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ABSTRACT

The paper develops a tractable econometric model of optimal migration, focusing on expected

income as the main economic influence on migration. The model improves on previous work in two

respects: it covers optimal sequences of location decisions (rather than a single once-for-all choice),

and it allows for many alternative location choices. The model is estimated using panel data from

the NLSY on white males with a high school education. Our main conclusion is that interstate

migration decisions are influenced to a substantial extent by income prospects. On the other hand

we find no evidence of a response to geographic differences in wage distributions. Instead, the

results suggest that the link between income and migration decisions is driven by a tendency to

move in search of a better locational match when the income realization in the current location is

unfavorable.
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2See Greenwood [1997] and Lucas [1997] for surveys.

3 Holt (1996) estimated a dynamic discrete choice model of migration, but his framework modeled the

move/stay decision and not the location-specific flows.  Similarly, Tunali (2000) gives a detailed econometric

analysis of the move/stay decision using microdata for Turkey, but his model does not distinguish between

alternative destinations.
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1 Introduction

There is an extensive literature on migration.2  Most of this work describes patterns in the

data: for example, younger and more educated people are more likely to move; repeat and

especially return migration accounts for a large part of the observed migration flows.  Although

informal theories explaining these patterns are plentiful, fully specified behavioral models of

migration decisions are relatively scarce, and these models generally consider each migration

event in isolation, without attempting to explain why most migration decisions are subsequently

reversed through onward or return migration.

This paper develops a model of optimal sequences of migration decisions, focusing on

expected income as the main economic influence on migration.  We emphasize that migration

decisions are reversible, and that many alternative locations must be considered.  The model is

estimated using panel data from the National Longitudinal Survey of Youth on white males with

a high school education. 

Structural dynamic models of migration over many locations have not been estimated before,

presumably because the required computations have not been feasible.3  A structural

representation of the decision process is of interest for the usual reasons: we are ultimately

interested in quantifying responses to income shocks or policy interventions not seen in the data,

such as local labor demand shocks, or changes in welfare benefits.  Our basic empirical question

is the extent to which people move for the purpose of improving their income prospects.  Work

by Keane and Wolpin (1997) and by Neal (1999) indicates that individuals make surprisingly

sophisticated calculations regarding schooling and occupational choices.  Given the magnitude of

geographical wage differentials, and given the findings of Topel (1986) and Blanchard and Katz



4Blanchard and Katz (1992, p.2), using average hourly earnings of production workers in manufacturing, by

state, from the BLS establishment survey, describe a pattern of “strong but quite gradual convergence of state

relative wages over the last 40 years.”  For example, using a univariate AR(4) model with annual data, they find that

the half-life of a unit shock to the relative wage is more than 10 years.  Similar findings were reported by Barro and

Sala-i-M artin (1991) and by Topel (1986).  
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(1992) regarding the responsiveness of migration flows to local labor market conditions, one

might expect to find that income differentials play an important role in migration decisions.4

We model individual decisions to migrate as a job search problem.  A worker can draw a

wage only by visiting a location, thereby incurring a moving cost.  Locations are distinguished by

known differences in wage distributions, amenity values and alternative income sources.  A

worker starts the life-cycle in some home location and must determine the optimal sequence of

moves before settling down. 

The decision problem is too complicated to be solved analytically, so we use a discrete

approximation that can be solved numerically, following Rust (1994).  The model is sparsely

parameterized.  In addition to expected income, migration decisions are influenced by moving

costs, including a fixed cost, a reduced cost of moving to a previous location, and a cost that is

proportional to distance, and by differences in location size, measured by the population in origin

and destination locations.  We also allow for a bias in favor of the home location.

Our main substantive conclusion is that interstate migration decisions are indeed influenced

to a substantial extent by income prospects.  On the other hand we find no evidence of a response

to geographic differences in wage distributions.  Instead, the results suggest that the link between

income and migration decisions is driven by a tendency to move in search of a better locational

match when the income realization in the current location is unfavorable.

More generally, the paper demonstrates that a fully specified econometric model of optimal

dynamic migration decisions is feasible, and that it is capable of matching the main features of

the data, including repeat and return migration.  Although this paper focuses on the relationship

between income prospects and migration decisions at the start of the life cycle, suitably modified

versions of the model can potentially be applied to a range of issues, such as the migration effects



5See for example Kennan and Walker (2001) and W oo (2002).
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of interstate differences in welfare benefits, the effects of joint career concerns on household

migration decisions, and the effects on retirement migration of interstate differences in tax laws.5

2 Migration Dynamics

The need for a dynamic analysis of migration is illustrated in Table 1, which summarizes

interstate migration histories of young people in the NLSY.  Two features of the data are

noteworthy.  First, a large fraction of the flow of migrants involves people who have already

moved at least once.  Second, a large fraction of these repeat moves involves people returning to

their original location.  Simple models of isolated move-stay decisions cannot address these

features of the data.  In particular, a model of return migration is incomplete unless it includes the

decision to leave the initial location as well as the decision to return.  Moreover, unless the model

allows for many alternative locations, it cannot give a complete analysis of return migration.  For

example, a repeat move in a two-location model is necessarily a return move, and this misses the

point that people frequently decide to return to a location that they had previously decided to

leave, even though many alternative locations are available.
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Table 1: Interstate Migration Flows
NLSY, 1979-92

Less than
High School

High
School

Some
Colleg

e

Colleg
e

No. of people 1768 3534 1517 1435
Movers 423 771 376 469
Movers (%) 23.9% 21.8% 24.8% 32.7%
Moves Per Mover 2.0 1.8 1.7 1.6

Repeat moves 
(% of all moves)

50.6 45.9 41.3 35.7

Return Migration
( % of all moves)
Return - Home 24.0 24.1 17.5 13.4
Return - Else 12.4 7.2 5.9 3.3

Movers who return home (%) 48.7 44.5 29.8 20.9
Return-Home: % of Repeat 47.5 52.5 42.4 37.5

3 An Optimal Search Model of Migration

We model migration as an optimal search process.  The basic assumption is that wages are

local prices of individual skill bundles.  The individual knows the wage in the current location,

but in order to determine the wage in another location, it is necessary to move there, at some cost.

