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ABSTRACT

This paper develops a simple new methodology to test for asset integration and applies it
within and between American stock markets. Our technique is tightly based on a general
intertemporal asset-pricing model, and relies on estimating and comparing expected risk-free rates
across assets. Expected risk-free rates are allowed to vary freely over time, constrained only by the
fact that they are equal across (risk-adjusted) assets. Assets are allowed to have general risk
characteristics, and are constrained only by a factor model of covariances over short time periods.
The technique is undemanding in terms of both data and estimation. We find that expected risk-free
rates vary dramatically over time, unlike short interest rates. Further, the S&P 500 market seems to
be well integrated, and the NASDAQ is generally (but not always) integrated. However, the
NASDAQ is poorly integrated with the S&P 500.
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1. Defining the Problem

The objective of this paper is to propose and implement an intuitive and Smple-to-use
measure of asset-market integration. What does asset-market integration mean? We adopt the
view that financid markets are integrated when assats are priced by the same stochastic discount
rate. More precisely, we define security markets to be integrated if al assets priced on those

markets satisfy the pricing condition:

p) = E, (M X, D

where: p/ isthepriceat timet of asset j, E() isthe expectations operator conditiona on

information available a t, m,,, istheintertempora margind rate of substitution (MRS), for
income accruing in period t+1 (also interchangeably known as the discount rate, stochastic
discount factor, margind utility growth, pricing kernel, and zero-betareturn), and x/,, isincome
received at t+1 by owners of asset j a timet (the future vaue of the asset plus any dividends or
coupons). We rdly only on this stlandard and generd intertemporal model of asset va uation; to
our knowledge this Euler equation is present in dl equilibrium asset- pricing models.

Our object of interest in thisstudy is m,,, , the margind rate of substitution, or, more
precisaly, estimates of the expected margind rate of substitution, Em,,. The MRSisthe

unobservable DNA of intertempora decisons, characterizing its distributionis a central task of
economics and finance. The discount rate ties pricing in ahuge variety of assat marketsto
peoples saving and invesment decisons. The thrust of this paper isto use asset prices and

payoffs to characterize important aspects of its distribution.



The substantive point of equation (1) isthat al assetsin amarket share the same margina
rate of subgtitution. Thereis no asset-specific MRS in an integrated market, and no market-
gpecific MRS when markets are integrated with each other. Learning more about the MRS is of
intringc interest, and has driven much research (e.g., Hansen and Jagannathan, 1991, who focus
on second moments). Measures of the expected MRS dso lead naturdly to an intuitive test for

integration. In this paper, we propose and implement such asmple test for the equdity of Em,,

across sets of assets. Thisis anecessary (but not sufficient) condition for market integration.

2: Methodology

We use the fact that in an integrated market, the MRS prices dl assets held by the
margina asset holder. Indeed what we mean by asset market integration is that the same MRS
prices al the assets. In other words, if we could extract m,,, (or rather, its expectation)
independently from anumber of different asset markets, they should all be the same if those
markets are integrated. As Hansen and Jagannathan (1991) show, there may be many stochastic
discount factors consistent with any set of market prices and payoffs; hence our focus on the
expectation of MRS, which is unique.

Congder a generic identity related to (1):

ptj = Et (rnt+lxtj+1 ) = COV’( (rnt+1’ th+1) + Et (rnt+1) Et (th+1)' (2)

where COV;() denotes the conditional covariance operator. It isuseful to rewritethis as

Xtj+l =- [1/ Et (rnt+1 )]Covt (n1+1’ th+l) + [1/ Et (rnt+1)] ptj + etj+1’ or



th+1 = dt (ptj - Covt (m+l’ X'(j+1 )) + etj+1 (3)

whered, °© 1/E,(m,,)and e/, © x/, - E,(X.,), aprediction error.

We then impaose two redtrictions.

