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ABSTRACT

In most instances, the dynamic response of monetary and other policies to shocks is
infrequent and lumpy. The same holds for the microeconomic response of some of the most
important economic variables, such as investment, labor demand, and prices. We show that the
standard practice of estimating the speed of adjustment of such variables with partial-adjustment
ARMA procedures substantially overestimates this speed. For example, for the target federal funds
rate, we find that the actual response to shocks is less than half as fast as the estimated response. For
investment, labor demand and prices, the speed of adjustment inferred from aggregates of a small
number of agents is likely to be close to instantaneous. While aggregating across microeconomic
units reduces the bias (the limit of which is illustrated by Rotemberg’s widely used linear aggregate
characterization of Calvo’s model of sticky prices), in some instances convergence is extremely
slow. For example, even after aggregating investment across all establishments in U.S.
manufacturing, the estimate of its speed of adjustment to shocks is biased upward by more than 80
percent. While the bias is not as extreme for labor demand and prices, it still remains significant at
high levels of aggregation. Because the bias rises with disaggregation, findings of microeconomic

adjustment that is substantially faster than aggregate adjustment are generally suspect.
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1 Introduction

The measurement of the dynamic response of economic and policy variables to shocks is of central impor-
tance in macroeconomics. Usually, this response is estimated by recovering the speed at which the variable
of interest adjusts from a linear time-series model. In this paper we argue that, in many instances, this
procedure significantly underestimates the sluggishness of actual adjustment.

The severity of this bias depends on how infrequent and lumpy the adjustment of the underlying vari-
able is. In the case of single policy variables, such as the federal funds rate, or individual microeconomic
variables, such as firm level investment, this bias can be extreme. If no source of persistence other than
the discrete adjustment exists, we show that regardless of how sluggish adjustment may be, the econometri-
cian estimating linear autoregressive processes (partial adjustment models) will erroneously conclude that
adjustment is instantaneous.

Aggregation across establishments reduces the bias, so we have the somewhat unusual situation where
estimates of a microeconomic parameter using aggregate data are less biased than those based upon microe-
conomic data. Lumpiness combined with linear estimation procedures is likely to give the false impression
that microeconomic adjustments is significantly faster than aggregate adjustment.

We also show that, when aggregating across units, convergence to the correct estimate of the speed of ad-
justment is extremely slow. For example, for U.S. manufacturing investment, even after aggregating across
all the continuous establishments in the LRD (approximately 10,000 establishments), estimates of speed of
adjustment are 80 percent higher than actual speed — at the two-digit level the bias easily can exceed 400
percent. Similarly, estimating a Calvo (1983) model using standard partial-adjustment techniques is likely
to underestimate the sluggishness of price adjustments severely. This is consistent with the recent findings
of Bils and Klenow (2002), who report much slower speeds of adjustment when looking at individual price
adjustment frequencies than when estimating the speed of adjustment with linear time-series models. We
also show that estimates of employment adjustment speed experience similar biases.

The basic intuition underlying our main results is the following: In linear models, the estimated speed of
adjustment is inversely related to the degree of persistence in the data. That is, a larger first order correlation
is associated with lower adjustment speed. Yet this correlation is always zero for an individual series that is
adjusted discretely (and has i.i.d. shocks), so that the researcher will conclude, incorrectly, that adjustment
is infinitely fast. To see that this crucial correlation is zero, first note that the product of current and lagged
changes in the variable of concern is zero when there is no adjustment in either the current or the preceding
period. This means that any non-zero serial correlation must come from realizations in which the unit
adjusts in two consecutive periods. But when the unit adjusts in two consecutive periods, and whenever it
acts it catches up with all accumulated shocks since it last adjusted, it must be that the later adjustment only
involves the latest shock, which is independent from the shocks included in the previous adjustment.

The bias falls as aggregation rises because the correlations at leads and lags of the adjustments across
individual units are non-zero. That is, the common components in the adjustments of different agents at
different points in time provides the correlation that allows us to recover the microeconomic speed of ad-



justment. The larger this common component is —as measured, for example, by the variance of aggregate
shocks relative to the variance of idiosyncratic shocks— the faster the estimate converges to its true value as
the number of agents grows. In practice, the variance of aggregate shocks is significantly smaller than that
of idiosyncratic shocks, and convergence takes place at a very slow pace.

In Section 2 we study the bias for microeconomic and single-policy variables, and illustrate its im-
portance when estimating the speed of adjustment of monetary policy. Section 3 presents our aggregation
results and highlights slow convergence. We show the relevance of this phenomenon for parameters consis-
tent with those of investment, labor, and price adjustments in the U.S. Section 4 discusses partial solutions
and extensions. It first extends our results to dynamic equations with contemporaneous regressors, such as
those used in price-wage equations, or output-gap inflation models. It then illustrates an ARMA method to
reduce the extent of the bias. Section 5 concludes and is followed by an appendix with technical details.

2 Microeconomic and Single-Policy Series

When the task of a researcher is to estimate the speed of adjustment of a state variable —or the implicit
adjustment costs in a quadratic adjustment cost model (see e.g., Sargent 1978, Rotemberg 1987)— the
standard procedure reduces to estimating variations of the celepeatéad adjustment modg¢PAM):

Aye = A(Yf —W-1), (1)

wherey andy* represent the actual and optimal levels of the variable under consideration (e.qg., prices,
employment, or capital), anklis a parameter that captures the extent to which imbalances are remedied in
each period. Taking first differences and rearranging terms leads to the best known form of PAM:

Ayr = (1-M)Ayi-1+w, (2)

with vi = AAY;.

In this model,A is thought of as the speed of adjustment, while the expected time until adjustment
(defined formally in Section 2) il —A)/A. Thus, as\ converges to one, adjustment occurs instantaneously,
while asA decreases, adjustment slows down.

Most people understand that this model is only meant to capture the first-order dynamics of more real-
istic but complicated adjustment models. Perhaps most prominent among the latter, many microeconomic
variables exhibit only infrequent adjustment to their optimal level (possibly due to the presence of fixed
costs of adjustments). And the same is true of policy variables, such as the federal funds rate set by the
monetary authority in response to changes in aggregate conditions. In what follows, we inquire how good
the estimates of the speed of adjustment from the standard partial adjustment approximation (2) are, when
actual adjustment is discrete.



2.1 A Simple Lumpy Adjustment Model

Lety; denote the variable of concern at tilme-e.g., the federal funds rate, a price, employment, or capital—
andy; be its optimal counterpart. We can characterize the behavior of an individual agent in terms of the
equation:

Ayr = & (¥ — Yi-1), 3)

whereé; satisfies:
Pr{Etzl} = )\7

From a modelling perspective, discrete adjustment entails two basic features: (i) periods of inaction fol-
lowed by abrupt adjustments to accumulated imbalances, and (ii) increased likelihood of an adjustment with
the size of the imbalance (state dependence). While the second feature is central for the macroeconomic im-
plications of state-dependent models, it is not needed for the point we wish to raise in this paper. Therefore,
we suppress .

It follows from (4) that theexpectedralue of&; is A. Wheng; is zero, the agent experiences inaction;
when its value is one, the unit adjusts so as to eliminate the accumulated imbalance. We ass§nie that
independent ofy; — yt—1) (this is the simplification that Calvo (1983) makes vis-a-vis more realistic state
dependent models) and therefore have:

E[AY: [ ¥f , Ve-1] = A —Yt-1), (5)

which is the analog of (1). Hengerepresents thadjustment speegarameter to be recovered.