The model aims to describe the migration decisions of young workers in a stationary

environment.  The wage offer in each location may be interpreted as the best offer available in

that location.  Although there may be transient fluctuations in wages, the only chance of getting a

permanent wage gain is to move to a new location.  One interpretation is that wage differentials

across locations equalize amenity differences, but a stationary equilibrium with heterogeneous

worker preferences and skills still requires migration to redistribute workers from where they

happen to be born to their equilibrium location.  Alternatively, it may be that wage differentials

are slow to adjust to location-specific shocks, because gradual adjustment is less costly for

workers and employers.  In that case, our model can be viewed as an approximation in which

workers take current wage levels as a rough estimate of the wages they will face for the



6Note that this neatly sidesteps the question of whether moving costs should be specified as “psychic” costs that

directly reduce utility, or as monetary costs that reduce disposable income.  With constant marginal utility of income,

there is no meaningful difference between these two specifications.

7Even if the marginal utility of consumption is not constant, one can still compute the increase in current-period

consumption needed to just offset the utility cost of moving, and use this to translate the utility cost into an income

equivalent.  Then the optimal migration problem can be viewed as maximization of net lifetime income, and this will

be a good  approximation if the compensating variation in consumption is roughly constant.  But this argument rests
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foreseeable future.  In any case, the model is intended to describe the partial equilibrium response

of labor supply to wage differences across locations; from the worker’s point of view the source

of these differences is immaterial, provided that the differences are permanent.  A complete

equilibrium analysis would of course be much more difficult, but our model can be viewed as a

building-block toward such an analysis.

Suppose there are J locations, and individual i’s income yij in location j is a random variable

with a known distribution.  Migration decisions are made so as to maximize the expected

discounted value of lifetime utility, subject to budget constraints.  Consider a person with

“home” location h, who is in location R this period and in location j next period.  The flow of

utility in the current period for such a person is specified as

The notation is as follows.  C is consumption in the current period and L $ 0 is a constant relative

risk aversion coefficient. There is a premium 6 that allows each individual to have a preference

for their native location (PA is used as an indicator meaning that A is true).  The cost of moving

from R to j is denoted by )(R,j;h).

In general, the level of assets is an important state variable for this problem, but we focus on

a special case in which assets do not affect migration decisions.  Suppose the marginal utility of

income is constant (L = 0 in the specification above), and suppose that individuals can borrow

and lend without restriction at a given interest rate.  Then expected utility maximization reduces

to maximization of expected lifetime income, net of moving costs, with the understanding that

the value of amenities is included in income, and that both amenity values and moving costs are

measured in consumption units.6  This is a natural benchmark model, although of course it

imposes strong assumptions.7



on the assumption that the individual can borrow against future income (including income generated by a move) in

order to sustain current consumption.

8See Banks and Sundaram (1994) for an analysis of the Gittins index in the presence of moving costs.
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There is little hope of solving this problem analytically.  In particular, the Gittins index

solution of the multiarmed bandit problem cannot be applied because there is a cost of moving.8 

But by using a discrete approximation of the wage distribution in each location, we can compute

the value function and the optimal decision rule by standard dynamic programming methods,

following Rust (1994). 

Let Fj be the wage distribution function in location j.  We approximate this by a discrete

distribution over n points, as follows.  Let , where s = 1,2,...,n.  Then Fj is

approximated by a uniform distribution over the set {aj(s)}s
n

=1.  For example, if n = 10, the

approximation puts probability 1/10 on the 5th, 15th, ... 95th percentiles of the distribution Fj.

3.1 The Value Function

Consider a person currently in location R, with a J-vector T summarizing what is known

about wages in all locations.  Here Tj is either 0 or an integer between 1 and n, with the

interpretation that if Tj = s > 0, then the wage in location j is known to be aj(s), and if Tj = 0 then

the wage in location j is still unknown, so that if the person moves to j, the wage will be aj(s)

with probability 1/n, for 1 # s # n.  The value function for a native of location h can be written in

recursive form as
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We compute Vh by value function iteration.  It is convenient to use Vh(R,T) / 0 as the initial

estimate, so that if T is the number of iterations, the result gives the optimal policy for a (rolling)

T-period horizon.

4 Empirical Implementation

An important limitation of the discrete dynamic programming method is that the number of

states is typically large, even if the search problem is relatively simple.  If there are J locations

and the wage distribution has n points of support, the number of states is J(n+1)J.  For example a

model with J=5 and n=10 has 805,255 states.  Although value functions for such a model can be

computed in a few hours, estimation of the structural parameters requires that the value function

be computed many times.  Estimation becomes infeasible unless the number of structural

parameters is small.

Ideally, locations would be defined as local labor markets.  The smallest geographical unit

identified in the NLSY is the county, but we obviously cannot let J be the number of counties,

since there are over 3,100 counties in the U.S.  Indeed, even if J is the number of States, the

model is numerically infeasible, but by restricting the information available to each individual an

approximate version of the model can be estimated; this is explained below.

4.1 Outline of the Estimation Method

We first expand the model to allow for unobserved heterogeneity in individual payoffs.  Let

. = (.1,.2,...,.J) be a vector of idiosyncratic utility adjustments that are known to the worker

before the migration decision is made in each period, but not observed by the econometrician.

We assume that each component .j is drawn independently according to a distribution function

B; also, these draws are independent across individuals and over time.  The individual’s value

function is then given by



9And it will remain so: for example, if a location is a State, and the wage distribution has 5 support points, then

the number of dynamic programming states is 40,414 ,063 ,873,238 ,203 ,032 ,156 ,980 ,022 ,826 ,814 ,668 ,800 . 
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where 2 is the vector of unknown parameters and the expected value function  is defined by

If B is the Type 1 Extreme Value distribution then, using arguments due to McFadden (1973) and

Rust (1987) we can show that the function  satisfies

where

This gives the probability, Pr[d(j) = 1 | h, R,T], that a native of h in location R with information T

will move to location j:

4.2 A Limited History Approximation

When the number of locations is moderately large, the model becomes computationally

infeasible.9  This is a common problem with discrete dynamic programming models, and various



10Note that it is not enough to keep track of the best wage found so far: the preference shocks may favor a

location that has previously been discarded, and it is necessary to know the wage at that location in order to decide

whether to go back there (even if it is known that there is a higher wage at another location).
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devices have been proposed to deal with it.  In our context it seems natural to use an

approximation that takes advantage of the timing of migration decisions. We have assumed that

information on the value of human capital in alternative locations is permanent, and so if a

location has been visited previously, the wage in that location is known, no matter how much

time has passed.  This means that the number of possible states increases geometrically with the

number of locations.  In practice, however, the number of people seen in many distinct locations

is small.  Thus by restricting the information set to include only wages seen in recent locations, it

is possible to drastically shrink the state space while retaining most of the information actually

seen in the data.  Specifically, we suppose that the number of wage observations cannot exceed

M, with M < J, so that it is not possible to be fully informed about wages at all locations. Then if

the wage distribution in each of J locations has n points of support, the number of states is (Jn)M,

since this is the number of possible M-period histories describing the locations visited most

recently, and the wages found there. For example, if J is 50 and n is 5 and M is 2, the number of

states is 62,500, which is manageable.

