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ABSTRACT

This note derives an approximate solution to a continuous-time intertemporal portfolio and

consumption choice problem. The problem is the continuous-time equivalent of the discrete-time

problem studied by Campbell and Viceira (1999), in which the expected excess return on a risky

asset follows an AR(1)process, while the riskless interest rate is constant. The note also shows how

to obtain continuous-time parameters that are consistent with discrete-time econometric estimates.

The continuous-time solution is numerically close to that of Campbell and Viceira and has the

property that conservative long-term investors have a large positive intertemporal hedging demand

for stocks.
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1 Introduction

Campbell and Viceira (1999) study the impact of predictable variation in stock returns

on intertemporal optimal portfolio choice and consumption. They consider an infinitely

lived investor who faces a constant riskless interest rate and a time-varying equity premium.

They model this time-variation using a discrete-time, homoskedastic VAR (1) process for log

excess stock returns and a state variable driving changes in expected returns. This model

of investment opportunities implies that the Sharpe ratio is linear in the state variable.

Campbell and Viceira assume that the investor has recursive Epstein-Zin utility (Epstein

and Zin 1989, 1991), a generalization of power utility that allows both the coefficient of

relative risk aversion and the elasticity of intertemporal substitution in consumption to be

constant free parameters. They derive an approximate analytical solution for the optimal

portfolio rule, and show that this rule is linear in the state variable. When they calibrate

this model to U.S. stock market data for the postwar period, they find that intertemporal

hedging motives greatly increase the average demand for stocks by investors whose relative

risk aversion coefficients exceed one.

Because Campbell and Viceira work in discrete time, no exact portfolio solutions are

available in their model except in the trivial case of unit risk aversion, which implies myopic

portfolio choice. Campbell and Viceira claim, however, that their solution becomes exact

in the limit of continuous time when the elasticity of intertemporal substitution equals

one. They base this claim on the fact that they use an approximation to the investor’s

intertemporal budget constraint which becomes exact as the time interval of their model

shrinks.

This paper presents a continuous-time analysis of Campbell and Viceira’s portfolio choice

problem. The paper finds a continuous-time representation of the VAR(1) process in their

paper, and solves a continuous-time version of their model. The solution is exact when
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the elasticity of intertemporal substitution equals one, and approximate otherwise. The

continuous-time solution has the same qualitative properties as the discrete-time solution in

Campbell and Viceira, and is quantitatively similar. However the continuous-time solution

is likely to be more appealing and intuitive to finance theorists who are accustomed to

working in continuous time.

2 Investment Opportunity Set

2.1 A continuous-time VAR

We start by assuming that there are two assets available to the investor, a riskless asset with

instantaneous return
dBt

Bt
= rdt, (1)

and a risky asset (“stocks”) whose instantaneous return and expected return follow a continuous-

time bivariate process:

 d
¡
logSt +

1
2
σ2St− θt

¢
d (µt − θ)

 =

 0 1

0 −κ

 logSt + 1
2
σ2St− θt

µt − θ

 dt (2)

+

 σS 0

ρσµ
p
σ2µ − ρ2σ2µ

 dZS,t

dZµ,t

 ,
where dZS,t and dZµ,t are independent Wiener processes.

Equation (2) implies that the instantaneous return on stocks (dSt/St) follows a Geometric

Brownian Motion, whose drift (or instantaneous expected return) µt follows a mean-reverting

process. Section 2.3 below shows that this is the continuous-time counterpart of the discrete-

time VAR(1) process in Campbell and Viceira (1999).

2



We can write (2) in compact form as

dyt = Aytdt+ CdZt. (3)

Note that the instantaneous variance of dy is given by CC 0:

Var (dy) = CC 0 =

 σ2S ρσSσµ

ρσSσµ σ2µ

 .

