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1. Introduction 

Industrial R&D is widely seen as a key driver of productivity and economic growth. In 2000, U.S. 

firms spent almost 180 billion dollars on industrial R&D, in large part because they expected to 

appropriate a substantial part of the return. Many believe that patent rights are essential to the 

protection of this return to innovation and are consequently a key inducement to R&D. This belief in 

the importance of patents and intellectual property protection has, over the past twenty years, 

underpinned a trend towards a strengthening of patent protection. In 1982, the Court of Appeals for 

the Federal Circuit was established to make patent protection more uniform and, indirectly, 

strengthen it. In the early 1980's we have also witnessed an expansion of what can be patented, 

when the courts decided that life forms and software were both patentable. Patent coverage has 

been recently extended to business methods as well. Partly stimulated by the shifting policy 

environment, patents have also become a growing preoccupation of management (cf. Grindley and 

Teece [1997]). Indeed, consultants are urging top management to exploit their patents more 

aggressively�to the point of characterizing the untapped knowledge capital of firms as �Rembrandts 

in the attic� (Rivette and Kline [2000]). Curiously enough, these changes in policy and managerial 

practice and perception have proceeded despite a limited understanding of the effect of patents--no 

less stronger patents--on R&D and, in turn, on technical advance.  

In this paper, we begin to address this gap in the literature by analyzing the effect of patenting on 

R&D in a two-step process. We first estimate what we call the patent premium, defined as the 

proportional increment to the value of innovations realized by patenting them. We then analyze the 

effect of changing the premium on R&D. To accomplish this, we develop a structural model linking a 

firm�s R&D effort with its decision to patent, recognizing that R&D and patenting affect one another 

and are both driven by many of the same factors. Our model accounts for the effect on R&D 

incentives of both the direct appropriability incentive due to patents, and the impact on R&D 

productivity of R&D-related information flows originating from other firms� patent disclosures. It also 

recognizes that stronger patents for a firm means that its rivals also enjoy stronger patent protection, 

to the firm�s possible detriment. 
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We estimate the model using unique data drawn from the 1994 Carnegie Mellon Survey on Industrial 

R&D in the United States. The Carnegie Mellon Survey data provide measures of not only R&D and 

patenting � which tend to be widely available � but also on firms� evaluations of the effectiveness 

of patents in protecting the returns to innovation, and a measure of the use of patents � namely the 

share of innovations that are patented. The availability of a measure for firms� patent propensities 

implies that we can explicitly model the determinants of innovation separately from the determinants 

of the decision to patent. In contrast, prior literature has either focused on either the production of 

innovations (sometimes measured by the number of patents) or the patent decision (more typically, 

the patent renewal decision).1 Thus, in an advance over the literature, we can empirically distinguish 

between how the patent premium affects patenting and R&D, respectively. 

Our analysis, however, only considers the impact of patenting on the R&D of incumbents. Thus, we 

do not consider the impact of patenting on entry and the innovation that may be associated with it. 

Indeed, in some industries such as drugs, patents may well promote entry by research intensive 

firms, while in others, such as semiconductors and telecommunications equipment, pervasive cross 

licensing of patent portfolios may well deter it (cf. Shapiro [2000]). Similarly, we do not consider the 

role that patents may play in enhancing industry R&D efficiency by fostering the emergence of 

specialized technology service or research firms, as observed, for example, in biotechnology, 

semiconductors, scientific instruments and chemicals (cf. Arora, Fosfuri and Gambardella [2001]).  

Though different in its objective, methods and data from our study, the empirical literature that 

estimates the value of patent rights using patent renewal data (e.g., Pakes [1986], Schankerman 

and Pakes [1986])�particularly Schankerman�s [1998] estimation of the value of the cash subsidy to 

R&D conferred by patent protection in France--provides a valuable touchstone for that part of our 

analysis in which we estimate the patent premium. Aside from our focus on the U.S. rather than 

                                            
1 Using data from a 1993 survey on the innovative activities of Europe's largest industrial firms, Arundel and Kabla 
[1998] find that firms� patent propensities (the percentage of innovations for which a firm applies for a patent) are 
positively related to firm size and to the degree of patent effectiveness. Using the same data for the French firms, 
Duguet and Kabla [1998], find that the information disclosed in a patent application lowers the firm�s propensity to 
patent and the number of patent applications, while a desire to acquire a stronger position in technology negotiations 
and the avoidance of infringement suits are associated with a higher number of patent applications. However, these 
studies do not address the question of the relationship between patenting and R&D behavior. 
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Europe, our work differs from this earlier effort in that we develop and test a model that ties together 

the R&D and patenting decisions. We share with Schankerman, however, the goal of estimating a 

patent premium-cum-subsidy. Our respective datasets, samples and variables differ, however, in 

important ways that lead us to expect different estimates.2 We are able, however, to reconcile our 

results with those of Schankerman�s [1998], which is heartening given the differences in data and 

approach.  