This approximation reduces the number of states in the most obvious way: we simply delete

most of them.10  Someone who has “too much” wage information in the big state space is

reassigned to a less-informed state.  Individuals make the same calculations as before when

deciding what to do next, and the econometrician uses the same procedure to recover the

parameters governing the individual's decisions.  There is just a shorter list of states, so people

with different histories may be in different states in the big model, but they are considered to be

in the same state in the reduced model.  In particular, people who have the same recent history

are in the same state, even if their previous histories were different (and people who have

different wage information now may have the same information following a move). 

In order to obtain the likelihood using this approximation, it is convenient to redefine

notation.  Let R = (R0,R1,...RM-1) be an M-vector containing the sequence of recent locations

(beginning with the current location), and let T be the corresponding sequence containing recent
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wage information.  Then the probability that an individual in state (R,T) will move to location j

can again be written in the form

where vj is now defined as

with

4.3 Population Effects

It has long been recognized that location size matters in migration models (see e.g.

Schultz [1982]).  California and Wyoming cannot reasonably be regarded as just two alternative

places, to be treated symmetrically as origin and destination locations.  To take one example, a

person who moves to be close to a friend or relative is more likely to have friends or relatives in

California than in Wyoming.  A convenient way to model this in our framework is to allow for

more than one draw from the distribution of preference shocks in each location.  Specifically, we

assume that the number of draws per location is an affine function of the number of people

already in that location, and that migration decisions are controlled by the maximal draw for each

location.  This leads to the following modification of the logit function describing migration

probabilities:
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where

Here nj denotes the population in location j, and the (nonnegative) parameter R can be interpreted

as the number of additional draws per person.

4.4 Moving Costs

The cost of moving is specified as

The notation is as follows.  The first two terms specify the moving cost as an affine function of

the distance D(R0,j) from R0 to j.  The next term allows for the possibility that it is cheaper to move

to a previous location, relative to moving to a new location (P denotes the indicator function). 

The last term is an alternative specification of the effect of location size, allowing for the

possibility that it is cheaper to move to a large location, as measured by population size nj.  One

motivation for this is that a larger location is more likely to contain friends or relatives who

would help reduce the cost of the move.  

4.5 Computation

Since the parameters are embedded in the value function, computation of the gradient and

hessian of the loglikelihood function is not a simple matter (although in principle these

derivatives can be computed in a straightforward way using the same iterative procedure that

computes the value function itself).  We maximize the likelihood using an “amoeba” algorithm

that implements the downhill simplex method of Nelder and Mead.  This method does not use



11Given reasonable starting values (such as a fixed cost of moving that matches the average migration rate, with

all other parameters set to zero), the maximal likelihood is typically reached within 24 hours, on a Pentium 4

machine.  An example of our (FORTRAN90) computer program can be found at

www.ssc.wisc.edu/~jkennan/research/mbr21.f90.

12Attrition in panel data is an obvious problem for migration studies, and one reason for using NLSY data is that

it minimizes this problem.  Reagan and O lsen (2000 , p. 339) report that “Attrition rates in the NLSY79 are relatively

low ...The primary reason for attrition are death and refusal to continue participating in the project, not the inability

to locate respondents at home or abroad.”  Ham, Li and Reagan (2001), use NLSY data to compare wages following

migration with (counterfactual) estimates of what the wage would have been if migration had not occurred, but they

do not analyze the migration decision itself.
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derivatives, and it seems appropriate for problems such as this in which there is no reason to

expect that the loglikelihood function is concave.  In practice the method works well for the

models we have estimated so far; in particular, it is robust to large changes in the starting values

of the parameters.  On the other hand, the method is slow, and so we also use gradient methods to

speed up the computations, particularly when doing sensitivity analysis.11

5 Empirical Results

We analyze the migration decisions of men aged 20-35, using the non-military subsample of

the NLSY79, observed over the period 1979-1992.  In order to obtain a relatively homogeneous

sample, we consider only white high-school graduates with no college education, using only the

years after schooling is completed.12

5.1 Age Adjustment of Earnings

The model assumes that wages are stationary, and that each individual draws a level of

permanent income in each location that is visited.  In the data, however, wages vary

systematically with age, and there are also substantial transient wage variations.  Figure 1 shows

the age-earnings profiles (by quintile) for white high school graduates in the NLSY79.  These

profiles are steep: earnings more than double between the ages of 20 and 35.  Since migrants are

necessarily older following a move than they were before the move, we must make some

adjustment for age, so as not to attribute to migration the earnings growth due to age.  We

assume that wage components are additively separable, that the age-earnings profile is the same

across all locations, and that the transient wage component is drawn from the same distribution in
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all locations.  This implies that neither the transitory component nor the earnings profile is

relevant for migration decisions.

Suppose that the wage of individual i in location j at age a is 

where :j is a known constant, N(a) is a known age-earnings profile, 0i is an individual effect that

is fixed across locations (and known to the individual), uij is a permanent match effect, and g is a

transient effect. We assume that 0, u and g are independent, and that u and g are identically

distributed across locations.  In order to implement the model, we first need to estimate the

distribution of u.  One problem is that even if the mean of uij across individuals is zero in all

locations, the realizations of u found in measured wages reflect selection effects due to migration

decisions.  Allowing for selection effects would be difficult, and migration rates are low enough

to suggest that the required effort might not be worthwhile.  Another problem is that we cannot

separate u and g using Census data, and there are not enough observations in the NLSY to get

reliable estimates of wage distributions for each State.  We deal with this by appealing to results



13See Gottschalk and Moffitt (1994) and Katz and Autor (1999).
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from previous research indicating that the transient earnings component is responsible for about

one-third of the variance of earnings.13  

The wage distribution in State j is modeled as a 3-point approximation with support points

, s 0 {1,2,3}, where :̂j is the estimated State effect, and û(qs) is the qs quantile of

the estimated distribution of u, with .  This wage distribution refers to earnings at

some standard age, which we take to be 30.  PUMS data from the 1990 Census are used to

estimate wage distributions for each State (because the sample size in the NLSY data is not

sufficient for this purpose). Wages are adjusted for cost of living differences using the ACCRA

index.  These State wage distributions are tabulated in Appendix A.