2.2 Time-aggregation of the continuous-time VAR

Bergstrom (1984) and Campbell and Kyle (1993) show how to derive the discrete-time

process implied by a continuous-time VARwhen we take point observations of the continuous

time process at evenly spaced points {t0, t1..., tn, tn+1, ....}, with ∆t = tn − tn−1. Direct

application of their results shows that the process y in (3) has the following discrete-time

VAR(1) representation:

yptn+∆t = exp {∆tA} yptn + uptn+1, (4)

where

uptn+1 =

Z ∆t

τ=0

exp {(∆t− τ )A}CdZtn+τ , (5)

and

exp {A} = I +
∞X
r=1

Ar

r!
. (6)

We prove in Appendix A that exp{sA} is equal to

exp (As) =

 1 1
κ
(1− e−κs)

0 e−κs

 . (7)

Thus we can write (4) in matrix form as: log Stn+∆t +
σ2S
2
(tn +∆t)− θ (tn +∆t)

µtn+∆t − θ

 =

 1 1
κ

¡
1− e−κ∆t

¢
0 e−κ∆t

 log Stn + σ2S
2
tn − θtn

µtn − θ

(8)
+utn+∆t,
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where

utn+∆t =

 uS,tn+∆t

uµ,tn+∆t

 = Z ∆t

0

 1 1
κ

¡
1− e−κ(∆t−τ)¢

0 e−κ(∆t−τ)

 σS 0

ρσµ
p
σ2µ − ρ2σ2µ

 dZtn+τ . (9)

>From equation (9), it follows that the variance-covariance matrix of the innovations

utn+∆t in the discrete-time representation of the continuous-time VAR is given by

Var
¡
uptn+∆t

¢
=

Z ∆t

τ=0

exp {(∆t− τ)A}CC 0 exp {(∆t− τ)A0} dτ (10)

=

Z ∆t

0

 B11 B12

B12 B22

 dτ ,
where

B11 = σ2S +
2ρσSσµ

κ

¡
1− e−κ(∆t−τ)¢+ σ2µ

κ2
¡
1− e−κ(∆t−τ)¢2 ,

B12 = ρσSσµe
−κ(∆t−τ) +

σ2µ
κ

¡
e−κ(∆t−τ) − e−2κ(∆t−τ)¢ ,

B22 = σ2µe
−2κ(∆t−τ).

Therefore, given values for the parameters of the continuous-time process (2), we can

easily aggregate to any frequency ∆t, by using (8) and (10). The discrete-time representa-

tion is especially useful in recovering the parameters of the continuous-time VAR (2) from

estimates of the equivalent discrete-time VAR (8). We do this in the next section.

2.3 Recovering continuous-time parameters from a discrete-time

VAR

In their analysis of optimal consumption and portfolio choice with time-varying expected

returns, Campbell and Viceira (1999, 2000) assume that the log excess returns on stocks is
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described by the following discrete-time VAR(1): ∆ logStn+∆t − rf

xtn+∆t

 =
 0

(1− φ)µ

+
 0 1

0 φ

 ∆ logStn − rf

xtn

+
 εtn+∆t

ηtn+∆t

 , (11)
where rf is the return (assumed constant) on a T-bill with maturity ∆t.

We now show that the discrete-time VAR given in (11) and the continuous-time VAR

given in (2) are equivalent representations of the same process. To see this, note that we

can rewrite the discrete-time aggregation of y in (8) as follows: ∆ logStn+∆t − r∆t

µtn+∆t

 =

 ³θ − σ2S
2
− r
´
∆t− 1

κ

¡
1− e−κ∆t

¢
θ¡

1− e−κ∆t
¢
θ

 (12)

+

 1 1
κ

¡
1− e−κ∆t

¢
0 e−κ∆t

 log Stn + σ2S
2
tn − θtn

µtn

+
 uS,tn+∆t

uµ,tn+∆t

 .
Using the following linear transformation for the process µt,

vt =

µ
θ − σ2S

2
− r

¶
∆t− 1

κ

¡
1− e−κ∆t

¢
θ +

1

κ

¡
1− e−κ∆t

¢
µt,

we can further rewrite (12) in the same form as (11): ∆ log Stn+∆t − r∆t

vtn+∆t

 =

 0¡
1− e−κ∆t

¢ ³
θ − σ2S

2
− r
´
∆t

 (13)

+

 0 1

0 e−κ∆t

 ∆ log Stn+∆t − r∆t

vtn


+

 1 0

0 1
κ

¡
1− e−κ∆t

¢
 uS,tn+∆t

uµ,tn+∆t

 .
A simple comparison of the coefficients in (11) and (13) gives us a system of equations

that relate the discrete-time parameters of the VAR process in Campbell and Viceira (1999)

to the continuous-time parameters of our continuous time VAR process. For the intercept
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and slope parameters we have the following equivalence relations:

rf = r∆t, (14)