The paper is organized as follows. Following a background section, in section 2 we present a model 

of R&D and patenting behavior. Section 3 presents the empirical specification of the model to be 

estimated. Section 4 describes the data and measures used for estimation, whereas section 5 

discusses a variety of estimation issues. Section 6 contains estimation results and their discussion. 

A conclusion follows in section 7. 

Background 

There are theoretical as well as empirical reasons to question whether patent rights advance 

innovation in a substantial way in most industries. The rationale for patent protection is to augment 

the incentives to invent by conferring the right to exclude others from making, using or selling the 

innovation in exchange for the disclosure of the details of the patented innovation. Although the 

prospect of monopoly rents should induce inventive effort, the costs of disclosure can more than 

offset the prospective gains from patenting (cf. Horstmann et al. [1985]). In theory, the effect of 

�stronger� patents on firms� incentives to invest in innovation are less clear once one recognizes that 

�stronger� patents mean that not only any given firm�s patents but also those of its rivals are 

stronger. For example, policies that broaden the scope of patents do not unambiguously increase 

the expected rents due to inventive activity when a rival working in the same technological domain 

may, as a consequence, be able to limit a firm�s ability to commercialize its innovations (cf. Jaffe 

                                            
2 For example, while offering many advantages, Schankerman�s use of patent renewal data mean that his estimates 
are conditioned upon firms having already patented, and therefore cannot consider costs that would tend to affect the 
initial decision to patent but not renewal, such as those associated with patent disclosures. In contrast, our sample 
permits a consideration of the initial decision to patent. Also, we allow a firm to file multiple patents for an innovation 
(i.e., a new or improved product or process) as distinct from the common assumption of one patent per invention. 
This distinction turns out to be important for interpreting our results and reconciling ours with his. 
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[2000], Gallini [2002]). Merges and Nelson [1990] and Scotchmer [1991] further argue that broad 

patent protection may slow the rate of technical change by impeding subsequent innovations where 

technologies develop cumulatively.  

Empirical work also suggests that the inducement provided by patents for innovation is small. The 

empirical studies of Scherer et al [1959], Taylor and Silberston [1973], and Mansfield [1986] suggest 

that patent protection may not be an essential stimulus for the generation of innovation in most 

industries. Levin et al. [1987] and, more recently, Cohen et al. [2000] suggest that in most industries 

patents are less featured than other means of protecting innovations, such as first mover 

advantages or secrecy.  

Other concerns have been raised. Lerner [1995] suggests that patent litigation is especially 

burdensome for small firms and startups with less access to finance, conceivably undermining their 

contributions to technical advance. Heller and Eisenberg [1998] have claimed that in the domain of 

genetics, patentability has been extended to such fine-grained notions of invention that the patents�

and patent owners--covering any new product innovation may now be so numerous that the 

negotiations necessary to commercialization may well break down. Indeed, Cohen et al. [2000] 

suggest that in industries such as electronics there can be hundreds of patentable elements in one 

product, with the consequence that no one firm is likely to hold all the rights necessary for a 

product�s commercialization. As argued by Cohen et al. [2000] for �complex product� industries 

generally and Hall and Ziedonis [2001] for the semiconductor industry in particular, such mutual 

dependence commonly spawns extensive cross-licensing. Although the kind of breakdown 

suggested by Heller and Eisenberg does not occur in these industries, the prospect of extensive 

cross-licensing, and the associated use of patents as bargaining chips may stimulate patent portfolio 

races among industry incumbents that can act as a barrier to entry to firms that possess relatively 

few patents. 

We should not, therefore, assume that patent rights necessarily induce innovation. Nor, however, 

should we assume the contrary. First, that patents are less featured than other means of protecting 

innovations in the majority of industries does not imply that they yield little return in those industries; 
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their effect on R&D incentives may be considerable. Levin et al. [1987], Mansfield [1986], and Cohen 

et al. [2000] also observe that in selected U.S. manufacturing industries, such as drugs or medical 

equipment, patents are indeed critical to the protection of innovations. Moreover, in contrast to the 

findings for the U.S., Japanese firms report patents to be among the most important means of 

protecting their innovations (Cohen et al. [2002]).  