Consider an individual who is in the same location for m years.  The average wage over this

period, excluding State and age effects, is

This implies

Suppose that one-third of the total variance is due to the transient component, and let D be the

proportion of the remaining variance accounted for by 0.  Then Fg
2 = ½(F0

2  + Fu
2

 ) and F0
2  = 

D(F0
2  + Fu

2
 ), so the match component u can be estimated by the signal-extraction formula



15

We use this estimate to determine individual i’s position in the 3-point wage distribution for

location j.  If û falls in the top third of the distribution, then the high wage is assigned; if û falls in

the bottom third then the low wage is assigned, and otherwise the median wage is assigned.  In

other words, for each State in which we have earnings data on an individual, we approximate that

individual’s permanent wage in that State as one of three wage numbers in the appropriate row of

Appendix Table A1.

5.2 Partial Likelihood Estimates

We condition on the estimated earnings distributions for each State and maximize the partial

likelihood to obtain estimates of the behavioral parameters.  We set $ =.9, T = 40, and D = ½. 

We show in section 5.8 below that our main results are not very sensitive to these parameter

settings. 
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Table 2: Interstate Migration of Young White Men
12 Years of Schooling

Disutility of Moving ((0) 7.0642 7.0108 6.4083

0.0513 0.0513 0.1111

Distance ((1)
(1000 miles)

0.5210

0.0760

Home Premium (6) 0.3554

0.0175

Previous Location ((2) 3.1624

0.1492

Population ((3)
(moving cost)

0.8284

0.0871

“Real” Income (")
($10,000)

0.1824 0.2477

0.0353 0.0572

Loglikelihood -3209.87 -3193.78 -2471.87

P2 (1) 51 32.186

Moving Cost $384,363 $258,727

Observations 9,682

Moves 397

Notes:
Estimated asymptotic standard errors are given in italics below the coefficients.
The length of the horizon is 40 years, with discount factor $ = .9
The wage distributions have 3 points of support.
Distances are measured between State population centroids (in thousands of miles).
Population is measured in units of 10 million people.

Table 2 shows that differences in expected income are a significant determinant of migration

decisions for this population.  There are 9,682 person-years in the data, with 397 interstate

moves.  This is an annual migration rate of 4.1%, and the first column in Table 2 matches this



14In other words the estimate of *0 solves the equation ; the solution is

*0 = log(464250) - log(397). 

15The P2 statistics in the table are for likelihood ratio tests of the form 2log(LU/LR) ~ P²(r), where r is the number

of restrictions embodied in LR relative to LU.

16The validity of the estimates is checked in Appendix B: the estimated coefficients were used to generate a

simulated data set, and the maximum likelihood procedure successfully recovered these coefficients from the

simulated data.

17This refers to the cost of moving to a new location, ignoring the effect of population and distance.  In the case

of a return move, the estimated moving cost is $131,048.  The estimated cost of moving 1,000 miles to a State with a

population of 3 million is $269,726.
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rate by setting the probability of moving to each of J-1 locations to a constant value, namely

, with J = 51.14  The next columns show that population size, distance, and home and

previous locations all have highly significant effects on migration.15  The last column shows the

effect of income, controlling for these other effects, using wages adjusted for cost of living

differences across States.16  These estimates are interpreted in the following subsections.

5.3 Moving Costs and Preference Shocks

Since utility is linear in income, we can translate the estimated moving cost into a dollar

equivalent.  This gives *0/" =  $258,727 (using the estimates in the last column of Table 2), with

the interpretation that the compensation needed to just offset the cost of a move is very large:

other things equal, a lump-sum of about $250,000 would be needed to fully compensate someone

for the costs of a move.17  Another way to interpret our result is to note that a $10,000 migration

subsidy (modeled as a reduction in *0 such that *0/" falls by $10,000 with the other parameters

held fixed) would increase the interstate migration rate from 4.1% to 5.75% .

It may seem that th large moving cost is an artifact of the specification of the model.  For

example, in the absence of any moving cost, allowing preference shocks to be drawn randomly

over J locations implies a migration probability of (J-1)/J, so that with J = 51, nearly everybody

moves every period.  The first column of Table 2 shows how large the fixed cost of moving has

to be in relation to the preference shocks, in order to reduce the migration rate from 50/51 to the
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(24)

(25)

observed rate of 4.10%, when all other influences on migration are suppressed.  The last column

shows that the estimated moving cost is large in relation to the income coefficient, even after

allowing for the effects of population and distance and the home premium and previous location.

To understand why the estimated moving cost is so big, it is helpful to consider an example

in which income differentials and moving costs are the only influences on migration decisions. 

Suppose that income in each location is either high or low, and let )y be the difference between

the high and low income levels.  Suppose also that the realization of income in each location is

known.  Then the odds of moving are given by

where 8L is the probability of staying in a low-income location and JL is the number of such

locations, and similarly for 8H and JH, and where )V is the difference in expected continuation

values between the low-income and high-income locations, which is determined by the equation

For example, if $ = 0, then )V = ")y, and if moving costs are prohibitive (exp(-*0) . 0), then

)V = ")y/(1-$).

These equations identify " and *0 (these parameters are in fact over-identified, because there

is also information in the probabilities of moving to the same income level).  If *0 < $)V, then

the odds of moving from a low-income location are greater than JH to 1, and this is contrary to

what is seen in the data (for any plausible value of JH).  By making *0 a little bigger than $)V,

and letting both of these be large in relation to the preference shocks, the probability of moving

from the low-income location can be made small.  But then the probability of moving from the
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high-income location is almost zero, which is not true in the data.  In other words, if the

probability of moving from a high-income location is not negligible, then the preference shocks

cannot be negligible, since a preference shock is the only reason for making such a move.

By making both *0 and $)V large, the ratio can be made arbitrarily close to 1 while

preserving a fixed difference.  But making them large kills the effect of the preference shocks. 

There must be a positive difference to explain why there is a strong tendency to stay in low-

income locations.  The upshot is that the moving cost has to be a relatively large multiple of the

difference in continuation values.  For example, if )y = $5,000, then $)V/" could be as large as

$45,000, and the moving cost must be higher than this.  But this doesn’t explain why the estimate

is over $250,000.

There are of course potentially important influences on migration decisions that are not

included in our model, and one interpretation of the results is that, on average, the omitted

variables strongly favor staying in the current location.  If this is so, a more complete model

might yield a more plausible estimate of the moving cost.  For example, there may be some

components of wages that are known to the individual, but not included in the model.  If the

wage distribution is mis-specified in this way, some of the apparent gains available to a person

with a low wage realization in the current location are illusory, and this biases the estimate of "

toward zero.