µ =

µ
θ − σ2S

2
− r

¶
∆t, (15)

φ = e−κ∆t. (16)

Finally, using (10), we obtain the following equivalence relations for the variance and

covariance parameters:

Vartn
¡
ηtn+∆t

¢
=

1

κ2
¡
1− e−κ∆t

¢2
Vartn (uµ,tn+∆t) (17)

=
σ2µ
2κ3

¡
1− e−κ∆t

¢2 ¡
1− e−2κ∆t

¢
,

Covtn
¡
εtn+∆t, ηtn+∆t

¢
=

1

κ

¡
1− e−κ∆t

¢
Covt (uS,tn+∆t, uµ,tn+∆t) (18)

=
ρσSσµ
κ2

¡
1− e−κ∆t

¢2
+

σ2µ
κ3
¡
1− e−κ∆t

¢2
− σ2µ
2κ3

¡
1− e−2κ∆t

¢ ¡
1− e−κ∆t

¢
,

Vartn (εtn+∆t) = Vartn (uS,tn+∆t) (19)

=

µ
σ2S +

2ρσSσµ
κ

+
σ2µ
κ2

¶
∆t− 2ρσSσµ

κ2
¡
1− e−κ∆t

¢
−2σ

2
µ

κ3
¡
1− e−κ∆t

¢
+

σ2µ
2κ3

¡
1− e−2κ∆t

¢
.

Campbell-Viceira (2000) report estimates of the VAR (11) based on US quarterly data

for the period 1947.Q1-1995.Q4. Table I shows the value of the parameters of the continuous-

time equivalent VAR implied by their estimates.2

2There is an estimation error in Campbell and Viceira (1999) that results in an underestimation of the

degree of predictability in stock returns in their paper. Campbell and Viceira (2000) report correct estimates,

and calibration results based on the corrected estimates.
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2.4 A common mistake

Anyone used to working with the discrete-time representation of a univariate continuous-

time process will find natural and intuitive the relation between the intercept and slope of the

continuous-time VAR and its discrete-time representation implied by equations (14)-(16).

However, equations (17)-(19) show that the equivalence relation for the variance-covariance

matrix of innovations is less obvious. Using an intuitive extension of the usual matching

rules for simple, univariate process, one might be tempted to write:

Vartn (εn+1) ≈ σ2S∆t (20)

Covtn
¡
εtn+∆t, ηtn+∆t

¢ ≈ ρσSσµ∆t

Vartn
¡
ηtn+∆t

¢ ≈ σ2µ∆t.

It should be apparent from equations (17)-(19) that this matching is incorrect–though

equation (20) is a first-order Taylor expansion of the correct expression for Vartn(εn+1) given

in (19). The use of (20) is particularly dangerous when ∆t 6= 1, as might be the case when
one is using annualized parameters and quarterly data. In this case portfolio solutions based

on (20) can be quite different from the correct solutions that we will derive using equations

(17)-(19).

3 Intertemporal Portfolio Choice

We have shown in Section 2, that the investment opportunity set described by equations

(1) and (2) is equivalent to the investment opportunity set that Campbell and Viceira

(1999) assume in their discrete-time, intertemporal optimal consumption and portfolio choice

model. In this section we solve their model in continuous time, using the techniques described

in Chacko and Viceira (2000) and Campbell and Viceira (2002), and we show that the
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solution is invariant to the choice of discrete-time or continuous-time approximations to

solve for the model.

3.1 Assumptions on investment opportunities and preferences

We consider an investor who has only two assets available for investment, a riskless bond

and stocks, and no labor income. Return dynamics are given by (1) and the bivariate system

(2). For convenience, we rewrite the system (2) as

dSt
St

= µtdt+ σSd eZS,

where

dµt = κ (θ − µt) dt+ σµd eZµ,

where d eZS = dZS, and d eZµ = ρdZS +
p
1− ρ2dZµ. Note that the instantaneous correlation

between dSt/St and dµt is ρ.