2. A firm level model of R&D and patenting 

We focus on a typical product innovation that is the output of an R&D project. We also assume that 

such a product innovation may have multiple patentable elements. Figure 1 provides a schematic 

representation of our model of the decision to patent, to invest in R&D, and the structure of payoffs.  

If a firm applies for patent protection it earns xijvi - c, where the subscript i indexes firms (i=1,�,n), 

and j indexes innovations (j=1,�,m). The patent premium is defined as the incremental payoff due to 

patent protection as compared to the value of an innovation without patent protection, vi.3 A patent 

premium less than one would actually reflect an expected loss, possibly because information 

disclosure costs may be large relative to benefits. We assume that the patent premium, xij, has a 

component, εij, that varies across innovations within a firm, and is normally distributed with variance 

σ2, and a fixed, firm specific component, µi. The patent premium, xij=εij+µi, is thus normally 

distributed with mean µi and variance σ2 (cf. Figure 2a).  

The patent premium will likely vary across innovations within a firm. For example, some patents are 

easier to invent around than others. Moreover, the premium may vary depending on how a firm 

intends to use a given patent, including, for example, as a basis for licensing or perhaps as a 

bargaining chip in a cross-licensing negotiation. Our specification also assumes, implicitly, that 

differences in the expected probability that patent protection will be obtained are incorporated in the 

patent premium itself. 

                                            
3 For example, xij=1.2 means that the value from patenting an innovation is 20% higher than the value without a 
patent, gross of the cost of applying for patent protection. 
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We do not allow for unobserved heterogeneity in the value of an innovation without patent protection 

across firms, nor across innovations within a firm.4 Also, we assume c to be constant across firms 

and across innovations. The reasons and the implications are discussed in section 5.4 below.  

In light of data limitations and for analytic tractability, we also do not model strategic interactions 

between rivals, and their possible impact on the patent premium and the value of an innovation 

without patent protection. However, the model incorporates the indirect competitive effects of rivals� 

patenting. To the extent that patents held by others reduce the returns from patenting a particular 

innovation, the own patent premium, xij, should be lower. Our empirical specification also controls for 

the effect of rivals� patents by including a measure of  rivals� patent effectiveness among the 

determinants of the value of an innovation when not patented. 

2.1. The decision to patent 

Let y be a binary variable taking the value of 1 if, given an innovation, a firm applies for patent 

protection and zero otherwise. We assume that the firm observes xij , the patent premium specific to 

the innovation. Given an innovation, y = 1 if the expected net benefit from patenting is greater than 

the expected net benefit without patenting, i.e: 

(1) iiiij vcv y if only and if >−+= )(1 µε , 
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1 . With data grouped at the firm level, the percentage of innovations for which a firm 

applies for patent protection, πi (i.e., its patent propensity), equals: 

(3) ( ) ipii Z ηπ +Φ=  

with ηip representing sampling error. Note that we allow firms to file for more than one patent per 

innovation. Thus, patent propensity is understood as the probability of applying for at least one 

patent conditional on an innovation. 

                                            
4 We can allow for both kinds of heterogeneity in vi in a restricted version of our model, as discussed in Section 5.4. 
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Though we assume that the premium is normally distributed, the observed distribution of patent 

premia, xij
*, is truncated normal and positively skewed, as shown in Fig. 2b, where 1+c/vi is the cut-

off value for applying for patent protection, and µ*
i is the mean of the conditional distribution. Thus, 

our specification is consistent with the finding reported in the literature that the distribution of patent 

values is positively skewed (e.g., Scherer and Harhoff [2000]). Figures 2a and 2b also illustrate the 

point that even when the average patent premium µi is less than unity, a firm may still patent a 

fraction of its innovations. Put differently, even if patent protection is not profitable for most of a firm�s 

innovations, this does not imply that patent protection is not valuable to the firm. Rather, a firm would 

tend to apply for patent protection for a minority of its innovations, as described in equation (2). 