1) Rational Expectations: e/, isassumed to be white noise, uncorrelated with information
avalable a timet, and

2) Covariance Model: COV,(m,,,%/,,) = bl +Sb/ f, ,, for the relevant sample,

where: b isan asset-specific intercept, b, isaset of | asset-specific factor coefficientsand f,
avector of time-varying factors.

With our two assumptions, equation (3) becomes a pandl estimating equation. We
exploit cross-sectional variation to estimate {d} , the coefficients of interest that represent the
risk-free return and are time varying but common to dl assets. These estimates of the MRS are
the focus of our study. We use time-series variation to estimate the asset- gpecific “fixed effects’
and factor loadings { b} , coefficients that are constant acrosstime. Intuitively, these coefficients
are used to account for asset-specific systemdtic risk (the covariances).

Estimating (3) for aset of assetsj=1,...,J and then repeating the andyss for the same
period of timewith a different set of assetsj=1,...,J givesustwo setsof estimatesof {d} , a
time- series sequence of estimated discount rates. These can be compared directly, usng
conventiond datistical techniques, ether one by one, or jointly. Under the null hypothesis of

market integration, the two setsof {d} coefficients are equdl.



Discussion

We make only two assumptions; both are conventiond in the literature, though we rely
on them less than mogt of the literature. 1t seems reasonable to assume that expectations are
rationa for financid markets, at least in our limited sense that asset-pricing errors are not ex ante
predictable a high frequencies. Our assumption that the asset-specific covariances (of payoffs
with the MRS) are either constant or depend on a small number of factorsis more controversd,
but standard practice. Rather than develop our own factor modd, we rely on the well-known
three-factor mode famoudy deployed by Famaand French (1996). We defend it on two
grounds. Firg, in applications we maintain the covariance model for only two months at atime
(though we have tried shorter periods with smilar results); Fama and French assumed that the
same model worked well for thirty years. Second, our results are insensitive to the exact factor
model. If our technique were senditive to the factors used to modd {d} , then the measure would
be no more useful than any of the individud factor modds. Indeed, if the measure were factor-
mode sengitive, it would be preferable to use the factor modd itself as the object of
measurement. Nevertheless we stress that we must rely on some mode of covariances.

While we focus on (3), there are other moments that would help characterize the MRS,
{d} ; see e.g., Hansen and Jagannathan (1991). We concentrate on this one for four reasons.
Fird, asthe firs moment it is the natura place to check first. Second, it isSmple to estimate.
Third, our estimates and results are robust to the factor model that condiitions the measurements.
Findly, the measurements are discriminating for market integration, yet they confirm our prior
beliefs and previous research (e.g., Chen and Knez, 1995). In the examples below, our measure

never rgects interna market integration for portfolios of S& P stocks priced in the NY SE and



seldom rgjects for portfolios priced on the NASDAQ, but rejects strongly — by an order of
meagnitude — integration between NY SE and NASDAQ portfolios.

Our methodology has a number of strengths. Firg, it is based on agenerd intertempora
theoretical framework, unlike other measures of asset integration such as stock market
correlations (see the excellent discussion in eg., Adam et. a. 2002). Second, standard asset-
pricing models are completely congstent with our methodology, and the exact model does not
seem to be important in practice. We use the Fama- French workhorse (which subsumesthe
CAPM), but find that our results are insengitive to the exact choice of modd. Third, we do not
need to modd the MRS directly. The MRS need not be determined uniquely, so long asits
expectation isunique. Fourth, our strategy requires only two assumptions, we need not assume
e.g., complete markets, homogeneous investors, or that we can model “mimicking portfolios’
well. Fifth, the technique requires only accessible and reliable data on asset prices, payoffs, and
time-varying factors. Sixth, the methodology can be used at very high frequencies and at low
frequencies aswell. Seventh, the technique can be used to compare expected discount rates
across many different classes of assets including domestic and foreign stocks, bonds, and
commodities. Next, the techniqueis easy to implement and can be applied with standard
econometric packages, no pecidized softwareis required. Findly, the technique isfocused on

an intringcdly interesting object, the expected margind rate of subgtitution.