These assumptions on investment opportunities imply that the wealth dynamics for the

investor are given by

dWt = rWtdt+ αtWt [(µt − r) dt+ σSdZS]− Ctdt, (21)

where αt is the fraction of wealth invested in stocks.

Campbell and Viceira (1999) assume that the investor has recursive Epstein-Zin prefer-

ences over consumption. Duffie and Epstein (1992a, b) provide an equivalent continuous-time

parameterization of recursive preferences:

Jt =

Z ∞

t

f (Cs, Js) ds,

where f (Cs, Js) is a normalized aggregator of current consumption and continuation utility
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that takes the form

f (C, J) =
β

1− 1
ψ

(1− γ) J

Ã C

((1− γ) J)
1

1−γ

!(1− 1
ψ )

− 1
 . (22)

Here β > 0 is the rate of time preference, γ > 0 is the coefficient of relative risk aversion,

and ψ > 0 is the elasticity of intertemporal substitution.

There are two interesting special cases of the normalized aggregator (22): ψ = 1/γ and

ψ = 1. The case ψ = 1/γ is interesting because in that case the normalized aggregator (22)

reduces to the standard, additive power utility function–from which log utility obtains by

setting γ = 1. In the second special case, the aggregator f (Cs, Js) takes the following form

as ψ → 1:

f (Cs, Js) = β (1− γ)J

·
log (C)− 1

1− γ
log ((1− γ)J)

¸
. (23)

The case ψ = 1 is important because it allows an exact solution to our dynamic optimization

problem for investors who are more risk averse than an investor with unit coefficient of

relative risk aversion. We now explore this solution, as well as an approximate solution for

investors with ψ 6= 1 in the next section.

3.2 Bellman equation

Duffie and Epstein (1992a, b) show that the standard Bellman principle of optimality applies

to recursive utility. The Bellman equation for this problem is

0 = sup
{αt,Ct}

{f(Ct, Jt) + JW [Wt (r + αt (µt − r))− Ct] + Jµκ (θ − µt)

+
1

2
JWWW 2

t α
2
tσ
2
S + JWµWtαtρσSσµ +

1

2
Jµµσ

2
µ

¾
, (24)

where f(Ct, Jt) is given in (22) when ψ 6= 1, or (23) when ψ = 1. Jx denotes the partial

derivative of J with respect to x, except Jt, which denotes the value of J at time t.
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The first order condition for consumption is given by

Ct = J−ψW [(1− γ) J ]
1−γψ
1−γ βψ, (25)

which reduces to Ct = (J/JW ) (1− γ) β when ψ = 1.

The first order condition for portfolio choice is given by

αt =
−JW

WtJWW

µ
µt − r

σ2S

¶
− JWµ

WtJWW

µ
ρσµ
σS

¶
. (26)

Substitution of the first order conditions (25) and (26) into the Bellman equation (24)

results in the following partial differential equation for the value function J :

0 = f
³
J−ψW {(1− γ)J} 1−γψ1−γ βψ, Jt

´
− JW

n
J−ψW [(1− γ)J ]

1−γψ
1−γ βψ

o
(27)

+JWWtr + Jµκ (θ − µt) +
1

2
Jµµσ

2
µ

−1
2

(
J2W
JWW

(µt − r)2

σ2S
+ 2

JWJWµ

JWW

ρσµ (µt − r)

σS
+

J2Wµ

JWW
ρ2σ2µ

)
.

Of course, the form of this equation depends on whether we consider the case ψ 6= 1 and use
the normalized aggregator in (22), or we consider the case ψ = 1 and use the normalized

aggregator (23).Appendix B shows the partial differential equation that obtains in each case.

Campbell and Viceira (1999) claim that their discrete-time solution is exact for the case

ψ = 1 up to a discrete-time approximation to the log return on wealth, and note that this

approximation becomes exact in continuous-time. The continuous-time model in this paper

confirms their claim. We show in Appendix B that (27) has an exact analytical solution in

the case ψ = 1. This solution is

J (Wt, µt) = I (µt)
W 1−γ

t

1− γ
, (28)

with

I (µt) = exp

½
A0 +B0µt +

C0
2
µ2t

¾
, (29)

10



where A, B, and C are functions of the primitive parameters of the model describing invest-

ment opportunities and preferences.