2.2 The Main Result: (Biased) Instantaneous Adjustment

The question now arises as to whether, by analogy to the derivation from (1) to (2), the standard procedure
of estimating
Ay: = (1-NAyr-1 + &, (6)

recovers theverageadjustment speed, when adjustment is lumpy. The next proposition states that the
answer to this question is clearly no.

Proposition 1 (Instantaneous Estimate)
LetA denote the OLS estimator bin equation (6). Let thay;’s be i.i.d. with mear® and variances?,

1The special model we consider —i.e., without feature (ii)— is due to Calvo (1983) and was extended by Rotemberg (1987)
to show that, with a continuum of agenegygregatedynamics are indistinguishable from those of a representative agent facing
guadratic adjustment costs. One of our contributions is to go over the aggregation steps in more detail, and show the problems that
arise before convergence is achieved.



and letT denote the time series length. Then, regardless of the vale of

~

plim; A =1. (7)
Proof See Appendix B.1. 1

While the formal proof can be found in the appendix, it is instructive to develop its intuition in the main
text. If adjustment were smooth instead of lumpy, we would have the classical partial adjustment model, so
that the first order autocorrelation of observed adjustmerits-is, thereby revealing the speed with which
units adjust. But when adjustment is lumpy, the correlation between this period’s and the previous period’s
adjustment necessarily is zero, so that the implied speed of adjustment is one, independent of the true value
of A. To see why this is so, consider the covariancé&wfandAy; i, noting that, because adjustment is
complete whenever it occurs, we may re-write (3) as:

1 ZLI;(:)LAyt*fk if & =1,

li—
Ay = & Z)Aﬁ—k = (8)
k= 0 otherwise,

wherel; denotes the number of periods since the last adjustment took place, (as oftpériod

Table 1: CONSTRUCTING THEMAIN COVARIANCE

Adjustint —1 Adjustint Ayr 1 Ay; Contribution toCov(Ay;, Ay 1)
No No 0 0 AyiAy; 1 = 0
No Yes 0 Ayy AyiAy; 1 =0
Yes No  yib4yi,, O DyiDy; 1 =0
Yes Yes SEAAY L, DY Cov(Ayi-1,Ay:) =0

There are four scenarios to consider when constructing the key covariance (see Table 1): If there was
no adjustment in this and/or the last period (three scenarios), then the product of this and last period's
adjustment is zero, since at least one of the adjustments is zero. This leaves the case of adjustments in both
periods as the only possible source of non-zero correlation between consecutive adjustments. Conditional
on having adjusted both inandt — 1, we have

COV(Ayt,Ayt,]_ | Et =& 1= 1) = COV(A%‘ , AW_1+AW_2+ s +AY{_|1_1) = 0,

since adjustments in this and the previous period involve shocks occurring during disjoint time intervals. Ev-
ery time the unit adjusts, it catches up with all previous shocks it had not adjusted to and starts accumulating
shocks anew. Thus, adjustments at different moments in time are uncorrelated.

230 thatl; = 1 if the unit adjusted in periot— 1, 2 if it did not adjust int — 1 and adjusted in— 2, and so on.
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2.3 Robust Bias: Infrequent and Gradual Adjustment

Suppose now that in addition to the infrequent adjustment pattern described above, once adjustment takes
place, it is only gradual. Such behavior is observed, for example, when there is a time-to-build feature in
investment (e.g., Majd and Pindyck (1987)) or when policy is designed to exhibit inertia (e.g., Goodfriend
(1987), Sack (1998), or Woodford (1999)). Our main result here is that the econometrician estimating a
linear ARMA process —a Calvo model with additional serial correlation— will only be able to extract the
gradual adjustment component but not the source of sluggishness from the infrequent adjustment compo-
nent. That is, again, the estimated speed of adjustment will be too fast, for exactly the same reason as in the
simpler model.

Let us modify our basic model so that equation (3) now applies for a new vagiabieplace ofy,
with AY; representing theéesiredadjustment of the variable that concerns A, This adjustment takes
place only gradually, for example, because of a time-to-build component. We capture this pattern with the

process:
K

K
Ay, = z OAY—k+ (1 — z O) AV 9
k=1 k=1

Now there are two sources of sluggishness in the transmission of siigtks) the observed variablAy.
First, the agent only acts intermittently, accumulating shocks in periods with no adjustment. Second, when
he adjusts, he does so only gradually.
By analogy with the simpler model, suppose the econometrician approximates the lumpy component of
the more general model by:
A = (L—MN)AJ—1 + ;. (10)

Replacing (10) into (9), yields the following linear equation in terms of the obsenapte,

K+1
Ay = 5 adyik+ &, (11)
k=1
with
aQ = (QI.+1_)\7
ak = %7(17)\)(\[‘1(*17 k:25"'7Ka (12)
K41 = _<l_}\)(ﬁ<7

andg; = A\(1- K @Ay
By analogy to the simpler model, we now show that the econometrician will miss the source of persis-
tence stemming from.

Proposition 2 (Omitted Source of Sluggishness)

Let all the assumptions in Proposition 1 hold, withn the role ofy. Also assume that (9) applies,
with all roots of the polynomial — TK_; @z outside the unit disk. L&,k = 1,...,K 4 1 denote the OLS
estimates of equation (11).



Then:
plimy_, .8k = ¢, k=1,..,K,

13
plimr_g ki1 = 0. (13)

Proof See Appendix B.1. &

Comparing (12) and (13) we see that the proposition simply reflects the fact that the (implicit) estimate
of A is one.

The mapping from the biased estimates ofdkis to the speed of adjustment is slightly more cumber-
some, but the conclusion is similar. To see this, let us define the following ind=ypetted response time
to capture the overall sluggishness in the respongdsy td Ay*:

aAyt+k:|
=9 k& [ —1, (14)
k;) 0Ay;
wherekE;|-| denotes expectations conditional on information (that is, valués aihdAy*) known at time
t. This index is a weighted sum of the components of the impulse response function, with weights equal to
the number of periods that elapse until the corresponding response is obséwedxample, an impulse
response with the bulk of its mass at low lags has a small value gsihceAy responds relatively fast to
shocks.

It is easy to show (see Propositions Al and A2 in the Appendix) that both for the standard Partial
Adjustment Model (1) and for the simple lumpy adjustment model (3) we have

1-A

T=——

More generally, for the model with both gradual and lumpy adjustment described in (9), the expected
response td\y satisfies:
_ S i1 ke
1- 25:1%7

while the expected response to shoalg is equal ta?

Tlin

B K

A 1_ZI}<<:1(R<'

3Note that, for the models at hand, the impulse response is always non-negative and adds up to one. When the impulse response
does not add up to one, the definition above needs to be modified to:

0AY; 1«
Yi0KEe [ By ]
0Dk

T eoE[Z]

4For the derivation of both expressions fosee Propositions A1 and A3 in the Appendix.



Let us label:
— 1-A
lum = 7)\ .

