study its variation over time

and maturity. Re-writing,

Vs = Vt +

Z s

t

κQv
¡
θQv − Vr

¢
dr +

Z s

t

σv
p
VrdW

v
r +

PNs

j=Nt+1
Zv
j

= eVs + NsP
j=Nt+1

Zv
j ,

and by Fubini’s theorem we have that
³eθQv = λμQv + θQv

´
EIVt,Ti = T−1i EQ

t

∙Z t+Ti

t

Vsds

¸
= T−1i

Z t+Ti

t

EQ
t [Vs] ds (11)

= T−1i

Z t+Ti

t

EQ
t

heVsi ds+ λQv μ
Q
v (12)

= eθQv +
³
1− e−κ

Q
vTi

´
κQv Ti

³
Vt − eθQv ´ . (13)
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Both the term structure and time series estimators are based on the difference in implied

variance between options or expiration dates. The accuracy of these estimators depends

on how variable EIVt,Ti is as a function of Ti (for the term structure estimator) and t (for

the time series estimator).

The term structure estimator relies on the difference between Black-Scholes implied

variances,
¡
σBSt,T1

¢2− ¡σBSt,T2

¢2
. Since jumps in volatility merely only alter the long-run mean

in EIVt,Ti, they don’t have any impact of the term structure estimator above and beyond

the mean-reversion term, so from now on we assume they are not present. Time-varying

volatility can have an impact because EIVt,T1 6= EIVt,T2.

In our setting, this implies that there is a predictable difference in expected volatility

over, for example, two weeks and six weeks. Independent of any model, we have some

evidence that this difference is minor. As mentioned in the text, since volatility is very

persistent, there will be very little difference in forecasts of volatility over the relatively

short horizons we deal with. Moreover, the term structure of IV is very flat for both index

options (Broadie, Chernov, and Johannes (2006)) and individual stocks, which implies that

the variation in expected variance over short horizons is rather small.

In the context of the model above, Vt − θQv , κ
Q
v , and Ti could each potentially impact

the term structure estimator, while jumps in volatility, σv, and Brownian paths have no

impact. In each of these cases, intuition implies the impact will be minor. For example,

unless there are large volatility risk premia (for which there is no evidence for individual

stocks), θQv ≈ θPv which implies that, on average Vt ≈ θQ. This further implies that the

errors will be small, at least on average. Since the IV term structure is very flat, even in

periods of very high volatility and especially for the shortest maturities, this implies that Vt
is close to θQv and/or κ

Q
v is small. Volatility is also highly persistent and we use short-dated

options, implying that κQv and Ti are small and thus the predictable difference in implied

variance over various maturities is rather small.

More formally, there is some evidence regarding likely parameter values. For index

options, Pan finds that κQv = −0.05, which implies explosive volatility, but it is not statisti-
cally different from zero.30 Using time series models, Cheung and Johannes (2006) analyze

square-root stochastic volatility models with jumps on EADs. They find that individual

firm volatility, once earnings announcements are accounted for, is more persistence than

30Typical risk premium estimates imply that κQv < κPv, see, for example, Pan (2002) or Eraker (2004).
Jones (2003), like Pan (2002), finds explosive risk-neutral volatility, although its magnitude is small.

53



index volatility with estimates of κPv being around 1.5-3. Since it is typically assumed that

κQv < κPv , this implies are relatively modest level of mean-reversion. In section 4, we report

estimates of κQv for INTC and CSCO to be less than 1.

The term structure of IVs is also very flat over short maturities. This is also true for

both indices and individual equity options. For example, Broadie, Chernov, and Johannes

(2006) found the slope of the IV term structure was less than 1% for S&P 500 options.

The same result holds for the firms in our dataset. As an example, for two of these firms,

Microsoft and Cisco, the average slope of the term structure for the front three contracts is

0.59 and 0.08%, respectively, for months that are not affected by earnings announcements.31

A flat average term structure indicates that θQv ≈ θPv and/or that κ
Q
v is very small. Further

evidence pointing toward mild risk-neutral mean-reversion comes from variation in the

slope of the IV term structure for individual equity options. In addition to little average

slope, there is also very little term structure slope even in very high or very low states.

For example, for Microsoft and Cisco the (10, 90)% quantile of the term structure slope is

(−2.13, 1.99)% and (−1.78, 1.85)%, respectively. This again points to a very low value of
κQv . Last, most of the trading volume is concentrated in short-dated options, and we use

the shortest maturities for estimation. In practice, we almost always have the two near

maturity option contracts. Putting the pieces together, this implies that any the impact of

mean-reversion is very small.