In the more general case ψ 6= 1, there is no exact analytical solution to (27). However,
we can still find an approximate analytical solution following the methods described in

Campbell and Viceira (2002) and Chacko and Viceira (1999). We start by guessing that the

value function in this case also has the form given in (28), with

I (µt) = H (µt)
−( 1−γ1−ψ) . (30)

Substitution of (30) into the Bellman equation (27) results in an ordinary differential equa-

tion forH(µt). This equation does not have an exact analytical solution in general. However,

we show in Appendix B that taking a loglinear approximation to one of the terms in the

equation results in a new equation for H(µt) that admits an analytical solution. The form

of this solution is an exponential-quadratic function similar to (29):

H (µt) = exp

½
A1 +B1µt +

C1
2
µ2t

¾
. (31)

The term that we need to approximate in the ordinary differential equation for H(µt) is

βψH(µt)
−1. Simple substitution of (28) and (31) into the first order condition (25) shows that

this term is simply the optimal consumption-wealth ratio Ct/Wt. Thus this loglinearization

is equivalent to loglinearizing the optimal consumption-wealth ratio around one particular

point of the state space. Campbell and Viceira (2002) and Chacko and Viceira (1999)

suggest approximating this term around the unconditional mean of the log consumption

wealth-ratio.This choice has the advantage that the solution will be accurate if the log

consumption-wealth is not too variable around its mean. Appendix B provides full details

of this solution procedure.
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3.3 Optimal portfolio choice

The optimal portfolio policy of the investor obtains from substitution of the the solution

for the value function into the first order condition (26). In the case ψ = 1, substitution of

(28)-(29) into the first order condition (26) gives

αt =

µ
1

γ

¶
µt − r

σ2S
+

µ
1− 1

γ

¶
σµ
σS

ρ (B0 + C0µt) , (32)

where B0 = −B0/(1− γ) and C0 = −C0/(1− γ).

In the case ψ 6= 1, substitution of the approximate solution (28)-(30)-(31) into the first
order condition (26) gives

αt =

µ
1

γ

¶
µt − r

σ2S
+

µ
1− 1

γ

¶
σµ
σS

ρ (B1 + C1µt) , (33)

where B1 = −B1/(1− ψ) and C1 = −C1/(1− ψ). Appendix B shows that B1 and C1 do not
depend on ψ, except through a loglinearization parameter.

Equations (32) and (33) show that the optimal allocation to stocks is a weighted average

(with weights 1/γ and 1 − 1/γ) of two terms, both of them linear in the expected return

on stocks µt. The first term is the myopic portfolio allocation to stocks, and the second

term is the intertemporal hedging demand for stocks. The myopic portfolio allocation is

proportional to (1/γ), so that it approaches zero as we consider increasingly risk averse

investors. The intertemporal hedging component is proportional to (1 − 1/γ), so that one
might be tempted to conclude that it does not approach zero in the limit as γ → 0. However,

we need to consider that B0 (or B1) and C0 (or C1) are also functions of γ. We can show that
the limit of the overall expression approaches zero as γ → 0.
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3.4 Numerical calibration

Section 3.3 derives the optimal portfolio rule for the continuous-time version of the discrete-

time model in Campbell and Viceira (1999). This portfolio rule is similar to the discrete

time portfolio rule in their model3. We can use the parameter values given in Table I to

calibrate the continuous-time portfolio rule (33), and compare the resulting mean allocations

to those reported in Table III of Campbell and Viceira (2000).4 Note that the linearity of

the optimal portfolio rule (32)-(33) implies that

E [αt] =

µ
1

γ

¶
θ − r

σ2S
+

µ
1− 1

γ

¶
σµ
σS

ρ (Bi + Ciθ) , i = 0, 1, (34)

where the first element of the sum is the mean myopic portfolio allocation, and the second

element is the mean intertemporal hedging portfolio allocation.

Table II has a structure identical to Table III in Campbell and Viceira (2000) to facilitate

comparison. Panel A in Table II shows mean optimal portfolio allocations implied by the

parameter values given in Table I. These allocations are similar, but not identical, to those

given in panel A of Table III in Campbell and Viceira (2000). This is a direct result of the

nonlinearity in the time-aggregation of the variances and covariances of innovations (σS, σµ,

ρ), and the persistence parameter κ.