3: Relationship tothe Literature
The literature is clear that asset markets are integrated when identical cash flows are
priced equaly across markets (e.g., Adam &t. a., 2002 and Cochrane, 2001). Thisis the asst-

market verson of economigts trusty “Law of One Price” But since no two different assets have



identical cash flows, the integration definition must be extended to be useful. The standard holds
two asset markets to be integrated when risks in those markets are shared completely and priced
identically. One way to make this definition operationa requires identifying the rlevant risks.
Roll and Ross (1980) recognized the dependence of integration measures on risk identification.
They tested asset integration using the argument that two portfolios are integrated only if their
implied risk-less returns are the same; our test isSmilar to theirsin spirit. Thissmple
observation is powerful because it invokes the cross-sectiond dimensonwhere every asset in an
integrated market implies the same risk-free return.

The literature on asset-market integration has grown aong two branches. Thefirgt
branch, based on parametric asset-pricing models, has been surveyed by Adams et. d. (2002),
Cochrane (2001), and Campbell, Lo, and MacKinlay (1997). Along this branch, a parametric
discount- rate model s to used to price two asset portfolios. Pricing errors are compared across
portfolios. If the portfolios are integrated, the pricing errors shoud not be sysematicaly
identifiable with the portfoliosin which they originate. Roll and Ross (1980) tested market
integration this way using an arbitrage pricing theory model, and alarge literature has followed.

The second branch of literature grows from the work of Hansen and Jagannathan
(1991) and is represented by Chen and Knez (1995) and Chabot (2000). Along this branch, data
from each market are used to characterize the set of stochastic discount factors that could have
produced the observed data. Testing for integration across markets involves measuring the
distance between admissble MRS sats, and asking if, and by how much, they overlap.

Our work rests on the first branch, since we use parametric models to condition our

edimation. It differsfrom previous work in four ways.



First, we diverge from the finance professonin tregting { b} asaset of nuisance
coefficients. Rather than being of intringic interest to us, they are required only to clear the way
to produce estimates of the MRS,

Next, we do not measure integration by the cross-sectiond pricing errors produced by a
particular mode; this gpproach seems relaively non-specific and mode-dependent. Instead we
measure integration by the implied first moment of the stochastic discount rate (MRS). The
condition we study, therefore, is a necessary condition for integration. Studying it will be
vauable only if it isadiscriminating condition; it turns out to be so.

Third, parametric pricing models are often estimated with long data spans and are thus
sengitive to parameter ingability in time series long enough for precise esimation (e.g., Fama
and French (1996); an excdlent discussion is provided by Cochrane, 2001). We minimize (but
do not avoid completely) the instability problem by concentrating atention on a parameter that is
conditiondly invariant to time-series ingtability. The measure we useis a free parameter,
constant across assets but unconstrained acrosstime. Our measure is therefore basically cross-
sectiond, that we estimate precisely using a short time-series dimension.

Findly, we do not assume that (3) holds for the bond market, or that the bond market is
integrated with other asset markets. When gpplied to a bond without nomind risk (eg., a

treasury bill), equation (1) implies

1=E (M., (1+i,)) (1)

where: i, isarisk-lessnomind interest rate, and m,,, isanomind MRS. The tradition ingde

finance isto assume that the MRS pricing bondsis the same for al bonds, and identica to that



pricing al stocks (and other assets). If we make this assumption, d, © 1/ E, (m,,,) = (1+i,).

We do not impose this assumption; rather we test it (and rgject) it.