To get a sense of the size of the errors, consider the following reasonable stochastic

volatility parameters: θQv = (0.3)2, κQv = 2.5, and σQτj = 0.10 (long-run, annualized dif-

fusive volatility of 30%). Again, this is a high level of mean reversion .Computing the

term structure based estimator for
√
Vt = (0.20, 0.40.0.50), assuming the short-dated op-

tion matures in one week (1/52), two weeks (2/52), or three weeks (3/52) and assuming

the second option matures one-month later, we have that bσQ = (0.0995, 0.1007, 0.1017),

(0.0988, 0.1017, 0.1038), or (0.0979, 0.1029, 0.1064), respectively. The reason the effect is

relatively small is that volatility is persistent and that option maturities are relatively

small, implying that
³
1− e−κ

Q
vTi

´
/κQv Ti does not vary wildly across maturities. Most of

our firms announce earnings in the two weeks prior to expiration, so it is clear that the

term structure estimator is robust to stochastic volatility and to randomly-timed jumps in

volatility.

31Since earnings announcements, generate large, negatively sloped IV term structures, we compute these
statistics for the months after an EAD. This insures that any impact of EADs will be minimal.
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Next, consider the time series estimator. The time series estimator in the presence of

stochastic volatility is given by¡
σBSt,Ti

¢2 − ¡σBSt+1,Ti−1
¢2
= EIVt,Ti − EIVt+1,Ti−1 + T−1i

³
σQτj

´2
,

where it is important to note that EIV t,Ti is a function of Vt while EIV t+1,Ti−1 is a

function of Vt+1. If Vt ≈ Vt+1, then the estimator is quite accurate as the effect of mean-

reversion over one-day is negligible. Using the parameters from above, the estimates for

three weeks (relatively the worst of the three are) bσQ = (0.10006, 0.09990, 0.09979).
If volatility increases or decreases substantially, the performance of the time series

estimator deteriorates quickly, EIV t,Ti and EIV t+1,Ti−1 are quite different. Changes in Vt
are driven in the specification above by σv, the Brownian paths, and Zv

j . For the firms in our

sample, the volatility of daily changes in volatility is around three to five%, which implies

that normal variation could result in reasonably large movements in volatility. To gauge

their potential impact, suppose that current spot volatility is 30% and we consider a range

of changes in volatility on the following day, Vt+1 = (0.1, 0.2, 0.25, 0.35, 0.40, 0.50). While it

is very unlikely that volatility would decrease this much in one day (as jumps in volatility

are typically assumed to be positive), we include the lower volatilities to understand the

potential impact. For options maturing in three weeks and the same parameters as above,bσQ = (0.1197, 0.1127, 0.1072, 0.0908, 0.0789, 0.0369). The potential impact is much larger
and, more importantly, is asymmetric: if volatility increases from 30% to 50%, the estimate

is biased down by 6.31% while if volatility were to decrease from 30% to 10%, the estimate

is biased upward only by 1.97%.

The effect increases with maturity, so that the bias is greater when long-dated options

required. Intuitively, diffusive volatility is more important for long-dated options, magni-

fying the impact of the shocks. In the text, we noted that for more than 60% of the times

when we could not calculate the time estimator (the difference was negative), there was

no short-dated option available. For example, if σQ = 0.05, the shortest-dated option has

6 weeks to maturity, and Vt increases from 30% to 35%,
¡
σBSt,Ti

¢2 − ¡σBSt+1,Ti−1
¢2
is negative.

Long-dated options, combined with close-price issues are, in our opinion, the major cause

of the problematic dates for the time series estimator.

Our conclusions are as follows. First, the term structure and time series estimators will

generally be reliable estimators of σQ, even in the presence of stochastic volatility and/or

jumps. Second, the ability of the term structure estimator to estimate σQ depends on Vt,

θQv , and κQv and for reasonable parameters, the impact is quite small. The performance of
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the time series estimator depends additionally on σv and the realized shocks driving the

volatility process. Because of this, the time series estimator will be noisier and less reliable

than the term structure estimator. Third, for the time series estimator, the magnitudes

in the bias are large enough to generate problem dates. Finally, because increases in Vt

result in a larger bias downward in estimates of σQτj than decreases in Vt (holding the size of

increase/decrease constant), we expect that the time series estimator will have a downward

bias if the variance is time-varying or if there are positive jumps in the variance.
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C Close/open and open/close behavior

We assume that earnings announcements generate a discontinuity in the sample path of

stock prices. An alternative assumption is that the diffusion coefficient increases on days

following earnings announcements, as in PW (1979, 1981). Thus, the main difference

between our model and PW’s model is the discontinuity of the sample path. In theory,

prices are observed continuously and jumps are observed at ∆St = St − St−, but with

discretely sampled prices, it is impossible to identify when jumps occurred with certainty.