Panel B in Table II shows the percentage that the mean intertemporal hedging portfolio

allocation µ
1− 1

γ

¶
σµ
σS

ρ (Bi + Ciθ)

represents over the total mean allocation (34). The numbers in this panel are very similar

to those reported in Table III of Campbell and Viceira (2000), and support one of the main

3To see this, compare equation (33) with the expressions in Proposition 1 of Campbell and Viceira (1999).
4Appendix B shows that B1 and C1 depend on the loglinearization parameter h1 = E[ct − wt], which

is endogenous. However, one can solve for h1 using the simple numerical recursive algorithm described in

Campbell and Viceira (1999).
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conclusions in Campbell and Viceira (1999): That given the historical experience in the US

stock market, intertemporal hedging motives greatly increase the average demand for stocks

by investors who are more risk averse than a logarithmic investor. For highly conservative

investors, hedging may represent 90% or even more of the total mean demand for stocks.

4 Conclusion

This paper presents a continuous-time version of the model of optimal intertemporal port-

folio choice and consumption with time-varying equity premium of Campbell and Viceira

(1999). It shows that this model has an exact analytical solution when the investor has

unit elasticity of intertemporal substitution in consumption and an approximate analytical

solution otherwise. For calibration purposes, we also derive the discrete-time representation

of the continuous-time VAR describing the asset return dynamics. This aggregation result

is useful to recover the parameters of the model from discrete-time estimates. Our equiva-

lence result shows that intuitive discrete-time representations of univariate continuous-time

processes do not translate immediately to multivariate processes which are cross-sectionally

correlated.

Our calibration results show that our portfolio choice model exhibits the same properties

as its discrete-time counterpart. In particular, given the historical experience in the US

stock market, intertemporal hedging motives greatly increase the average demand for stocks

by investors who are more risk averse than a logarithmic investor. For highly conservative

investors, hedging may represent 90% or even more of the total mean demand for stocks.
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6 Appendix A

We find exp(As) by use of an induction proof. We first prove by induction that the matrix

An is given by

An =

 0 (−κ)n−1

0 (−κ)n

 . (35)

To prove this result, assume that An is given by (35). Then An+1 is given by

An+1 = AnA

=

 0 (−κ)n−1

0 (−κ)n

 0 1

0 −κ


=

 0 (−κ)n

0 (−κ)n+1

 ,

which is the desired result.

The matrix exp (As) is given by I + As+ · · · +Ansn/n! + · · · . Equation (35) allows us
to write the exponential matrix as

exp (As) =

 1 0

0 1

+ 1

n!

∞X
n=1

 0 (−κ)n−1sn

0 (−κ)n sn


=

 1 1
n!

P∞
n=1 (−κ)n−1 sn

0 1
n!

P∞
n=0 (−κs)n


=

 1 1
n!

P∞
n=1 (−κ)n−1 sn

0 exp (−κs)

 .

Now, notice that

d

ds

Ã
1

n!

∞X
n=1

(−κ)n−1 sn
!
=
1

n!

∞X
n=0

(−κs)n = exp (−κs) ,
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so that

1

n!

∞X
n=1

(−κ)n−1 sn =

Z
exp (−κs) ds

=
−1
κ
exp (−κs) + C.

Since at s = 0 we have that
¡P∞

n=1 (−κ)n−1 sn
¢
/n! = 0, it follows that for the equation to

hold at s = 0 we must have that C = 1
κ
.

Therefore
1

n!