It follows that that the expected response when both sources of sluggishness are present is the sum of the
responses to each one taken separately.
We can now state the implication of Proposition 2 for the estimated expected time of adjustment,

Corollary 1 (Fast Adjustment) Let the assumptions of Proposition 2 hold andtldenote the (classical)
method of moments estimator fioobtained from OLS estimators of:

K+1
Ay; = z Dyt k+&.
k=1

Then:
plimy T = Tin < T = Tiin + Tum, (16)

with a strict inequality for\ < 1.

Proof See Appendix B.1. 1

To summarize, the linear approximation #y (wrongly) suggests no sluggishness whatsoever, so that
when this approximation is plugged into the (correct) linear relation betudgesmnd Ay, one source of
sluggishness is lost. This leads to an expected response time that completely ignores the sluggishness
caused by the lumpy component of adjustments.

2.4 An Application: Monetary Policy

Figure 1 depicts the monthly evolution of the intended federal funds rate during the Greensparhera.
infrequent nature of adjustment of this policy variable is evident in the figure. It is also well known that
monetary policy interventions often come in gradual steps (see, e.g., Sack (1998) and Woodford (1999)),
fitting the description of the model we just characterized.

Our goal is to estimate both componentstpf;, andtym. Regarding the former, we estimate AR
processes faky with an increasing number of lags, until finding no significantimprovement in the goodness-
of-fit. This procedure is warranted sinf§, the omitted regressor, is orthogonal to the lagggd. We
obtained an AR(3) process, witl, estimated as 2.35 months.

If the lumpy component is relevant, the (absolute) magnitude of adjustmefifssbibuld increase with
the number of periods since the last adjustment. The longer the inaction period, the larger the number of
shocks inAy* to whichy has not adjusted, and hence the larger the variance of observed adjustments.

To test this implication of lumpy adjustment, we identified periods with adjustmehagthose where
the residual from the linear model takes (absolute) values above a certain thréshilelkt we partitioned

5The findings reported in this section remain valid if we use different sample periods.



Figure 1:

Monthly Intended (Target) Federal Funds Rate. 9/1987 — 3/2002
10— T T T T T T T

1 ! ! ! ! ! ! !
1988 1990 1992 1994 1996 1998 2000 2002

those observations where adjustment took place into two groups. The first group included observations
where adjustment also took place in the preceding period, so that the estiiatply reflects innovations

of Ay* in one period. The second group considered the remaining observations, where adjustments took
place after at least one period with no adjustment.

Columns 2 and 3 in Table 2 show the variances of adjustments in the first and second group described
above, respectively, for various valuesMf Interestingly, the variance when adjustments reflects only
one shock is significantly smaller than the variance of adjustments to more than one shock (see column 4).
If there were no lumpy component at al € 1), there would be no systematic difference between both
variances, since they would correspond to a random partition of observations where the residual is larger
thanM. We therefore interpret our findings as evidence in favor of significant lumpy adjustment.

To actually estimate the contribution of the lumpy component to overall sluggishness, we need to esti-
mate the fraction of months where an adjustmenttiook place. Since we only obserygwe require some
additional information to determine this adjustment rate. If we had a criterion to choose the thidshold
this could be readily done. The fact that the Fed changes rates by multiples of 0.25 suggests that reasonable
choices foM are in the neighborhood of this value. Columns 5 and 6 in Table 2 report the values estimated
for A andTyn, for different values oM. For all these cases, the estimated lumpiness is substantial.

An alternative procedure is to extract lumpiness from the behavigrdifectly. For this approach, we
used four criteria: First, if; # yt_1 andy;_1 = y;_» then an adjustment gf occurred at. Similarly if a
“reversal” happened &t that is, ify; > yi_1 andy;_1 < ¥i—2 (Ory; < yi—1 andy;_1 > y;_»). By contrast, if
Vi = ¥i_1, We assume that no adjustment took place in peridéinally, if an “acceleration” took place at

BAlso note that the first order autocorrelation of residuals@002, so that our finding cannot be attributed to this factor either.



Table 2:ESTIMATING THE LUMPY COMPONENT

(1) (2) ) (4) 5) (6

M Var(AGi|& = 1,&-1=1) Var(A%|& =1,&-1=0) p-value A Tium
0.150 0.089 0.213 0.032 0.365 1.74
0.175 0.092 0.221 0.018 0.323 2.10
0.200 0.117 0.230 0.051 0.2563 2.95
0.225 0.145 0.267 0.060 0.206 3.85
0.250 0.150 0.325 0.034 0.165 5.06
0.275 0.164 0.378 0.016 0.135 6.41
0.300 0.207 0.378 0.045 0.123 7.13
0.325 0.207 0.378 0.045 0.123 7.13
0.350 0.224 0.433 0.041 0.100 9.00

For various values d1 (see Column 1), values reported in the remaining columns are as follows. Columns
2 and 3: Estimates of the variance/gf, conditional on adjusting, for observations where adjustment also took
place the preceding period (column 2) and with no adjustment in the previous period (column 3). Column 4:
p-value, obtained via bootstrap, for both variances being the same, against the alternative that the latter is larger.
Column 5: Estimates of. Column 6: Estimates dfjym.

t,sothatyy —yi-1>Vi-1—Y-2>0(0ry: —Vyi—1 < V¥-1— Y2 < 0), we assume thatadjusted at. With

these criteria we can sort 156 out of the 174 months in our sample into (lumpy) adjustment taking place or
not. This allows us to bound the (estimated) valua bktween the estimate we obtain by assuming that no
adjustment took place in the remaining 18 periods and that in which all of them correspond to adjustments
for .

Table 3:MODELS FOR THEINTENDED FEDERAL FUNDS RATE

Time-to-build component A Lumpy component
041 (1) (¢} Tjin Amin Amax TIum,min flum,max
0.230 0.080 0.231 2.35 0.221 0.320 2.13 3.53

(0.074) (0.076) (0.074) (0.95)  (0.032) (0.035) (0.34) (0.64)

Reported: Estimation of both components of the sluggishness indBata: Intended (Target)
Federal Funds Rate, monthly, 9/1987-3/2002. Standard deviations in parenthesis, obtained via Delta
method.

Table 3 summarizes our estimates of the expected response time obtained with this procedure. A re-
searcher who ignores the lumpy nature of adjustments only would consider the AR-component and would
infer a value oft equal to 2.35 months. Yet once we consider infrequent adjustments, the correct estimate of
T is somewhere between 4.48 and 5.88 months. That is, ignoring lumpiness (wrongly) suggests a response
to shocks that is approximately twice as fast as the true respgonse.

Consistent with our theoretical results, the bias in the estimated speed of adjustment stems from the

"Note that these coincide with estimates obtainedvidn the 0.175 to 0.225 range, see Table 2.



infrequent adjustment of monetary policy to news. As shown above, this bias is important, since infrequent
adjustment accounts for at least half of the sluggishness in modern U.S. monetary policy.

3 Slow Aggregate Convergence

Could aggregation solve the problem for those variables where lumpiness occurs at the microeconomic
level? In the limit, yes. Rotemberg (1987) showed that the aggregate equation resulting from individual
actions driven by the Calvo-model indeed converges to the partial-adjustment model. That is, as the number
of microeconomic units goes to infinity, estimation of equation (6) for the aggregate does yield the correct
estimate of\, and therefore. (Henceforth we return to the simple model without time-to-build).