4: Empirical Implementation
We begin by estimating amodd with asset-specific intercepts and the three time-varying
factors used by Famaand French (1996). In practice, we divide through by lagged prices (and

redefine resduas appropriately):

Xh /Pl =d (P 1 pL)+bg +b)f, +D)f, + DIy )+el, 4

for assetsj=1,...,J, periodst=1,...,T. Thatis wealow {d,} tovary period by period, while we
use a“three-factor” mode and dlow {b '} varying asset by asset. We normalize the data by
lagged prices since we believe that COV, (m,,,, %,/ p/,) canbe modeled by asimple factor

modd with time-invariant coefficients more plausibly than COV, (m,,,, x/,,) . The three Fama-

French factors are: 1) the overall stock market return, less the treasury-hill rate, 2) the
performance of small stocks relative to big stocks, and 3) the performance of “vaue’ stocks
relaive to “growth” stocks. Further details and the data set itself are available at French's
website! For sengitivity analys's, we aso examine two other covariance moddls: one with only
asngletime varying factor, namely the overal market return; and the other without any time-
varying factors a dl (but, as dways, with an asset- specific intercept).

Equation (4) can be estimated directly with non-linear least squares. The degree of non+

linearity is not particularly high; conditional on {d,} the problemislinearin {b '} and vice



versa. We employ robust (heteroskedasticity and autocorrelation consistent “Newey West”)
covariance estimators.

We use amoderately high frequency approach. In particular, we use two-month spans of
daily data Using daily dataalows usto estimate the coefficients of interest {d,} without
assuming that firm-specific coefficients { b '} are constant for implausibly long periods of time.

Our empiricd illudration examines the integration of American equity markets. Large
American stocks are traded on liquid markets, which we consider a priori to beintegrated. We
begin by examining dally data over a quiet two-month period, April-May 1999 (about a year
before the end of the Clinton bull market).? Two months gives us a span of over forty business
day observations; this does not appear to stretch our reliance on afactor model of asset
covariances excessively, while dill dlowing usto test financid market integration for an
interesting span of data. We see no reason why higher- and/or lower-frequency data cannot be
used.®

Our data set is drawn from the “US Pricing” database provided by Thomson Analytics.
We collected closing rates for the first (in terms of ticker symbol) one hundred firms from the

S& P 500 that did not go ex-dividend during the monthsin question. The absence of dividend
payments alows usto set x/,, = p/.,; (and does not bias our resuitsin any other obvious way).

We group our hundred firmsinto twenty portfolios of five firms each, arranged smply by
ticker symbol. We use portfolios rather than individual stocks for the standard reasons of the
Finance literature. In particular, as Cochrane (2001) points out, portfolios betas are measured
with less error than individua betas because of lower resdud variance. They aso vary less over
time (as Sze, leverage, and business risk change less for a portfolio of equities than any

individua component). Portfolio variances are lower than those of individua securities,



enabling more precise covariance relaionships to be estimated. And of course portfolios are
what investors tend to use (especidly those informed by Finance theory!).
Our first sample period consists of 41 days. Since we lose the first and last observations

because of lags(p, ;) and leads (x/,,) , we areleft with atotal of 780 observationsin our pand

data set (20 portfolios x 39 days). Our data has been checked for transcription errors, both
visudly and with random crosschecking.

Thereis no reason that one cannot use more data (longer spans at different frequencies,
for larger number of firms and/or portfolios grouped non-randomly). We choose this sample
(only two months of daily price datafor one hundred firms grouped randomly into twenty
portfolios) ddiberately to illugtrate the power of our methodology and its undemanding data

requirements. However, we aso check for sengtivity with respect to the sample below.

5: Results

We gart by splitting our 20 portfolios into two sets of 10 portfolios each (Smply by
ticker symbol) to estimate discount rates (i.e., estimatesof d, ° [1/ E, (m,,,)]). We providetime-
series plots of the estimated ddltas from the first 10 portfolios along with a plus'minus two
gandard error confidence interva in Figure 1. We dso include the point estimates of deltafrom
the second 10 portfolios, estimated in precisely the same way but using data from the last set of
10 portfolios.