5.4 Goodness of Fit

In order to keep the state space manageable, our model severely restricts the set of variables

that are allowed to affect migration decisions.  Examples of omitted observable variables include

age, duration in the current location, and the number of moves made previously.  In addition,

there are of course unobserved characteristics that might make some people more likely to move

than others.  Thus it is important to check how well the model fits the data.  In particular, since

the model pays very little attention to individual histories, one might expect that it would have

trouble fitting panel data.

One simple test of goodness of fit can be made by comparing the number of moves per

person in the data with the number predicted by the model.  As a benchmark, we consider a



18Since we have unbalanced panel data, the binomial probabilities are weighted by the distribution of years per

person.

19We have not estimated models with unobserved heterogeneity, because even the simplest specification doubles

the size of the state space and introduces a difficult initial conditions problem, and because there is no particular

reason to believe that our main results are sensitive to unobserved heterogeneity.  As a rough check, we simulated

migration histories for a heterogeneous population and estimated our (mis-specified) model on these data. 

Heterogeneity was introduced by mixing two sub-samples with different moving costs.  We tried several experiments

along these lines, with similar results: neglecting unobserved  heterogeneity in moving costs introduces a negligible

bias in the estimated coefficients.  Most importantly, we find that the estimated effect of income is, if anything,

slightly underestimated, indicating that models with unobserved heterogeneity are likely to strengthen our conclusion

that migration decisions are sensitive to differences in income prospects.
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binomial distribution with a migration probability of 4.1% (which is the number of moves per

person-year in the data).  Table 3 shows the predictions from this model: about 72% of the

people never move, and of those who do move, about 16% move more than once.18  The NLSY

data are quite different: more than 80% never move, and about 44% of movers move more than

once.  A natural interpretation of this is mover-stayer heterogeneity: some people are more likely

to move than others, and these people account for more than their share of the observed moves. 

We simulated the corresponding statistics for the model by starting 100 replicas of the NLSY

individuals in the observed initial locations, and using the model (with the estimated parameters

shown in Table 2) to generate a history for each replica, covering the number of periods observed

for this individual.  The results match the data very well: although the proportion of people who

never move is slightly below the observed proportion, the proportion of movers who move more

than once matches the data very closely.  In this respect, the observables in the model do a good

job of accounting for the heterogeneous migration probabilities in the data.19
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Table 3: Goodness of Fit

Moves Binomial NLSY Model

None 887.20 72.48% 986 80.56% 96229 78.62%

One 282.99 23.12% 133 10.87% 14685 12.00%

More 53.81 4.40% 105 8.58% 11486 9.38%

Proportion of movers

with more than one move

15.98% 44.12% 43.89%

Total observations 1224 1224 122400

Return Migration

Table 4 summarizes the extent to which the model can reproduce the return migration

patterns seen in the data (the statistics in the Model column refer to the simulated data set used in

Table 3).

Table 4: Return Migration Statistics

NLSY Model

Proportion of Movers who
Return home 34.3% 31.3%
Return elsewhere 6.5% 5.0%
Move on 59.2% 63.6%

Proportion who ever
Leave Home 15.5% 14.5%
Move from not-home 45.1% 59.3%
Return from not-home 33.3% 27.3%

The model attaches a premium to the home location, and this helps explain why people return

home.  For example, in a model with no home premium, one would expect that the migration

flow to any particular location would be roughly :/(J-1), where : is the average migration rate. 
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Given : = .0410 and J = 51, this obviously does not match the observed return rate of 34%.  The

home premium also reduces the chance of initially leaving home, although this effect is offset by

the substantial discount on the cost of returning to a previous location (including the home

location): leaving home is less costly if a return move is relatively cheap.

The return migration in the simulated data matches the actual data reasonably well.  The main

discrepancy is that the model substantially over-predicts the proportion who ever move from an

initial location that is not their home location.  That is, the model has difficulty explaining why

people seem so attached to an initial location that is not their “home”.  One potential explanation

for this is that our assignment of home locations (the State of residence at age 14) is too crude. 

In some cases the location at age 20 may be more like a home location than the location at age

14.  More generally, people are presumably more likely to put down roots the longer they stay in

a location, and our model cannot capture this kind of duration dependence.

5.5 Why are Younger People More Likely to Move?

It is well known that the propensity to migrate falls with age (at least after age 25 or so). 

Table 5 replicates this finding for our sample of high-school men. A standard human capital

explanation for this age effect is that migration is an investment: if a higher income stream is

available elsewhere, then the sooner a move is made, the sooner the income increase is realized. 

Moreover, since the worklife is finite, a move that is worthwhile for a younger worker might not

be worthwhile for an older worker, because there is less time for the higher income stream to

offset the moving cost (Sjaastad [1962]).  In other words, migrants are more likely to be young

for the same reason that students are more likely to be young.
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Table 5

Annual Interstate Migration Rates by Age and Current Location

All Not At Homea At Home

Age N Migration Rate N Migration Rate N Migration Rate

20 817 0.050 101 0.228 716 0.025

21 907 0.052 102 0.206 805 0.032

22 931 0.048 116 0.207 815 0.026

23 915 0.043 131 0.153 784 0.024

24 942 0.051 146 0.171 796 0.029

25 895 0.053 142 0.141 753 0.036

26 888 0.045 154 0.175 734 0.018

27 862 0.034 136 0.125 726 0.017

28 706 0.035 123 0.114 583 0.019

29 595 0.018 109 0.064 486 0.008

30 483 0.021  84 0.083 399 0.008

31 340 0.026  51 0.118 289 0.010

32 228 0.018  37 0.027 191 0.016

33 130 0.015  12 0.000 118 0.017

34 43 .000   5 0.000  38 0.000

All 9,682 0.041 1,449 0.146 8,233 0.022

aAt Home means living now in the State of residence at age 14.

This explanation for age effects has two parts, and our model deals with the first part, but not

the second.  We assume an infinite horizon, so that the decision problem is stationary.  This

assumption is made for tractability: in a finite-horizon model, age is a state variable, and so the



20Marriage is another important factor, but in order to deal with this we would have to double or triple the size of

the state space (depending on whether we distinguished between divorced and single people).

21One way to see this is to consider the extreme case in which there are no preference shocks.  In this case all

workers born in the low-wage location will move to the high-wage location at the first opportunity (assuming that the

wage difference is big enough to offset the moving cost), and the migration rate will be zero from then on.