But not all is good news. In this section, we show that when the speed of adjustment is already slow, the
bias vanishes very slowly as the number of units in the aggregate increases. In fact, in the case of investment
even aggregating across all U.S. manufacturing establishments is not sufficient to eliminate the bias.

3.1 The Result

Let us define the N-aggregate change at tindg/, as:

1 N
AY{\‘ = N i;AYi.p

whereAy; ; denotes the change in the variable of interest byiuniperiodt.

Technical Assumptions (Shocks)

Let Ayj, = vﬁ+vi'7t, where the absence of a subindedenotes an element common to ia(l.e, that
remains after averaging acrossia). We assume:

1. thev{*’s are i.i.d. with meana and variancearf\ > 0,

2. thevi',t 's are independent (across units, over time, and with respect té¢"8)eidentically distributed
with zero mean and variancg > 0, and

3. the&,'s are independent (across units, over time, and with respect tg*thand\v'’s), identically
distributed Bernoulli random variables with probability of success(0,1]. 1

As in the single unit case, we now ask whether estimating
Ay = (LMD + &, (17)
yields a consistent (ab goes to infinity) estimate of, when the true microeconomic model is (8). The

following proposition answers this question by providing an explicit expression for the bias as a function of
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the parameters characterizing adjustment probabilities and shagls 64 anda;) and, most importantly,
N.

Proposition 3 (Aggregate Bias)
LetAN denote the OLS estimator din equation (17). LeT denote the time series length. Then, under

the Technical Assumptions,
1-A

plimy_ AN = A+ (18)
with N
K — 75 (N—1)03 — 15 19
= 42 2 2-A2 ° (19)
It follows that:
’\IIiLnoopIimT_>w5\N = (20)

Proof See Theorem B1 in the Appendixa

To see the source of the bias and why aggregation reduces it, we begin by writing the first order auto-
correlation,ps, as an expression that involves sums and quotients of four different terms:

01— Cov(AyN, AyN 1) _ [NCov(Ay1t,Ay1t-1) + N(N—1)Cov(Ay1t,Ayzs 1)]/N2
Var(Ayl) [NVar(Ay1t) + N(N —1)Cov(Ay ,Ayzt)] /N2 ’

(21)

where the subindex 1 and 2 &y denote two different units.

The numerator of (21) includé¢ (by symmetry identical) first-order autocovariance terms, one for each
unit, andN(N — 1) (also identical) first-order cross-covariance terms, one for each pair of different units.
Likewise, the denominator considdxsidentical variance terms and(N — 1) identical contemporaneous
cross-covariance terms.

From columns 2 and 4 in Table 4 we observe that the cross-covariance terms under PAM and lumpy
adjustment are the sarfieSince these terms will dominate for sufficiently latge—there areN(N — 1) of
them, compared tbl additional terms— it follows that the bias vanished\agoes to infinity.

8This is somewhat remarkable, since the underlying processes are quite different. For example, consider the first-order cross-
covariance term. In the case of PAM, adjustments at all lags contribute to the cross-covariance term:

Cov(Byir,Byz2e-1) = CovA T (1-M*ayj, y AT (1-N)'ays, 1))
K>0 10
= N (1-N*Covay) o Aysi 1)
k=T+1 ' '

LZ))\Z(l—)\)Z'“} o2 = Zi—)\(l—)\)qﬁ.

By contrast, in the case of the lumpy adjustment model, the non-zero terms obtained when calculating the covariancéyhetween
andAy,:_1 are due to aggregate shocks included both in the adjustment of unit)laga unit 2 (int — 1). Idiosyncratic shocks

11



Table 4:CONSTRUCTING THEFIRST ORDER CORRELATION

1) (2 3 (4)

Cov(Ay1t,Ay1t-1)  Cov(Ayiy, Ayt 1) Var(Ay1t) Cov(Ay1t,Ay>)
(1) PAM: A (1-MN)(034+07) A (1-N)0Z 25 (03+07) 2304
2) Lumpy (= O): 0 25 (1-N)0% 03 +07 P
(3) Lumpy (ua # 0): —(1-M& 25 (1-N)oa 0z +0f + @HZA 2504

However, the underlying bias may remain significant for relatively large valuéks ¢from Table 4 it
follows that the bias for the estimated first-order autocorrelation originates from the autocovariance terms
included in both the numerator and denominator. The first-order autocovariance term in the numerator
is zero for the lumpy adjustment model, while it is positive under PAM (this is the bias we discussed in
Section 2). And even though the number of terms with this bias isMnjompared witiN(N — 1) cross-
covariance terms with no bias, the missing terms are proportio@ 1007, while those that are included
are proportional t@i, which is considerably smaller in all applications. This suggests that the bias remains
significant for relatively large values ™ (more on this below) and that this bias rises with the relative
importance of idiosyncratic shocks.

There is a second source of bias ohte 1, related to the variance terk@ar(Ayi ) in the denominator
of the first-order correlation in (21). While under PAM this variance is increasing warying between 0
(whenA = 0) andoZ + o (whenA = 1), when adjustment is lumpy this variance attains the largest possible
value under PAM0§\+0|2, independent of the underlying adjustment speethis suggests that the bias is
more important when adjustment is fairly infrequént.

Substituting the terms in the numerator and denominator of (21) by the expressions in the second row of

are irrelevant as far as the covariance is concerned. It follows that:

CoviAy1t, Ayzs-1/81t = 1,82¢-1 = 1,l11,l2¢-1] = min(ly; — 1,12¢1)0%,
and averaging ovdi ; andl,¢_1, both of which follow (independent) Poisson processes, we obtain:

A
Cov(By1t,8y21-1) = 5— (1-N)0R, (22)
which is the expression obtained under PAM.

9To further understand whyar(Ay1 ) can be so much larger in a Calvo model than with partial adjustment, we compare the
contribution to this variance of shocks that took plageeriods agoy .

For PAM we have

Var(Ayir) = Var( ) A(1-A) Ay{t K) Z ZVar(Ay; i), (23)
K20 K0
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Table 4, and dividing numerator and denominatoNgiN — 1)A /(2 —A) leads to:
_ 1-A

1+ 522 (1+ g;) '
This expression confirms our discussion. It illustrates clearly that the bias is increasin@inand de-
creasing il andN.

P1 (24)

Finally, we note that a value qfs # O biases the estimates of the speed of adjustment even further.
The reason for this is that it introduces a sort of “spurious” negative correlation in the time sefigs .of
Whenever the unit does not adjust, its change is, in absolute value, below the mean change. When adjustment
finally takes place, pent-up adjustments are undone and the absolute change, on averagepgkctees
product of these two terms is clearly negative, inducing negative serial correl&tion.

Summing up, the bias obtained when estimatingith standard partial adjustment regressions can be
expected to be significant when eith®(/o;, N or A is small, or|ua| is large. Figure 2 illustrates how!
converges ta\. The baseline parameters (solid line) gge= 0, A = 0.20, ca = 0.03 andg; = 0.24. The
solid line depicts the percentage biashagrows. ForN = 1,000, the bias is above 100%; by the time
N = 10,000 it is slightly above 20%. The dash-dot line increasggto 0.04, speeding up convergence.
By contrast, the dash-dot line considggs= 0.10, which slows down convergence. Finally, the dotted line
shows the case whehedoubles td.40, which also speeds up convergence.