There are two gtriking features of the graph. Firg, the time-series varition in ddtais
high, consstent with the spirit of Hansen and Jagannathan (1991). Asshownin Table 1, thelog
likelihood of our equation estimated on the first 10 S& P portfoliosis 1160. In April-May 1999,

the US 3-month Treasury hill rate averaged 4.4%, a daily return of 1.00017 (with little time-
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series variaion). Thelog likdihood for the default equation estimated with 1.00017 substituted
inplaceof {d,} isonly 1059. Under the null hypothess of deltas that are constant and equal to

the T-hill interest rate, 2* (1160-1059) is distributed as a chi- square with 39 degrees of freedom,
grosdy incongstent with the null at any reasonable confidence level. (Whenweusedl 20
portfolios, the andogue is 2* (2309-2136), again grosdy incongastent with the null.) That is, the
hypothesisthat the MRS is equd to the short t-bill rateiswildly inconastent with the data. The
MRS seems much more volatile than short-term interest rates.

Second, the estimates of delta from the two different sets of portfolios are amilar; the
deltas from the second set of portfolios dmost dways lie within the +/- 2 standard error
confidence interva of the first estimate of delta. Thet is, the two different sets of ddltaare
usudly gatidicaly indigtinguishable on any given day, consstent with the null hypothesis of
integration within the S& P.

What about the two sets of delta examined jointly? The ocular evidence leads one to
believe that the two sets of deltas are broadly equa. The statistical analogueis contained in the
cdlsat thetop left of Table 1. Theloglikelihood of (4) estimated from the first set of 10
portfolios is 1160; that from the second set of 10 portfoliosis 1166. When (4) is estimated from

al 20 portfolios smultaneoudy o thet only asingleset of {d,} isextracted, the log-likelihood is

2309. Under the hypothesis of integration (i.e., the same {d,} for both sets of assets) and

normally distributed errors, minus twice the difference in the log-likelihoods is ditributed as a
chi-sguare with 39 degrees of freedom; alikdlihood ratio (LR) test. The test Satistic is 36,
consggtent with the hypothesis of integration and norma resduds at the .61 confidence levd.

It iswell known that asset prices are not in fact normally distributed; Camphbel, Lo, and

MacKinlay (1997). Rather, thereis strong evidence of fat tails or leptokurtosis, and this certainly

11



characterizes our data® Accordingly, we use a bootstrap procedure to estimate the probability
values for our likelihood ratio tests.® The bootstrapped p-value for the test of integration iseven
more conggtent with the null hypothesis of integration at the .90 levd.

To check for sample sengitivity, we adso consder five other sample periods. July-August
1999, October-November 1999, and the same three two-month samples for the bear market of
2002. Results from these other sample periods are dso included in Table 1 and are a'so
cons stent with the hypothesis of integration insde the S& P 500 at standard confidence levels.

What about the NASDAQ market for smaler stocks? We follow exactly the same
procedures, but using data drawn from the NASDAQ market. We group (again on the basis of
ticker symbaol) data from 100 NASDAQ firmsinto 20 portfolios of 10 firms each, and test for
equality of ddtas (between the two different sets of deltas, estimated from the two sets of ten
NASDAQ portfolios) using likelihood ratio tests with bootstrapped p-vaues. Theresults are
presented in Table 2, and are generdly consgtent with the null hypothesis of integration insde
the NASDAQ. However, one of our samples (April-May 2002) isincongstent with integration
at the .03 confidence leve (thisis marked with an agterisk), while integration is overwhemingly
rejected for Oct-Nov 1999 (two asterisks), shortly before the collapse of the NASDAQ. We
think of these asintuitive, reasonable results, possibly consstent with the existence of “irrationa
exuberance’ manifest in the NASDAQ just around the height of the internet bubble.