∞X
n=1

(−κ)n−1 sn = 1

κ
(1− exp (−κs)) , (36)

from which it follows that we can write the matrix exp (As) as

exp (As) =

 1 1
κ
(1− e−κs)

0 e−κs

 . (37)

7 Appendix B

7.1 Exact analytical solution when ψ = 1

Substitution of (28) and (29) into the Bellman equation (27) leads, after some simplification,

to the following equation:

0 = − 1

1− γ
β

½
A0 +B0µt +

C0
2
µ2t

¾
+ β log β + r − β

+
κ (θ − µt)

1− γ
(B0 + C0µt) +

σ2µ
2 (1− γ)

©
C0 + (B0 + C0µt)

2ª
+
1

2γ

(
(µt − r)2

σ2S
+ 2

ρσµ (µt − r)

σS
(B0 + C0µt) + ρ2σ2µ (B0 + C0µt)

2

)
.
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We can now obtain A0, B0 and C0 from the system of recursive equations that results from

collecting terms in µ2t , µt, and constant terms:

0 =
σ2µ
2

µ
1 +

1− γ

γ
ρ2
¶
C2
0 +

µ
−β
2
− κ+

1− γ

γ

ρσµ
σS

¶
C0 +

1

2γσ2S
, (38)

0 = κθC0 − 1− γ

γ

r

σ2S
− 1− γ

γ

ρrσµ
σS

C0 (39)

+

µ
−κ− β + σ2µ

µ
1 +

1− γ

γ
ρ2
¶
C0 +

1− γ

γ

ρσµ
σS

¶
B0,

0 = −βA0 + (1− γ) β log β + (1− γ) (r − β) +
r2

2γσ2S
+

σ2µ
2
C0 (40)

+
σ2µ
2

µ
1 +

1− γ

γ
ρ2
¶
B2
0 +

µ
−1− γ

γ

σµ
σS

ρr + κθ

¶
B.

We can solve this system by solving equation (38) and then using the result to solve (39)

and finally solve (40). Equation (38) is a quadratic equation whose only unknown is C0.

Thus it has two roots. Campbell and Viceira (1999) show that only one of them maximizes

expected utility. This root is the one associated with the negative root of the discriminant

of the equation. This is also the only root that ensures that C0 = 0 when γ = 1, that is, in

the log utility case. This is a necessary condition for intertemporal hedging demand to be

zero, as we know it must in the log utility case.

We can use these results to obtain the optimal portfolio policy of the investor from the

first order condition (26), and the optimal consumption policy from the first order condition

(25). The optimal portfolio policy is given in equatio (32) in text. It is easy to see that the

optimal consumption policy is Ct/Wt = β, a constant consumption-wealth ratio equal to the

rate of time preference.
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7.2 Approximate analytical solution when ψ 6= 1

Substitution of (28) and (30) into the Bellman equation (27) gives, after some simplification,

the following ordinary differential equation:

0 = −βψH−1 + βψ + r (1− ψ)− Hµ

H
κ (θ − µt) (41)

+
σ2µ
2

Ã
−Hµµ

H
+

µ
1 +

1− γ

1− ψ

¶µ
Hµ

H

¶2!

+
1− ψ

2γ

µ
µt − r

σS

¶2
− 1− γ

γ

Hµ

H
ρσµ

µ
µt − r

σS

¶
+
1

2

(1− γ)2

γ (1− ψ)

µ
Hµµ

H

¶2
ρ2σ2µ.

This ordinary differential equation does not have an exact analytical solution, unless ψ = 1.

Though there does not exist an exact analytical solution to (41), we can still find an

approximate analytical solution following the methods described in Campbell and Viceira

(2002).and Chacko and Viceira (1999). First, we note that substitution of the solution guess

(28)-(30) into the first order condition (25) gives

Ct

Wt
= βψH (µt)

−1 .

We can now use the following approximation for βψH−1 around the unconditional mean of

the log consumption-wealth ratio:

βψH (µt)
−1 = exp {ct − wt}
≈ h0 + h1 (ct − wt)

= h0 + h1 (ψ log β − ht) , (42)

where ct = logCt, wt = logWt, ht = logH (µt), and

h1 = exp {E [ct − wt]} , (43)

h0 = h1 (1− log h1) . (44)
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Substitution of the approximation (42) for the first term of (41) transforms this ordi-

nary differential equation into another one that has an exact solution, with the following

exponential-quadratric form:

H (µt) = exp

½
A1 +B1µt +

C1
2
µ2t

¾
.