Corollary 2 (Slow Convergence)

The bias in the estimator of the adjustment speed is increasimgand |a| and decreasing ioa, N and
A. Furthermore, the four parameters mentioned above determine the bias of the estimator via a decreasing
expression oK .1

Proof Trivial. &

so that
VEAM = X2(1—\)%(03 + 7).
By contrast, in the case of lumpy adjustment we have:

Vllumpy = Pr{ly; =k}Var(Qyyt|lis =K)

Pr{lit = k}[AVar(Qyyt|lie = 1,81t = 1) + (1= A)Var(Ays t[l1 = 0,& = 0)]
= M1-N*1k(0% +0?)].

Vit is much larger under the lumpy adjustment model than under PAM. With infrequent adjustment the relevant conditional distri-
bution is a mixture of a mass at zero (corresponding to no adjustment at all) and a normal distribution with a variance that grows
linearly withk (corresponding to adjustmenttip Under PAM, by contrasl; is generated from a a normal distribution with zero
mean and variance that decreases With

10w also have thaia O further increases the bias due to the variance term, see entry (3,3) in Table 4.

11The results folo; andA may not hold if|pa| is large. For the results to hold we neldd> 1+ (2—\)p4 /Aoa. Whenpa = 0
this is equivalent ttN > 1 and therefore is not binding.
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Figure 2:

Bias as a function of N for various parameter configurations
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3.2 Applications

Figure 2 shows that the bias in the estimate of the speed of adjustment is likely to remain significant, even
when estimated with very aggregated data. In this section we provide concrete examples based on estimates
for U.S. employment, investment, and price dynamics. These series are interesting because there is extensive
evidence of their infrequent adjustment at the microeconomic level.

Let us start with U.S. manufacturing employment. We use the parameters estimated by Caballero, Engel,
and Haltiwanger (1997) with quarterly Longitudional Research Datafile (LRD) data. Table 5 shows that even
whenN = 1,000, which corresponds to many more establishments than in a typical two-digit sector of the
LRD, the bias remains above 40 percent. That is, estimated speeds of adjustment at the sectoral level are
likely to be significantly faster than the true speed of adjustment.

The good news in this case is that fér= 10,000, which is about the size of the continuous sample in
the LRD, the bias essentially vanishes.

The results for prices, reported in Table 6, are based on the estimatqugfandca from Bils and
Klenow (2002), whileo; is consistent with that found in Caballero et al (1987 he table shows that the

1270 go from theo; computed for employment in Caballero et al. (1997) to that of prices, we note that if the demand faced by a
monopolistic competitive firm is isoelastic, its production function is Cobb-Douglas, and its capital fixed (which is nearly correct
at high frequency), then (up to a constant):

P = (W —air) + (1—oap )l
where p* andl* denote the logarithms of frictionless price and employmepntanda; are the logarithm of the nominal wage
and productivity, andy_ is the labor share. It is straightforward to see that as long as the main source of idiosyncratic variance is
demand, which we assuma,, ~ (1—ap)ay,..
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Table 5:SLow CONVERGE[\ICE EMPLOYMENT

Averagei
Number of agentsN)

100 1,000 10,000 o

Number 35 0.901 0.631 0.523

of
Time 200 0.852 0.548 0.436
Periods
(T) o0 0.844 0.532 0.417 0.400

Reported: average of OLS estimate3 pbbtained via simulations. Number of
simulations chosen to ensure that numbers reported have a standard deviation less
than 0.002. Cas& = « calculated from Proposition 3. Simulation parameters:

A: 0.40,pa = 0.005 op = 0.03, o) = 0.25. Quarterly data, from Caballero et al.

(1997).

bias remains significant even fidr= 10,000. In this case, the main reason for the stubborn bias is the high

value ofg| /0a.

Table 6:SLow CONVERGENCE PRICES

Average5\
Number of agentsN)

100 1,000 10,000 o

Number 60 0.935 0.614 0.351

of
Time 500 0.908 0.542 0.279
Periods
(T) 0 0.902 0.533 0.269 0.220

Reported: average OLS estimates\pbbtained via simulations. Number of
simulations chosen to ensure that numbers reported have a standard deviation less
than 0.002. Cas& = « calculated from Proposition 3. Simulation parameters:

A: 0.22 (monthly data, Bils and Klenow, 2002), = 0.003 oa = 0.0054 ¢, =

0.048

Finally, Table 7 reports the estimates for equipment investment, the most sluggish of the three series.
The estimate ok, pa andoa, are from Caballero, Engel, and Haltiwanger (1995), ani$ consistent with
that found in Caballero et al (199%3. Here the bias remains very large and significant throughout. Even
whenN = 10,000, the estimated speed of adjustment exceeds the actual speed by more than 80 percent. The

1370 go from theo; computed for employment in Caballero et al (1997) to that of capital, we note that if the demand faced by a
monopolistic competitive firm is isoelastic and its production function is Cobb-Douglasgipen oy,. .
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reasons for this is the combination of a laywa highpa (mostly due to depreciation), and a lage(relative
to op).

Table 7:SLow CONVERGENCE INVESTMENT
Averagei

Number of agentsN)
100 1,000 10,000 o

15 1.060 0.950 0.665
Number
of 50 1.004 0.790 0.400
Time
Periods 200 0.985 0.723 0.305
(T)
00 0.979 0.696 0.274 0.150

Reported: average of OLS estimates\pbbtained via simulations. Number
of simulations chosen to ensure that numbers reported have a standard deviation
less than 0.002. Simulation parametexs0.15 (annual data, from Caballero et
al, 1995),up = 0.12, op = 0.056, o) = 0.50.

We have assumed throughout thiat" is i.i.d. Aside from making the results cleaner, it should be
apparent from the time-to-build extension in Section 2 that adding further serial correlation does not change
the essence of our results. In such a case, the cross correlations between contiguous adjustments are no
longer zero, but the bias we have described remains. In any event, for each of the applications in this
subsection, there is evidence that the i.i.d. assumption is not farfetched (see, e.g., Caballero et al [1995,
1997], Bils and Klenow [2002]).

4 Fragile Solutions: Biased Regressions and ARMA Correction

Can we fix the problem while remaining within the class of linear time-series models? In this section, we
show that in principle this is possible, but in practice it is unlikely (especially for sKjall

4.1 Biased Regressions

So far we have assumed that the speed of adjustment is estimated using only information on the economic
series of interesy. Yet often the econometrician can resort to a proxy for the tafgdnstead of (2), the
estimating equation is:

Ayr = (1-N)Ayi1+AAY; + &, (25)

with some proxy available for the regresgor.
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Equation (25) hints at a procedure for solving the problem. Since the regressors are orthdgonal,
in principle can be estimated directly from the parameter estimate associatedyittvhile dropping
the constraint that the sum of the coefficients on the right hand side add up to one. Of course, if the
econometrician does impose the latter constraint, then the estimateibfoe some weighted average of
an unbiased and a biased coefficient, and hence will be biased as well. We summarize these results in the
following proposition.