24

size of the state space increases dramatically.20  Given workers of different ages who otherwise

have the same migration and wage histories, the infinite-horizon model makes the same

prediction: the age difference is irrelevant, according to the model.  Nevertheless, the model can

potentially explain why younger workers are more likely to move.  For example, consider two

locations paying different wages, and suppose that workers are randomly assigned across these

locations at birth.  Then the model predicts that the probability of moving from the low-wage to

the high-wage location is higher than the probability of a move in the other direction, so that

eventually there will be more workers in the high-wage location, and the migration rate will be

unrelated to age.  This implies that the migration rate must be higher when workers are young.21

The second part of the human capital explanation says that migration rates decline with age

because the horizon gets closer as workers get older.  This is surely an important reason for the

difference in migration propensities between young adult workers and those within sight of

retirement.  But the workers in our sample are all in their twenties or early thirties, and the

prospect of retirement seems unimportant for such workers.  Indeed, that is why the infinite-

horizon assumption seems like a reasonable approximation for the population that we are

studying.  This suggests that the first part of the human capital explanation must be the dominant

force explaining why migration rates for 30-year-olds are substantially lower than for 25-year-

olds.  In other words, if the human capital explanation is correct, our infinite-horizon model

should be able to capture the relationship between migration rates and age.

One way to examine this question is to ask whether our model fits equally well for younger

and older workers.  Table 6 shows that it does not: although there are no dramatic differences in

the parameter estimates for younger and older workers, a likelihood ratio test decisively rejects

the hypothesis that the parameters are equal.  In principle, this difference might be explained by

the difference in horizon, but the last column of the table shows that reducing the horizon of the

older subsample by 10 years has a negligible effect on the results.  This suggests that the human



22To analyze this, the model must be extended to include age as a state variable.  Although this is beyond the

scope of the current paper, the extension might not be as difficult as it seems.  We compute the infinite horizon

model by iterating on the value function, starting from zero, and continuing through T iterations.  This algorithm is

known to converge to the infinite-horizon value function, so if T is large, additional iterations leave the value

function approximately unchanged.  In practice, T = 40 is large enough for this purpose.  What this means it that the

algorithm computes the value function for someone who has 40 years left before retirement, but as a by-product it

also computes the value functions for someone with t years to retirement, for any t (the first iteration gives the value

function with one year left, and the tth iteration gives the value function with t years left).
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capital model does not give an adequate explanation of the relationship between age and

migration rates.22
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Table 6: Age Differences in Migration Rates

White Men, High School Education

All Ages 20-25 26-34 26-34

(T=30)

Disutility of

Moving

6.4083 6.3112 6.5155 6.5164

0.1111 0.1376 0.2031 0.2029

Distance

(1000 miles)

0.5210 0.4247 0.7435 0.7434

0.0760 0.0930 0.1375 0.1379

Home Premium 0.3554 0.2702 0.3310 0.3333

0.0175 0.0300 0.0269 0.0269

Previous location

(moving cost)

3.1624 3.3394 3.1564 3.1601

0.1492 0.1916 0.2645 0.2647

Population 0.8284 0.8328 0.7322 0.7320

0.0871 0.1063 0.1610 0.1607

Real Income 

(ACCRA)

0.2477 0.3230 0.2723 0.2736

0.0572 0.0771 0.0966 0.0972

Loglikelihood
-2471.870 -1625.881 -821.327 -821.342

$258,713 -2447.209

P2(6) p-value 49.32 0.00000

Moving cost $258,713 $195,393 $239,244 $238,172

N (person-years) 9,682 5,407 4,275 4,275

Moves 397 267 130 130

Migration rate 0.0410 0.0494 0.0304 0.0304
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5.6 Decomposing the Effects of Income on Migration Decisions

In our model, differences in wage distributions across States are due entirely to differences in

State means.  This raises the question of whether the estimated coefficients would be similar if

wage dispersion is ignored, and migration decisions are modeled as responses to differences in

mean wages across locations.  The results of this exercise are shown in Table 7, 9, 9. 

Surprisingly, the estimate of the income coefficient (") is insignificant in this specification. 

Going to the other extreme, we specified the wage distribution at the national level, with no

variation across States.  This restores the positive estimate of ".  Evidently, our results are not

driven by differences in mean wages across States.  We turn next to an analysis of how the data

manage to generate a significant income coefficient, even when the variation in incomes across

States is suppressed.
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Table 7: Alternative Income Specifications

Census State Means National

Disutility of

Moving

6.4083 6.3999 6.4324

0.1111 0.1099 0.1112

Distance

(1000 miles)

0.5210 0.5338 5.3347

0.0760 0.0771 0.0758

Home Premium 0.3554 0.3506 0.3595

0.0175 0.0170 0.0177

Previous Location

(moving cost)

3.1624 3.0311 3.1947

0.1492 0.1449 0.1506

Population

(moving cost)

0.8284 0.8731 0.8559

0.0871 0.0878 0.0868

Real Income

(ACCRA)

0.2477 0.0482 0.3270

0.0572 0.0880 0.0666

Loglikelihood
-2471.87 -2481.074 -2470.06

9

N (person-years) 9,682

Moves 397

Notes:

The “State Means” column assumes that there is no wage

dispersion within States.  The “national” column assumes

that wage distributions are identical in all States.

5.7 Movers and Stayers

A useful decomposition of the likelihood can be obtained by separating the decision on

whether to move from the decision on where to go, conditional on moving.  The likelihood that

location j is chosen when the current location is R can be written as



23Note that the move-stay model accounts for the full set of alternative destination choices: there  is no need to

choose a “representative” alternative, as in Gelbach (2002), for example.  The continuation value for each alternative

location is evaluated using location-specific data, and a move occurs if the continuation in some alternative location

beats the value of the incumbent location (given the current realization of the vector of preference shocks).
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Then pR is the probability of staying, and 1-pR is the probability of moving.  The probability of

choosing location j can be factored as

where p# j is the probability of choosing j, conditional on moving:

The parameters governing migration decisions can be estimated using only the move/stay

probabilities, and they can also be estimated using only the conditional destination choice

probabilities. This helps pin down the source of the results.  Each observation adds log(pj) to the

full loglikelihood, where j is the chosen location.  In the case of a move, the loglikelihood in the

mover-stayer model is counted as log(1-pR ), while the destination choice model counts the

loglikelihood of each observation as log(pj ) - log(1-pR ).  Thus, for given parameter values, the

sum of the loglikelihoods for the mover-stayer model and the destination choice model must be

the same as the loglikelihood of the full model.23

The results of this decomposition are shown in Table 8.  Since the destination choice data

contain very little information on the fixed cost of moving, this parameter was held fixed in the

destination choice model.  Table 8 shows that the positive income coefficient appears in the

decision to move, but not in the choice of destination. The move/stay model shows that the

probability of moving is higher when the income realization in the current location is bad.  The

result for the destination choice model indicates that high-wage States are not more likely to be

chosen.
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Table 8: Movers and Stayers