The coefficients A1, B1, and C1, can be obtained by solving the approximated Bellman

equation

0 = −h0 − h1

½
ψ log β −

µ
A1 +B1µt +

C1
2
µ2t

¶¾
+ βψ + r (1− ψ)− κ (θ − µt) (B1 + C1µt)

+
σ2µ
2

·
−((B1 + C1µt)

2 + C1) +

µ
1− γ

1− ψ
+ 1

¶
(B1 + C1µt)

2

¸
+
1− ψ

2γ

µ
µt − r

σS

¶2
−1− γ

γ
(B1 + C1µt) ρσµ

µ
µt − r

σS

¶
+
1− γ

2γ

µ
1− γ

1− ψ

¶
(B1 + C1µt)

2 ρ2σ2µ,

which implies the following system of recursive equations:

0 =
σ2µ
2

1− γ

1− ψ

µ
1 +

1− γ

γ
ρ2
¶
C2
1 +

µ
h1
2
+ κ− 1− γ

γ

ρσµ
σS

¶
C1 +

1− ψ

2γσ2S
, (45)

0 = κθC1 +
1− ψ

γ

r

σ2S
− 1− γ

γ

ρrσµ
σS

C1 (46)

+

µ
κ+ h1 + σ2µ

1− γ

1− ψ

µ
1 +

1− γ

γ
ρ2
¶
C1 − 1− γ

γ

ρσµ
σS

¶
B1,

0 = h1A1 − h0 − h1ψ log β + βψ + r (1− ψ) +
1− ψ

2γ

r2

σ2S
− σ2µ
2
C1 (47)

+
σ2µ
2

1− γ

1− ψ

µ
1 +

1− γ

γ
ρ2
¶
B2
1 +

µ
1− γ

γ

σµ
σS

ρr − κθ

¶
B1.

We can solve this system by solving equation (45) and then using the result to solve (46)

and finally solve (47). Equation (45) is a quadratic equation whose only unknown is C.

Thus it has two roots. Campbell and Viceira (1999) show that only one of them maximizes

expected utility. This root is the one associated with the positive root of the discriminant of
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the equation. Note also that this equation implies that C/(1− ψ) does not depend on ψ–

except through the loglinearization parameter h1–which in turn implies, through equation

(46), that B/(1− ψ) does not depend on ψ either.
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TABLE I

Continuous-Time Parameter Values
Implied by Campbell-Viceira (2000) VAR Estimates

Model:

dBt/Bt = rdt,

dSt/St = µtdt+ σSdZ̃S,

dµt = κ(θ − µt)dt+ σµdZ̃µ,

dZ̃SdZ̃µ = ρdt

Parameter Values (at quarterly frequency):

r 0.0818e-2

κ 4.3875e-2

θ 1.3980e-2

σS 7.8959e-2

σµ 0.5738e-2

ρ -0.9626



TABLE II

Mean Optimal Percentage Allocation to Stocks and
Percentage Mean Hedging Demand Over Mean Total Demand

R.R.A. E.I.S.

(A) Mean optimal percentage allocation to stocks:
1/.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 180.31 198.02 209.80 214.47 220.42 223.53 224.49 224.97
1.00 211.12 211.12 211.12 211.12 211.12 211.12 211.12 211.12
1.50 239.07 223.64 211.64 206.76 200.57 197.39 196.40 195.92
2.00 248.85 227.85 210.53 203.36 194.22 189.52 188.07 187.36
4.00 241.99 220.24 200.14 191.27 179.59 173.46 171.56 170.63
10.0 183.24 173.55 163.80 159.06 152.29 148.46 147.23 146.62
20.0 125.04 123.63 122.17 121.42 120.29 119.61 119.38 119.27
40.0 75.57 77.74 80.00 81.17 82.98 84.12 84.51 84.71

(B) Fraction due to hedging demand (percentage):
1/.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 -56.12 -42.16 -34.17 -31.26 -27.71 -25.94 -25.39 -25.13
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 41.13 37.06 33.49 31.93 29.82 28.69 28.34 28.16
2.00 57.58 53.67 49.86 48.09 45.65 44.30 43.87 43.66
4.00 78.19 76.03 73.63 72.40 70.61 69.57 69.23 69.07
10.0 88.48 87.84 87.11 86.73 86.14 85.78 85.66 85.60
20.0 91.56 91.46 91.36 91.31 91.22 91.17 91.16 91.15
40.0 93.02 93.21 93.40 93.50 93.64 93.73 93.75 93.77