Proposition 4 (Bias with Regressors)
With the same notation and assumptions as in Proposition 3, consider the following equation:

AYY = bolyyY 1 +biAy; + @, (26)

whereAy; denotes the average shock in perigdy Ay;/N. Then, if (26) is estimated via OLS, akd
defined in (19),

(i) without any restrictions otvg andby:

: - K
plimy_,bp = m(l—A% (27)
plimr by = A (28)
(i) imposingbg = 1 — by:*
: ~ A(1-=A)
In particular, forN = 1 andpa = O:
1-A

p“mT*}wbl - )\ + 7

Proof See Corollary B1 in the Appendix.i

Of course, in practice the “solution” above is not very useful. First, the econometrician seldom observes
Ay* exactly, and (at least) the scaling parameters need to be estimated. In this situation, the coefficient es-
timate on the contemporaneous proxy &y is no longer useful for estimating, and the latter must be
estimated from the serial correlation of the regression, bringing back the bias. Second, when the econometri-
cian does observy*, the adding up constraint typically is linked to homogeneity and long-run conditions

14The expression that follows is a weighted average of the unbiased estiaatdithe biased estimator in the regression without
Ay* as a regressor (Proposition 3). The weight on the biased estimati§/&K + A), which corresponds to the harmonic mean
of A andK.
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that a researcher often will be reluctant to drop (see below).

Fast Micro — Slow Macro?: A Price-Wage Equation Application

In an intriguing article, Blanchard (1987) reached the conclusion that the speed of adjustment of prices
to cost changes is much faster at the disaggregate than the aggregate level. More specifically, he found that
prices adjust faster to wages (and input prices) at the two-digit level than at the aggregate level. His study
considered seven manufacturing sectors and estimated equations analogous to (26), with sectoral prices in
the role ofy, and both sector-specific wages and input prices as regressoys)(tfibe classic homogeneity
condition in this case, which was imposed in Blanchard’s study, is equivalent in our settigg tg = 1.

Blanchard'’s preferred explanation for his finding was based on the slow transmission of price changes
through the input-output chain. This is an appealing interpretation and likely to explain some of the dif-
ference in speed of adjustment at different levels of aggregation. However, one wonders how much of the
finding can be explained by biases like those described in this paper. We do not attempt a formal decompo-
sition but simply highlight the potential size of the bias in price-wage equations for realistic parameters.

Matching Blanchard’s framework to our setup, we know that his estimated sektisrabproximately
0.18 while at the aggregate level it is 0.135.

Table 8:BIASED SPEED OFADJUSTMENT. PRICE-WAGE EQUATIONS
AverageA

Number of firms N)
100 500 1,000 5,000 10,000

250 0.416 0.235 0.194 0.148 0.142 0.135
No. of Time PeriodsT:
o 0.405 0.239 0.194 0.148 0.142 0.135
Reported: Foll = 250, average estimate afobtained via simulations. Number of simulations chosen to ensure that

estimates reported have a standard deviation less than 0.00%. Fos: calculated from (28). Simulation parameters:
A: 0.135 andr = 250(from Blanchard, 1987, monthly dataj, = 0.003 oa = 0.0054ando; = 0.048as in Table 6.

Table 8 reports the bias obtained when estimating the adjustment speed from sectoral price-wage equa-
tions. It assumes that the true speed of adjustmerd,0.135, and considers various values for the number
of firms in the sector. The table shows that for reasonable valubstoére is a significant upward bias in
the estimated value @, certainly enough to include Blanchard’s estiméfes.

15We obtained these estimates by matching the cumulative impulse responses reported in the first two columns of Table 8 in
Blanchard (1987) for 5, 6 and 7 lags. For the sectoral speeds we obtain, respe6ti/&#,0.182 and 0.189, while for the
aggregate speed we obt&iri37, 0.121and0.146. The numbers in the main text are the averdgebtained this way.

16The estimated speed of adjustment is close to 0.18lfer1,000.
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4.2 ARMA Corrections

Let us go back to the case of unobserfgt. Can we fix the bias while remaining within the class of linear
ARMA models? In the first part of this subsection, we show that this is indeed possible. Essentially, the
correction amounts to adding a nuisance MA term that “absorbs” the bias.

However, the second part of this subsection warns that this nuisance parameter needs to be ignored when
estimating the speed of adjustment. This is not encouraging, because in practice the researcher is unlikely
to know when he should or should not drop some of the MA terms before simulating (or drawing inferences
from) the estimated dynamic model.

On the constructive side, nonetheless, we show that Whssufficiently large, even if we do not ignore
the nuisance MA parameter, we obtain better —although still biased— estimates of the speed of adjustment
than with the simple partial adjustment model.

4.2.1 Nuisance Parameters and Bias Correction

Let us start with the positive result.

Proposition 5 (Bias Correction) Let the Technical Assumptions (see page 10) hothenAy follows
an ARMA(1,1) process with autoregressive parameter equaHa. Thus, adding an MA(1) term to the
standard partial adjustment equation (2):

AW = (1-NAYY ; +v — 8w 1, (29)

and denoting b§\N any consistent estimator of one minus the AR-coefficient in the equation above, we have
that:
plimy_ AN = A.
The moving average coefficieft,is a "nuisance” parameter that depends bdh(it converges to zero as
tends to infinity)ua, 0a ando,. We have that:

9:%(L—\/L2—4) >0,

with
2+A2—-AN)(K-1)

1-A ’

L

andK defined in (19).

Proof See Theorem B1 in the Appendixa

17strictly speaking, to avoid the case where the AR and MA coefficients coincide, we need to rule out the knife-edge case
N-1=(2- )\)U/%\/AG%- In particular, whenua = 0 this amounts to assuming > 1.
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The proposition shows that adding an MA(1) term to the standard partial adjustment equation eliminates
the bias. This rather surprising result is valid for any level of aggregation. However, in practice this cor-
rection is not robust for smaMl, as the MA and AR coefficients are very similar in this case (coincidental
reduction)!® Also, as with all ARMA estimation procedures, the time series needs to be sufficiently long
(typically T > 100 to avoid a significant small sample bias.

Table 9:ADJUSTMENT SPEEDT: WITH AND WITHOUT MA CORRECTION

Number of agentsN)
100 1,000 10,000
AR(1): 0.18 0.88 1.40
Employment ARMA(1,1): 0.65 1.29 1.47
ARMA(1,1), ignoring MA:  1.50 1.50 1.50
AR(1): 0.11 0.88 2.72
Prices ARMA(1,1): 1.27 2.83 3.43
ARMA(1,1), ignoring MA:  3.55 3.55 3.55
AR(1): 0.02 0.44 2.65
Investment ARMA(L,1): 0.77 3.92 5.29
ARMA(1,1), ignoring MA:  5.67 5.67 5.67

Reported: theoretical value af ignoring small sample biasT(= «). “AR(1)” and
“ARMA(1,1)" refer to values oft obtained from AR(1) and ARMA(1,1) representations.
“ARMA(1,1) ignoring MA’ refers to estimate obtained using ARMA(1,1) representation, but
ignoring the MA term. The results in Propositions 3 and 5 were used to calculate the expres-
sions fort. Parameter values are those reported in Tables 4, 5 and 6.