White Men, High School Education

Full Model Move-Stay Destination Choice

Disutility of

Moving

6.4083 7.6490 6.4083

0.1111 0.2822 fixed

Distance

(1000 miles)

0.5210 -0.1742 0.6685

0.0760 0.1033 0.0846

Home Premium 0.3554 0.2702 0.4573

0.0175 0.0300 0.0286

Previous location

(moving cost)

3.1624 5.5976 2.3031

0.1492 0.3251 0.1671

Population 0.8284 -0.2629 1.1064

0.0871 0.1444 0.1027

Real Income 

(ACCRA)

0.2477 0.3504 -0.0768

0.0572 0.0805 0.0881

Loglikelihood
-2471.870 -1429.159 -995.805 

$258,713 -2424.965

P2(6) p-value 93.81 0.00000

N (person-years) 9,682

Moves 397

Another result is that the model fails the specification test associated with the decomposition

of the likelihood into move-stay and conditional destination choice components: the parameter

estimates differ significantly across these two components.  In particular, the home premium

seems to have a bigger effect on destination choices than on decisions about whether to stay in

the home location.



24The maximum likelihood is estimate of $ is around .84, but $ = .9 is easily accepted by a likelihood  ratio test.
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5.8 Sensitivity Analysis

Our empirical results are inevitably based on some more or less arbitrary model specification

choices.  Table 9 explores the robustness of the results with respect to some of these choices. 

The general conclusion is that the parameter estimates are robust.  In particular, the income

coefficient estimate remains positive and significant in all of our alternative specifications.

The results presented so far are based on wages that are adjusted for cost of living differences

across locations.  If these cost of living differences merely capitalize the value of amenity

differences, then unadjusted wages should be used to measure the incentive to migrate.  Results

for this specification are given in the fourth column of Table 9: the estimate of " is reduced by

about 20%, with little effect on the other coefficients, and the likelihood is lower.  Thus in

practice the theoretical ambiguity as to whether wages should be adjusted for cost of living

differences does not have much effect on the empirical results: either way, income shows up as a

significant determinant of migration decisions.

Table 9 also shows that the results are not sensitive to variations in how distance and location

size affect migration.  As was discussed in Section 4, size (as measured by population) may

affect migration either as a scaling factor on the preference shocks, or as a variable affecting the

cost of migration.  The results in the last column of Table 9 show that allowing population to

enter as a scaling factor on the preference shocks adds virtually nothing to the basic specification. 

We also expanded the moving cost specification to allow quadratic effects of distance and

location size; this has little effect on the results.

The other alternative specifications in Table 9 are concerned with sensitivity of the estimates

to the discount factor ($), the horizon length (T) and the proportion of the residual permanent

wage variance attributed to individual effects that are fixed across locations (D).  Increasing $ to

.95 has a noticeable effect on the utility flow parameters (i.e. the home premium and the income

coefficient), with hardly any effect on the moving cost parameters.  Although a 5% annual real

interest rate is arguably more plausible than the 10% rate assumed in our baseline specification,

the likelihood when $ is set at .95 is substantially lower.24  Reducing T from 40 to 20 has very



25In principle, D can be estimated using the NLSY data, because the autocovariance of wages includes Fu
2 for

stayers, but not for movers.  The best estimate of D obtained from the wage covariogram is about .75 , but this

estimate is fragile, and a smaller value of D gives a higher value of the likelihood in the migration model.  Although

joint estimation of D and the other parameters is feasible, we have not pursued this because the results in Table 9

suggest that it would not be very informative.
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little effect (as might be expected with $ =.9).  Large changes in D lead to modest changes in ":

increasing the relative importance of location match effects (i.e. decreasing D) yields some

improvement in the likelihood, and a somewhat lower estimate of ".25
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Table 9: Alternative Specifications

Base $ =.95 $ =.85 No Cola Quadratic D =.25 D =.75 T=20 AltPop

Disutility of Moving 6.4083 6.4185 6.4128 6.3957 6.4427 6.4124 6.4009 6.4158 6.3663

0.1111 0.1093 0.1073 0.1104 0.1566 0.1112 0.1107 0.1111 0.1197

Distance

(1000 miles)

0.5210 0.4796 0.4474 0.5211 0.5897 0.5230 0.5210 0.5213 0.5112

0.0760 0.0696 0.0654 0.0766 0.2079 0.0758 0.0765 0.0766 0.0763 

Squared Distance ------ ------ ------ ------ -0.0373 ------ ------ ------ ------

0.0920

Home Premium 0.3554 0.2482 0.1962 0.3513 0.3543 0.3581 0.3510 0.3668 0.3553

0.0175 0.0127 0.0104 0.0172 0.0177 0.0177 0.0173 0.0179 0.0181

Previous Location

(moving cost)

3.1624  3.0699 2.9518 3.0843 3.1521 3.1815 3.1095 3.1797 3.1743

0.1492 0.1451 0.1396 0.1466 0.1507 0.1498 0.1474 0.1499 0.1495

Population

(moving cost)

0.8284 0.7678 0.7300 0.8431 1.0042 0.8313 0.8337 0.8342 0.7678

0.0871 0.0827 0.0794 0.0876 0.2582 0.0869 0.0874 0.0869 0.1012

Squared Population ------ ------ ------ ------ -0.0829 ------ ------ ------ -------

0.1127

Population

(preference shocks)

------ ------ ------ ------ ------ ------ ------ ------ 0.0193

0.0172

Income 0.2477 0.1672 0.3293 0.1988 0.2444 0.1963 0.2690 0.2568 0.2408

0.0572 0.0383 0.0770 0.0703 0.0572 0.0422 0.0785 0.0595 0.0582

Loglikelihood -2471.87 -2476.90 -2471.34 -2477.73 -2471.48 -2470.42 -2475.74 -2472.13 -2471.23 

Notes: The base specification assumes $ = .9, T = 40 and D = .5.
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6 Conclusion

We have developed a tractable econometric model of optimal migration in response to

income differentials across locations.  The model improves on previous work in two respects: it

covers optimal sequences of location decisions (rather than a single once-for-all choice), and it

allows for many alternative location choices.  Migration decisions are made so as to maximize

the expected present value of lifetime income, but these decisions are modified by the influence

of unobserved location-specific preference shocks.  Because the number of locations is too large

to allow the complete dynamic programming problem to be modeled, we adopt an approximation

that truncates the amount of information available to the decision-maker.  The practical effect of

this is that the decisions of a relatively small set of people who have made an unusually large

number of moves are modeled less accurately than they would be in the (computationally

infeasible) complete model.