2.2. The production of innovations 

The innovation production function is specified as: 

(4) imimi
i

ηηsβ
i edrm �++=  

where mi is the number of innovations, ri is the R&D expenditure, d is a constant scale parameter, 

and si are the factors affecting the average productivity of R&D, such as information flows from other 

firms, universities and government research labs, and β is the elasticity of the number of innovations 

with respect to R&D. We also assume that other unobserved firm-specific factors affect the 

productivity of R&D. In particular, imη and imη�  are i.i.d. normal errors, with zero mean and variance 

2
mησ and 2

�mησ , respectively. The former is observed by the firm but not the econometrician, whereas 

the latter is unobserved by both the firm and the econometrician and represents the stochastic 

component affecting the R&D process. 

2.3. The optimal level of R&D 

The firm maximizes the expected profit from its innovative activity, that is the expected payoff per 

innovation, hi, multiplied by the expected number of innovations, E(mi), net of the cost of R&D, 

measured as the dollars spent on R&D, ri. Thus, the firm�s objective is: 

(5) Max [hi E(mi) - ri], 
ri 
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with imi
i
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a function of the value of the innovation and the payoff from patenting, weighted by the probabilities 

of applying for a patent and not applying, where the decision to patent is made optimally after 

observing the patent premium, xij: 
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With further simplification and substitutions we obtain: 
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The equilibrium level of R&D for firm i is found by solving (5): 

(9) [ ] βηωβ −++= 1
1

imis
ii edhr  

The first and the second order conditions imply 0<β<1, implying diminishing returns to R&D.5 

3. Unobserved variables and empirical specification  

We model the innovation-specific random component of the patent premium, εij, as a latent variable 

observed by the firm at the time of patenting, but not the econometrician. We observe the patent 

propensity, the total number of patent applications and the R&D investments of the firm. We do not 

observe the other firm and innovation specific variables: cost of patenting, value of an innovation, the 

productivity of R&D, the firm specific average patent premium, and the number of innovations. We 

do have R&D lab, firm and industry specific cross-section data. Accordingly, we specify the 

estimating equations as follows. 
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3.1. Number of innovations 

We first transform the innovation equation into an estimable relationship. We thus multiply both sides 

of the innovation production function (4) by the firm patent propensity, iπ , and obtain an equation 

explaining the number of patent applications, ai: 

(10) 
imηimηisedrkπa β

iiii

�++

=  

with ki≥1 being the number of patent applications per innovation. We have measures of both patent 

propensity and the number of patent applications for all firms in our sample, including those who did 

not apply for patent protection, for whom both ai and iπ  are simply zero. We do not observe the 

average number of patent applications per innovation, ki, and thus set ki=Kκ, where K represents 

industry dummies and κ is a vector of unknown parameters to be estimated. Thus, ki varies only 

across industries. 

3.2. The patent premium 

We do not observe µi, the firm-specific component of the patent premium. We thus treat it as a firm-

specific constant to be estimated. To do so, we use a self-reported measure of the percentage of a 

firm�s innovations for which patent protection was rated effective. This measure groups all firms into 

one of five patent effectiveness classes. In the empirical analysis, discussed in section 4 below, we 

assume that firms in a given patent effectiveness class have the same average patent premium, µi. 

We also allow for possible measurement error and the possibility that our measure of patent 

effectiveness is correlated with other unobserved factors affecting R&D productivity and estimate a 

specification where we instrument for patent effectiveness. 

3.3. The value of an innovation, and the cost of applying for a patent 

We do not observe the value of the innovation if not patented, vi, nor the cost of applying for patent 

protection c. Accordingly we set vi=Vα, where V represents vectors of firm and industry 

characteristics and α a vector of unknown parameters to be estimated. We also set the cost of 

                                                                                                                                             
5The f.o.c. for (5) is 011 =−

++− imis
eidhir
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protection c=δ, a constant to be estimated. We assume c includes the patent application fees, legal 

fees for drafting and prosecuting patent applications and the opportunity cost of the time of the R&D 

engineers and scientists who help draft the patent application. Moreover, as noted above, the firm 

may apply for more than one patent per innovation. 

3.4. Other factors affecting R&D productivity 

R&D productivity is assumed to be a function of firm and industry specific factors such as the 

underlying scientific and technological knowledge base and information flows from other firms and 

universities (see Jaffe [1986] and Cohen [1995], among others). More formally, we set: 

(11) si = λ1Si1+ λ2Si2 + λ3Si3 , 

where the λ �s are parameters to be estimated and S i1, S2i, and S3i are firm specific variables: 

S i1 : vector of organizational characteristics conditioning the firm�s R&D productivity; 

S i2: measure of information flows from other firms (rivals, suppliers, customers, other); 

S i3: measure of information flows from universities and government research labs. 