Next we illustrate the extent to which our ARMA correction estimates the correct response time in the
applications to employment, prices, and investment considered in Section 3. We begin by noting that the
expected response time inferred without dropping the MA tertf is:

. _1-A 8 <1—>\
ma= o\ 1-6 A

:T’

where8 > 0 was defined in Proposition %,denotes the correct expected responsetapdhe expected
response that is inferred from a non-parsimonious ARMA process (it could be am\Ma&{ AR() or, in
our particular case, an ARMA(1,1)).

The third row in each of the applications in Table 9 illustrates the main result. The estintatelen
the nuisance term is used in estimation but droppet-f@iculations, is unbiased in all the cases, regardless
of the value ofN (note that in order to isolate the biases that concern us we have as$ume)l.

18For example, ifia = 0, we have that the AR and MA term are identical for= 1.
19see Proposition Al in the Appendix for a derivation.
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The first and second rows (in each application) show the biased estimates. The former repeats our basic
result while the latter illustrates the problems generated by not dropping the nuisance MAgrnT be
bias from not dropping the MA term is smaller than that from inferrirfgom the first order autocorrela-
tion 2 yet it remains significant even at fairly high levels of aggregation (B.g-,1,000).

5 Conclusion

The practice of approximating dynamic models with linear ones is widespread and useful. However, it can
lead to significant overestimates of the speed of adjustment of sluggish variables. The problem is most severe
when dealing with data at low levels of aggregation or single-policy variables. For once, macroeconomic
data seem to be better than microeconomic data.

Yet this paper also shows that the disappearance of the bias with aggregation can be extremely slow.
For example, in the case of investment, the bias remains above 80 percent even after aggregating across all
continuous establishments in the LR® £ 10,000).

While the researcher may think that at the aggregate level it does not matter much which microeconomic
adjustment-cost model generates the data, it does matter greatly for (linear) estimation of the speed of
adjustment.

What happened to Wold’s representation, according to which any stationary, purely non-deterministic,
process admits an (eventually infinite) MA representation? Why, as illustrated by the analysis at the end
of Section 4, do we obtain an upward biased speed of adjustment when using this representation for the
stochastic process at hand? The problem is that Wold’s representation expresses the variable of interest as
a distributed lag (and therefore linear function) of innovations that are the one-steplaleeadorecast
errors. When the relation between the macroeconomic variable of interest and shocks is non-linear, as is the
case when adjustment is lumpy, Wold’s representation misidentifies the underlying shock, leading to biased
estimates of the speed of adjustment.

Put somewhat differently, when adjustment is lumpy, Wold’s representation identifies the correct ex-
pected response time to the wrong shock. Also, and for the same reason, the impulse response more gener-
ally will be biased. So will many of the dynamic systems estimated in VAR style models, and the structural
tests that derive from such systems. We are currently working on these issues.

20This can be proved formally based on the expressions derived in Theorem B1 and Proposition Al in the appendix.
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APPENDIX

A The Expected Response Time Indext

Lemma ALl (t for an Infinite MA) Consider a second order stationary stochastic process

Ay, = Z)UJkStfk,
k>

with Yo = 1, Sy>0 qJE < oo, the g’s uncorrelated, andc; uncorrelated withAy; _1,Ay; »,... Assume that
W(2) = S0 Pz has all its roots outside the unit disk.
Define:
0AY: 4k
68'[

WL
Skoolk

Ik = Et[ ] and 1= (30)

Then:
W(1) _ Y1 KWk
W(1) SkeoWk

Proof Thatly = Yy is trivial. The expressions farthen follow from differentiating!(z) and evaluating at
z=1 1

lk=yYx and T =

Proposition Al (1 for an ARMA Process) Assume\y; follows an ARMA(p,q):
p q
Ay — ) @AYk = & — ) Ok€rk,
2 2

whered(z) =1- 3P @ andO(z) =1-75, , 8z have all their roots outside the unit disk. The assump-
tions regarding the’s are the same as in Lemma Al.
Definet as in (30). Then:
_ Seeak@ TR o k8K
I-Fe it 1-3,60

Proof Given the assumptions we have made about the rostgzyfand©(z), we may write:

whereL denotes the lag operator. Applying Lemma Al wate) /®(2) in the role of¥(z) we then have:

_ O ) 3R ke 3y K

o(1) ®1) 1-yP e 1-30 .6

Proposition A2 (t for a Lumpy Adjustment Process) ConsidelAy; in the simple lumpy adjustment model (8)
andt defined in (14). Then= (1—\)/A.2%

2IMore generally, if the number of periods between consecutive adjustments are i.i.d. withmieant = m— 1. What follows
is the particular case where interarrival times follow a Geometric distribution.
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Proof 0Ay:.«/0Ay; is equal to one when the unit adjusts at titaek, not having adjusted between tintes
andt + k— 1, and is equal to zero otherwise. Thus:

Ik = E ["?X;k] = Pr{& k=1, &k1=Erka=..=& =0} =A(1-A)X (31)

The expression for now follows easily. 1

Proposition A3 (t for a Process With Time-to-build and Lumpy Adjustments) Consider the procedsy;
with both gradual and lumpy adjustments:

K
Ay, = Z OAY-k+ (1 @A, (32)
K=1
with
l—1
DG = & Y DY i, (33)
k=0
whereAy* is i.i.d. with zero mean and varianc#.
Definet by:
SicokBr | k]
T = .
Yie0E [aggtwfk}
Then:

Skoikge | 1=
— v + N
1-3h &
Proof Note that:
k

aAka] K [aAka GINA ] [ A ]
I = = E ~ e E _ G H7 34
“ t[aAYt* J;, |00V oDy J; Ay Z) k—jH] (34)

where, from Proposition Al and (31) we have that @eare such tha6(z) = -Gz = 1/®(2), and
Hq = A(1—M)X. DefineH(2) = Sy-oHkZ andl1(z) = G(z)H(z). Noting that the coefficient o in the
infinite seried (z) is equal tdy in (34), we have:

'y _ GO H@) _ yicake | 1-A
(1) G(1)  H@D)  1-3ie A
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B Bias Results

B.1 Resultsin Section 2

In this subsection we prove Proposition 2 and Corollary 1. Proposition 1 is a particular case of Proposition 3,
which is proved in Section B.2. The notation and assumptions are the same as in Proposition A3.

Proof of Proposition 2 and Corollary 1 The equation we estimate is:

K+1
Ay = 5 adyik+ W, (35)
=1

while the true relation is that described in (32) and (33).

An argument analogous to that given in Section 2.2 shows that the second term on the right hand side
of (32), denoted byv in what follows, is uncorrelated withAy;_y, k > 1. It follows that estimating (35) is
equivalent to estimating (32) with error term

K l—1

W == (1_ Z (PK)E.t kZOAYtikv

K=1
and therefore:
o« ifk=12,...,K,
plimTHooék =
0 ifk=K+1.

The expression for plign_,,T now follows from Proposition A3.

B.2 Resultsin Sections 3 and 4

In this section we prove Propositions 3, 4, and 5. The notation and assumptions are those in Proposition 3.
The proof proceeds via a series of lemmas. Propositions 3 and 5 are proved in Theorem B1, while Proposi-
tion 4 is proved in Corollary B1.

Lemma B1 AssuméX; andX; are i.i.d. geometric random variables with paramekeso thatPr{X =k} =
AM1-MN*1k=1,23,... Then:

1
1-A

In particular, thel;;’s (defined in the main text) are all geometric random variables with parameter
Furthermore|i; andl; s are independent if £ j.