It is common to use statistical methods (see, e.g., Johannes (2004), Barndorff-Nielson and

Shephard (2006), or Huang and Tauchen (2005)) to identify jumps. Identifying jumps on

EADs is even more difficult in our setting as earnings are announced outside of normal

trading hours.32

Since it is impossible to ascertain with discretely sampled prices whether or not there

is a jump, we consider the following intuitive metric. Strictly speaking, there will almost

always be a “jump” from close-to-open, as the opening price is rarely exactly equal to the

close price. For example, there are many events that could cause relatively minor overnight

movements in equity prices and result in a non-zero close-to-open movement: movements of

related equity and bond markets (e.g., Europe and Japan), macroeconomic announcements

such employment or inflation (typically announced at 8:30 a.m. EST, an hour before the

formal market open), or earnings announcements of related firms to name a few. The

main difference, however, is that if our assumption of a jump on earnings dates is true,

the magnitude of the moves should be much bigger for earnings dates versus non-earnings

dates. Statistically, the movements should appear as outliers.

To analyze this issue, we compare the standard deviation of close-to-open to returns

on announcement and non-announcement days over our sample. Table 10 provides the

standard deviation of close-to-open and open-to-close returns for earnings and non-earnings

dates and the ratios comparing earnings and non-earnings dates. Note first that the results

indicate that the close-to-open returns on earnings dates are, on average, about 3.53 times

more volatile. An F -test for equal variances is rejected against the one-sided alternative in

every case at the one-percent critical level. For example, average volatility of close-to-open

returns on earnings days was 5.81% compared to 1.68% on non-earnings dates. Since we

32There is relatively little known about the behavior of after-hour prices. Barclay and Hendershott (2003,
2004) argue that, relative to normal trading hours, prices are less efficient as bid-ask spreads are much
larger, there are more frequent price reversals, and generally noisier in post close or pre-open trading.
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usually identify outliers as movements greater than three standard deviations, this is clear

evidence of abnormal or jump behavior. The effect is strongest for the largest firms: if we

consider the five largest firms in terms of option volume, the standard deviation of close-

to-open returns is 6.66% on earnings days compared to 1.44% for non-earnings days, for a

ratio of 4.63.

Second, note that open-to-close returns are slightly more volatile on earnings dates than

non-earnings dates, on average 4.09% compared to 3.03% which indicates that returns are

slightly more volatile during the day following earnings. This could be due to a number of

factors, such as price discovery through trading, liquidity, or inefficient opening procedures.

Regarding the last point, Barclay, Hendershott, and Jones (2004) argue that the Nasdaq

opening procedure introduces more noise than the opening procedure on the NYSE and

the effect is excaberated for smaller stocks.

If liquidity caused increased variation the day after EADs, then actively traded firms

should have a ratio closer to unity.33 Focusing on the five largest firms, the difference is

much smaller: the volatility during the day is 2.95 (2.57)% on earnings (non-earnings) dates,

indicating the volatility is quite similar (ratio of about 1.15). In contrast, the smallest firms

are relatively more volatile during the day, 5.35% compared to 3.75% for a ratio of 1.4.

The obvious explanation for the difference between the higher and lower-volume companies

is liquidity, which leads to more price discovery during market hours. Overall, the results

are consistent with our assumption that the response of the stock price to an earnings

announcement is (a) an abnormally large movement and (b) largely captured by the close-

to-open returns as close-to-open returns are more than three times more volatile on earnings

compared to non-earnings days.

33We would like to thank Joel Hasbrouk for pointing this issue out to us.
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EAD Non-EAD EAD Non-Ead
Close/open Close/open Ratio Open/Close Open/Close Ratio

AAPL 7.25% 2.11% 3.43 3.45 3.08 1.12

ALTR 6.01% 2.20% 2.73 5.45 3.98 1.37

AMAT 4.02% 1.87% 2.14 4.47 3.48 1.28

AMD 8.16% 2.29% 3.56 6.73 3.78 1.78

AMGN 4.32% 1.25% 3.45 2.75 2.41 1.14

CSCO 5.29% 1.64% 3.22 2.62 2.93 0.90

DELL 6.19% 1.64% 3.77 2.79 2.9 0.96

HD 3.11% 1.36% 2.29 2.49 1.99 1.25

IBM 6.09% 0.99% 6.15 3.30 1.83 1.81

INTC 5.85% 1.70% 3.43 3.53 2.55 1.39

KLAC 4.08% 1.78% 2.30 6.01 3.98 1.51

MSFT 8.61% 1.67% 5.16 4.29 2.68 1.6

MOT 4.99% 1.09% 4.56 2.52 2.03 1.24

MU 4.36% 2.09% 2.09 5.38 3.78 1.42

MXIM 4.55% 1.42% 3.2 4.77 3.70 1.29

NVLS 6.43% 1.88% 3.42 6.83 3.99 1.71

ORCL 10.77% 1.84% 5.85 3.52 3.19 1.10

QCOM 7.20% 1.90% 3.78 4.80 3.49 1.38

TXN 6.83% 1.75% 3.89 3.96 3.01 1.32

WMT 2.19% 1.02% 2.15 2.16 1.89 1.14

Average 5.81% 1.68% 3.53 4.09 3.03 1.34

Table 10: Comparisons of close-to-open and open-to-close returns on earnings (EAD) and

non-earnings (non-EAD) announcements dates.
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