Our empirical results show a significant effect of expected income differences on interstate

migration, for white male high school graduates in the NLSY.  On the other hand we find little

evidence of migration in response to wage differentials across States.  Instead, our results can be

interpreted in terms of optimal search for the best geographic match.  In particular, we find that

the relationship between income and migration is driven primarily by a negative effect of income

in the current location on the probability of out-migration: workers who get a good draw in their

current location tend to stay, while those who get a bad draw tend to leave.

Our estimates indicate that moving costs are very large.  For example, if we ignore

differences due to distance and location size and the home location effect, we estimate that about

a quarter of a million dollars would be needed to fully compensate for the costs of an interstate

move.  But if moving costs were fully compensated, nearly everyone would move all the time. 

Perhaps a more informative statement is that we estimate that a $10,000 migration subsidy would

increase the interstate migration rate by about 40%.

The main limitations of our model are those imposed by the discrete dynamic programming

structure: given the large number of alternative location choices, the number of dynamic

programming states must be severely restricted for computational reasons.  Goodness of fit tests

indicate that the model nevertheless fits the data reasonably well.  The main discrepancy between
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the model and the data arises from a stationarity assumption that precludes the use of age as a

state variable.  The development of a model that relaxes this assumption is a promising area for

further research.
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Appendix A: Wage Distributions 

Table A1 shows the three-point approximation to the state earnings distributions derived

from the PUMS data.  Earnings are expressed in 1983 dollars, adjusted for cost of living

differences using the ACCRA index (http://www.coli.org/).  We used unweighted city averages

within States from one quarter in 1979, 1981, 1987, and 1990 to calculate the index.  The second

column reports the number of observations in the PUMS for each State. Earnings values for the

low, medium and high cells appear in the 16%, 50% and 83% columns.  The a and b quantile

values define the cell boundaries. 

http://www.coli.org/


Table A1: State Earnings Distributions
White Male High School Graduates

Percentiles of Earnings Distribution

State Nobs 16% 33% Median 67% 83%

Alabama 5127 15548 16712 17674 18733 20166

Alaska 1016 14784 15948 16910 17969 19402

Arizona 3986 13747 14910 15872 16932 18365

Arkansas 3969 13771 14935 15897 16957 18389

California 27983 15635 16799 17761 18821 20254

Colorado 4828 14421 15585 16547 17606 19039

Connecticut 4881 15932 17096 18058 19117 20550

Delaware 1083 15820 16984 17946 19005 20438

DC 90 12011 13174 14136 15196 16629

Florida 17080 14446 15609 16571 17631 19064

Georgia 9109 16143 17307 18269 19328 20761

Hawaii 1063 11666 12830 13792 14851 16284

Idaho 1544 14427 15591 16553 17612 19045

Illinois 16658 16060 17224 18186 19245 20678

Indiana 11491 15998 17162 18124 19183 20616

Iowa 5108 14275 15438 16400 17460 18893

Kansas 4142 14775 15939 16901 17960 19393

Kentucky 6987 14433 15597 16558 17618 19051

Louisiana 5411 15260 16424 17386 18446 19878

Maine 2869 15249 16412 17374 18434 19867

Maryland 6671 17539 18703 19665 20724 22157

Massachusetts 9882 15824 16988 17950 19009 20442

Michigan 15702 14834 15998 16960 18020 19453

Minnesota 8103 14627 15790 16752 17812 19245

Mississippi 2589 14585 15749 16711 17770 19203

Missouri 9285 14918 16081 17043 18103 19536

Montana 1188 13190 14354 15316 16376 17809

Nebraska 2572 13766 14929 15891 16951 18384

Nevada 2157 15756 16920 17882 18941 20374

New Hampshire 2292 13749 14913 15875 16934 18367

New Jersey 11183 16588 17751 18713 19773 21206

New Mexico 1949 12508 13672 14634 15694 17127

New York 23896 15329 16492 17454 18514 19947

North Carolina 10021 14817 15981 16943 18002 19435

North Dakota 930 12766 13930 14892 15951 17384

Ohio 20932 15363 16526 17488 18548 19981

Oklahoma 4617 13623 14786 15748 16808 18241

Oregon 4117 14246 15410 16372 17431 18864

Pennsylvania 25366 14851 16015 16977 18036 19469

Rhode Island 1602 15336 16499 17461 18521 19954

South Carolina 4230 15585 16749 17711 18770 20203

South Dakota 1077 12699 13862 14824 15884 17317

Tennessee 8052 14802 15966 16928 17987 19420

Texas 20624 14588 15751 16713 17773 19206

Utah 2208 15825 16989 17951 19010 20443

Vermont 1254 13766 14930 15892 16951 18384

Virginia 9097 16124 17287 18249 19309 20742

Washington 7417 16018 17182 18144 19203 20636

West Virginia 3524 13279 14443 15405 16464 17897

Wisconsin 10503 16109 17273 18235 19294 20727

Wyoming 806 15947 17111 18073 19132 20565



Appendix B: Validation of ML Estimates

Table B: ML Estimates Using Simulated Data

NLSY Simulated

Disutility of Moving 6.4083 6.4040

0.1111 0.0121

Distance
(1000 miles)

0.5210 0.5277

0.0760 0.0073

Home Premium 0.3554 0.3560

0.0175 0.0021

Previous Location 3.1624 3.1807

0.1492 0.0174

Population
(moving cost)

0.8284 0.8322

0.0871 0.0087

“Real” Income ($10,000) 0.2477 0.2497

0.0572 0.0056

Loglikelihood -2471.870 -247440.93

Moving Cost $258,727 $256,440

Observations 9,682 968,200

Moves 397 39,700

Explanation:
The ML parameter estimates from Table 2 were used to

generate 100 replicas of each NLSY observation, starting from the
actual value in the NLSY data, and allowing the model to choose the
sequence of locations.  Two alternative starting points were used
when estimating the parameters from the simulated data: the actual
parameter values used to generate the data, and the one-parameter
estimate from the first column of Table 2 (with all other parameters
set to zero).  For both starting points the estimates converged to the
values shown in the last column above (this required 2 Newton steps
starting from the truth, and 9 Newton steps starting from the one-
parameter estimate).


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41