We also allow for unobserved firm-specific capabilities to affect both the production of innovations 

and the knowledge spillovers benefiting the R&D lab. More specifically, the scientific and technical 

capabilities of the lab�s researchers, which are observed by the firm but not the econometrician and 

captured by ηim in (4), are likely to be correlated with the amount of incoming information flows from 

firms and universities, Si2 and Si3. In the subsequent model estimation we instrument for both types 

of flows. Moreover, since patents disclose information and thus contribute to the stock of potentially 

useful technological knowledge, we include a measure of information flows due to patent disclosures 

to instrument for spillovers.  

3.5. The system of equations to be estimated 

Taking logs of the R&D and patent equations, (9) and (10) respectively, and using the patent 

propensity equation (3), we obtain an estimable system of non-linear simultaneous equations6: 

                                            
6 We include the non-patentees because they contribute to estimation of  the patent propensity and the R&D 
equation, but not the second equation in (12). Indeed, for non-patentees both sides of equation (10) are null. 
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iria ξξ , represent measurement error in the product patent application and product R&D measures 

respectively and ηip represents sampling error.   

The relationships between the endogenous and exogenous variables are summarized in Figure 3, 

which shows how the decision to patent and to invest in R&D are jointly determined. Estimation of 

the three equations as a system allows the estimation of key parameters, such as σ, as well as the 

separate identification of the parameters associated with the cost of patent protection and the value 

of an innovation.7 Since thes equations have a number of common parameters, estimating them 

together also provides greater efficiency in estimation.  

4. Data and measures 

We use data from the Carnegie Mellon survey (CMS) on industrial R&D (Cohen, W., Nelson, R., and 

J. Walsh [2000]).8 The population sampled is that of all R&D labs located in the U.S. conducting 

R&D in manufacturing industries as a part of a manufacturing firm. The sample was randomly drawn 

from the eligible labs listed in the Directory of American Research and Technology (Bowker [1995]) 

or belonging to firms listed in Standard and Poor's Compustat, stratified by 3-digit SIC industry. Valid 

responses were received from 1,478 R&D units, with a response rate of 54%.9 The respondents 

were R&D lab managers who were asked to answer questions with reference to the "focus industry" 

                                            
7 We discuss system versus single equation estimation in the next section.  
8 The survey was administered in 1994 by sending questionnaires by mail and conducting follow-ups by telephone. 
See Cohen, Nelson, and Walsh [2000]. 
9The raw response rate was 46%. A non-respondent survey found, however, that 28% of the non-respondents in the 
U.S. were not in the target population (for example, they did no manufacturing). After correcting the sample size 
accordingly for ineligible cases, the U.S. response rate was adjusted upward to 54%.  
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of their R&D unit, where focus industry was defined as the principal industry for which the unit was 

conducting its R&D. The data refer to the 1991-�93 period.  

In our theory above, we have taken the �firm� as our unit of analysis and shall continue to do so to 

simplify exposition. However, the empirical unit of analysis is the business unit within a parent firm, 

operating in the �focus industry� of the responding R&D lab. In the empirical analysis, we explicitly 

distinguish between business unit and firm level measures. Indeed, as discussed below, we exploit 

the different industry sectors to which the business unit and the parent firm belong to develop 

instruments for reported patent effectiveness. 

For the analysis we restricted the sample to firms with business units with 10 or more employees. 

After dropping observations with missing data for the variables of interest, we obtain a sample of 737 

R&D units.10 This sample includes firms ranging from fewer than 10 to over 700,000 employees, with 

annual sales ranging from more than $100,000 to over $130 billion. The median firm has 3,000 

employees and annual sales of over $500 million. The average firm has 21,841 employees and 

sales of $4.3 billion. The average firm R&D intensity (R&D dollars divided by total sales) is 5.2%. 

The business units range from 10 employees to 448,000, with annual sales from zero to about $90 

billion. The median business unit has 550 employees and $100 million in sales. The average 

business unit has 6,168 employees and sales of about $1 billion. Table 1 provides summary 

statistics for the variables used for estimation. 