Stll, the mogt interesting question to usis: Isthe market for large (S& P 500) stocks

integrated with the NASDAQ? It iseasy to ask the question by comparing {d,} estimateswhen

(4) is edtimated with: &) the twenty S& P portfolios; b) the twenty NASDAQ portfolios; and ) all
forty portfolios pooled together (which is most efficient if the two markets are integrated). Our

LR tests (with bootstrapped p-vaues) for this hypothesis are presented in Table 3 and are grosdy

12



inconggtent with the null hypothesis of market integration. The LR test gatistics are an order of
meagnitude bigger than those of Tables1 and 2. That is, while the S& P dways seems integrated
and the NASDAQ is generdly integrated, the S& P is never integrated with the NASDAQ. This
result is smilar to that of Chen and Knez (1995).

Time-seriesplotsof {d,} estimated from al (twenty) S& P and NASDAQ portfolios are
provided in Figure 2 for dl six sample periods, dong with confidence intervals. Figure 3
provides scatterplots of S& P deltas against NASDAQ ddtas. All these graphsindicate that there

is no single obvious characterigtic difference between the S& P and NASDAQ deltas.

6: Senditivity Analysis
Thus far we have rdied on the Fama-French moded of asset covariances. That is, the

covariance of each asset’ s return with the MRS is characterized by four parameters. an intercept

(b)) and factor loadings on the market return minus the T-hill rate (b)), the difference between

small and large stock returns (b ), and the difference between returns of stocks with high and
low book to market ratios (b.J ). Are our results senitive to the number of factors used? It turns

out that the answer is negative.

In Table 4 we provide test gatistics (and bootstrapped p-vaues) to examine tests of
integration within the S& P and NASDAQ and between the two markets, but using only the
return on the market instead of the three Fama- French factors (while retaining the portfolio
intercepts aswdll). The test gatistics and conclusons are essentialy unchanged.

Table 5 goes even further and drops the market factor from our covariance modd,

leaving only portfolios-specific intercepts (b ) but no time-varying factors. Again, the resuts
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are essentidly unchanged. This robustnessis encouraging since it demongrates the insengtivity

of our methodology to reasonable perturbations in the exact factor mode employed.

7. Summary and Conclusions

This paper developed a smple method to test for asset integration, and then applied it
within and between American equity markets. It relies on estimating and comparing the
expected risk-less returnsimplied by different sets of assets. Our technique has a number of
advantages over those in the literature and relies on just two relatively week assumptions: 1)
rationa expectationsin financial markets; and 2) covariances between discount rates and returns
that can be modeed with asmall number of factors for ashort period of time.

Weillugtrated this technique with an application to stocks drawn from the S& P 500 and
the NASDAQ, and found that @) the time-series variaion in the Margind Rate of Subdtitution is
high; b) the S& P dways seemsto be integrated; ¢) the NASDAQ isusudly (but not dways)
integrated; and d) the S& P and NASDAQ do not seem close to being integrated. Our results
seem reasonably insengtive to the exact sample and conditioning model used.

If our finding of integration within but not across sock markets holds up to further
scrutiny, the interesting question is not whether financia markets with few apparent frictions are

poorly integrated but why? We leave that important question for future research.
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Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999

First 10 portfolios 1160. 1302. 1157.

Second 10 portfolios 1166. 1290. 1172.

All 20 portfolios 2309. 2574. 2303.

Test (bootstrap P-value) 36 (.90) 54(.37) 51 (43)
April-May 2002 July-Aug. 2002 Oct.-Nov. 2002

First 10 portfolios 1438. 1255. 1247.

Second 10 portfolios 1405. 1302. 1227.

All 20 portfolios 2805. 2525. 2456.

Test (bootstrap P-value) 75 (.06) 62 (.24) 37(.90)

Table 1: Integration inside the S& P 500, Fama-French-Factor Model

Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999

First 10 portfolios 831. 1066. 757.

Second 10 portfolios 816. 990. 945,

All 20 portfolios 1677. 2023. 1625.

Test (bootstrap P-value) 42 (.83) 65 (.20) 153** (.00)
April-May 2002 July-Aug. 2002 Oct.-Nov. 2002

First 10 portfolios 1052, 1061. 991,

Second 10 portfolios 1174, 1003. 962.