Next define, for any integararger or equal than zero:

. 0 if X1 <s,
ST min(Xg—s,X) if X3 >s.
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Then
(1-A)°

EMs| = A2-A)
Proof The expressions fdE[X] andVar[X;] are well known. The properties of thg’s are also trivial.

To derive the expression fd&[Ms], denote byF (k) and f (k) the cumulative distribution and probability
functions common t&X; andX,. Then:

P{Ms=k} = Pr{Xi—s=kXo>k+1}+Pr{Xo =k X;—s>k+1}+Pr{X;—s=k Xo =k}
= f(s+K[1-F(K)]+ f(k)[1-F(k+9)]+ f(k) f(k+s),

and, sincel — F (k) = (1— )X, with some algebra we obtain:
Pr{Ms=k} =A(2—A)(1—\)S+22,

Using this expression to calculaiMs| via -1 kPr{Ms =k} completes the proof.

Lemma B2 For any strictly positive integes,

Cov(AYit,AYitys) = —(1— )\)suﬁ‘.
Proof We have:

= Z EAY Y| lirs = Ol =k &is= 1 & = Pl s =gk =k Ers = 1,& =1} — &
=

=,

HMS ﬁMv’

1

S
= u z qkPr{li s =0l =K &s = 1,& =1} — 14,

where in the second (and only non-trivial) step we add up over a partition of the set of outcomes where

Ayr Ayt # 0.
The expression above, combined with:

M(A-NKa2 ifgq=1,..5-1,
Prl,s=0,k =K & s=1& =1} =
AN(1-Nkta2 ifgq=s,

and some patient algebra completes the propf.

Lemma B3 For q # r and any integes larger or equal than zero we have:

A
COV(quJJrSvAyr,t) - ﬂ(l — )\)30'2
Proof Denotevi = Ay = VtA+Vi',t- Then:
|q,t+s*1 Ir,tfl
ElAYqt+sAYrtllgtes Irt] = E[€qts( Zo Vat+s—)&rt( D Vi) llgtes: It
= K=0
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|q‘t+s—1|m*1

= M E[\/tAJrs—j\/tA—k]
% 2

2 2 2 2
= Mlgtsslrtta + AMs(lgtss, Irt)Oa.

Where the first identity follows from the definition of th; ;’s, the second from conditioning on the four
possible combinations of values &ft,s and&;t, andMs(lqt+s,lrt) denotes the random variable analogous
to Msin Lemma B1, based on the i.i.d. geometric random varidles andl;;. The remainder of the proof

is based on the expressions in Lemma B1 and straightforward algabra.

Lemma B4 We have:
2(1-M)

Var(Ay;t) = X

L + 03 + 07

Proof The proof is based on calculating both terms on the right hand side of the well known identity:

Var(Ath) = Vanm (E[Aym |Ii7t]) + Eli,t (Var(Aym |Ii,t))-
Since[Ay;t|lit] has meath tpa and variancéi’to,i, we have:

-1
E[aYZ 1] = E[E7( Z)vm,j)z] = A(lit (& +07) +itHa.
J:

A similar calculation shows that:
E[AYit|lit] = Alitpa.
Hence:
Var(Ay;t|lit) = )\I.t(oA—|—0|)+)\(l )\)I,tuA

and taking expectation with respectitp(and using the expressions in Lemma B1) leads to:

(1—)\))\(2—)\)‘1/2\.

An analogous (and considerably simpler) calculation shows that:

E, Var(Ayit|lis) = 0% + 02 +

Var,, (El8yillid) = (1- M.

The proof concludes by substituting (37) and (38) in (3G).

LemmaB5 For N > 1:

1 A 2(1—A\
Var(Ayl) = N{[1+2)\(N 1)]oi + 0%+ ()\ )uﬁ}.

Proof The caséN = 1 corresponds to Lemma B4. FNr> 2 we have:

=z

1

Var(AyY) NZ 2

Cov(Ayit, Ayjt)
1

MZ

J
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1
= 2 INVar(ayr) + N(N = 1)Cov(Bys, Ayap)}

The first identity follows from the bilinearity of the covariance operator, the second from the fact that
Var(Ay;t) does not depend drandCov(Ay; t,Ay;), i # j, does not depend dror j.
The remainder of the proof follows from using the expressions derived in Lemmas B3 ang B4.

Lemma B6 Recall that in the main text we definAg = zi’\'zlAy;it/N. We then have:

g2

Var(dy;) = i+
>, Of

Cov(ay . &y)) = Adh+ ]

Proof The proof of the first identity is trivial. To derive the second expression we first note that:

lig—1

CovdyinAyj) = E[&(Y Ay Ay — K
k=0

lit—1

= T ERCY My =k = IRV - i

k>1 k=0

= )\zkzl[(GA+6i7jo' +Ha) + (k= DAL -t — 14

= Noi+8,i07),

with & j = 1if i = j and zero otherwise. The expression@mv(AyN , Ay;) now follows easily. §

Theorem B1 Ay follows an ARMA(1,1) process:

Ay — @AY 1 = & — B3,
whereg; denotes the innovation process and
('p = 1- )\a
0 = Z(L-—VL2-4).
with
24+A2-AN)(K-1)
1-A ’

Also, asN tends to infinityd converges to zero, so that the processAgl approaches an AR(1) (and we
recover Rotemberg’s (1987) result).
We also have:

L=

22\\fe have thatp= 8, so that the process reduces to white noise, if and o= 1+ 52 ZA “A.
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K

N S.

- 1-N%  s=1,23,...

Ps 1+K (1=A)

wherecol and pl denote thesth order autocovariance and autocorrelation coefficient\gl, respec-
tively?3

Proof We have:

N N
Cov(QyiisAyt) = 5 Y Cov(ByigssAyjy)
i=1j=1

= NVar(Ayit) +N(N—1)CoV(Ay t1s,Ayay).

Where the justification for both identities is the same as in the proof of Lemma B5. The expression for
oY now follows from Lemmas B3 and B4. The expression for the autocorrelations follow trivially using
Lemma B5 and the formula for the autocovariances.

The expressions we derived for the autocovariance functidy.aind Theorem 1 in Engel (1984) imply
that Ay; follows an ARMA(1,1) process, with autoregressive coefficient equdl+o\. The expression
for 6 follows from standard method of moments calculations (see, for example, equation (3.4.8) in Box
and Jenkins (1976)) and some patient algébr&inally, some straightforward calculations prove tBat
converges to zero astends to infinity. g

Corollary B1 Proposition 4 is a direct consequence of the preceding theorem.

Proof Part (i) follows trivially from Proposition 3 and the fact that both regressors are uncorrelated. To
prove (ii) we first note that:

b, — Cov(AyY —AYY |, Ay —AyY )
Var(Ay; — Ay )
From Lemma B6 and the fact thAy; andAy;_1 are uncorrelated it follows that:

O-2
Coust -ty oyt -y = A(R+ T )+ P varant).

o2
Var(Qy; —AyN ) = o3+ WI + Var(AyY).

The expressions derived earlier in this appendix and some patient algebra complete thegoroof.

23The expressions for plim_ AN in Proposition 3 follow from noting thatN = 1— .
24A straightforward calculation shows thiat> 2, so that we do havi| < 1.
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