All 20 portfolios 2185. 2035. 1919,

Test (bootstrap P-value) 82* (.03) 58 (.45) 69 (.08)

Table 2: Integration insde the NASDAQ, Fama-French -Factor M odel

Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999

20 S& P Portfolios 2300. 2574. 2303.

20 NASDAQ Portfalios 1677. 2023 1625.

Combined 3706. 439%. 3633.

Test (bootstrap P-value) 559** (,00) 403** (.00) 590** (.00)
April-May 2002 July-Aug. 2002 Oct.-Nov. 2002

20 S& P Portfolios 2805. 2525. 2456.

20 NASDAQ Portfalios 2185, 2035. 1919.

Combined 4735. 4352. 4170.

Test (bootstrap P-value) 511** (.00) 416** (.00) 410** (.00)

Table 3: Integration between S& P 500 and NASDAQ, Fama-French -Factor M odel
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Test Statistics April-May 1999 July-Aug. 1999 Oct.-Nov. 1999

(bootstrap P-value)

Within S& P 36 (.93) 48 (.75) 30(.99)

Within NASDAQ 47 (.79) 65 (.27) 127** (.00)

S& Pvs. NASDAQ 548** (.00) 388** (.00) 594** (.00)
April-May 2002 July-Aug. 2002 Oct.-Nov. 2002

Within S& P 44 (.88) 55 (.61) 35(.99)

Within NASDAQ 80 (.09) 58 (.61) 72 (.13

S& P vs. NASDAQ 497** (.00) 432** (.00) 422** (.00)

Table 4: Integration wi

thin and between S& P 500 and NASDAQ, One-Factor Model

Test Statistics April-May 1999 July-Aug. 1999 Oct.-Nov. 1999

(bootstrap P-value)

Within S& P 33(.97) 46 (.71) 34 (9

Within NASDAQ 42 (.80) 62 (.28) 114** (.00)

S& P vs. NASDAQ 534** (.00) 378** (.00) 591** (.00)
April-May 2002 July-Aug. 2002 Oct.-Nov. 2002

Within S& P 46 (.76) 47 (.77) 36 (.95)

Within NASDAQ 86* (.03) 52 (.63) 68(.12)

S& P vs. NASDAQ 506** (.00) 416** (.00) 419** (.00)

Table 5: Integration within and between S& P 500 and NASDAQ), Only Asset I nter cepts
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Deltas from 2 sets of 10 S&P Portfolios, April May 1999
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Figure 1: Estimates of Marginal Rate of Substitution from two sets of (10) S& P portfolios
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Deltas from Different Markets and Samples
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Figure 2: Estimates of Marginal Rate of Substitution from sets of (20) portfolios
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Scatterplots of S&P against NASDAQ Deltas
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Figure 3: Estimates of Marginal Rate of Substitution from sets of (20) portfolios
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Endnotes

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

2 We choose these months to avoid January (and its effect), February (a short month), and March (a quarter-ending
month), but test for sample sensitivity extensively below.

3 For instance, we could use data at five-minute intervals for aday, making our assumption of constant asset-
specific effects even more plausible; but the question of whether financial markets are integrated over hours (not
weeks) islessinteresting to us.

4 Jarque-Beratests are inconsistent with the null hypothesis for { € at all reasonable confidence levels.

°> Our bootstrap procedure is as follows. We estimate the deltas from (say) all 20 portfolios under the null
hypothesis of integration. Thisgivesus an estimate of { €. We then draw with randomly with replacement from
this vector to create an artificial vector of { € which we use to construct an artificial regressand variable {x}. Using
thisartificial datawe then generate alikelihood ratio test by estimating the model from the first set of 10 portfolios,
the second set of 10 portfolios, and the combined set of 20. We then repeat this procedure alarge number of times
to generate adistribution for the LR test statistic.
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