4.1. Measures of the endogenous variables 

PRODUCT R&D: Recall that we estimate the model for the case of product innovations. To compute 

the product R&D expenditures we multiply company-financed R&D unit expenditures in dollars in the 

most recent fiscal year by the percentage of the R&D unit�s effort devoted to new or improved 

products. The sample average product R&D expenditure for a business unit is about $8 million.  

                                            
10 The sample of 737 observations also reflects the exclusion of 6 R&D units reporting more than 20 patent 
applications per million dollars of R&D, (the 99th percentile value of the distribution). 
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PRODUCT PATENT PROPENSITY: R&D managers were asked to state the percentage of R&D 

unit�s product innovations in the 1991-�93 period for which they applied for patent protection. Patent 

propensities in the sample range from zero to 100%, with a simple, unweighted mean of 32%.  

PRODUCT PATENT APPLICATIONS: R&D managers were also asked to state the total number of 

patent applications generated by the R&D lab during 1991-�93. To calculate the annual number of 

product patent applications we first multiply the total number of patent applications by an adjustment 

factor based on survey reported measures of the percentage of R&D unit effort devoted to product 

innovations and the reported product and process patent propensities, as described in the appendix. 

The resulting number is then divided by three, yielding the annual number of product patent 

applications, whose sample average is 6.4, with actual values ranging from zero to 283.  

4.2. The patent premium 

EFFECTIVENESS OF PATENT PROTECTION: Respondents were asked to indicate the 

percentage of their product innovations for which patent protection had been effective in protecting 

their firm's competitive advantage from those innovations during the prior three years. There were 

five mutually exclusive response categories. We further assume that all respondents reporting the 

same level of patent effectiveness have a common (unknown and to be estimated) value of µi. In 

particular, we can set: 

(13) 
σ

µ 1−i  = τ1Ti1+ τ2Ti2 + τ3Ti3  + τ4Ti4 + τ5Ti5 

with the τ's  being five coefficients to be estimated, and the T�s dummy variables defined as:  

Ti1 =1 if patent protection was rated effective for 0-10% of the firm�s product innovations,  
  = 0 otherwise; 

Ti2 =1 if patent protection was rated effective for 11-40% of the firm�s product innovations,  
  = 0 otherwise; 

Ti3 =1 if patent protection was rated effective for 41-60% of the firm�s product innovations,  
  = 0 otherwise; 

Ti4 =1 if patent protection was rated effective for 61-90% of the firm�s product innovations,  
  = 0 otherwise; 

Ti5 =1 if patent protection was rated effective for over 90% of the firm�s product innovations,  
  = 0 otherwise. 
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Thus each coefficient reflects one of five discrete levels of the average patent premium: 

 (14) .          1;1;1;1;1 5544332211 +=+=+=+=+= στµστµστµστµστµ   

Note the importance of σ  (the standard deviation of the distribution of the patent premium within 

firms) for the estimate of the patent premium. We initially assume σ to be uniform across firms and 

industries but later relax this assumption by allowing for inter-industry differences in σ. 

Since our analysis hinges upon our measurement of patent effectiveness, it is worth considering the 

interpretation and limitations of our survey-based measure. Since our setup assumes that the patent 

premium reflects all the ways in which a firm profits from its patents, there is some concern about 

whether the reported effectiveness scores accurately reflect this. As Cohen et al. [2000] find, firms 

patent for reasons that often extend beyond directly profiting from a patented innovation through its 

commercialization or licensing. In addition to the prevention of copying, firms also patent to prevent 

rivals from patenting related innovations (i.e., �patent blocking�), use patents in negotiations, and to 

prevent suits. Here, the issue is whether the respondents� scoring of patent effectiveness misses 

some of the latter, conventionally less appreciated, motives for patenting. 

In a corollary exercise, we estimated an ordered probit model to analyze the relationship between 

firms' reasons to patent and the respondents' patent effectiveness scores. We found that the 

magnitude of the coefficient for conventional motives for patenting such as licensing are comparable 

to those for less conventional reasons, such as using patents to induce rivals to participate in cross-

licensing negotiations or for building patent fences (i.e., patenting substitutes) around some core 

innovation. However, one reason for patenting that had no significant effect on respondents patent 

effectiveness scores was the motive of the prevention of infringement suits�that is, defensive 

patenting. Thus, we suggest that with the possible exception of defensive patenting, our 

effectiveness measure appears to reflect the broad range of uses of patents observed across the 

manufacturing sector. It is still plausible that measurement error, in the form of misclassification 

across the response scale categories, exists. The impact on our results of such measurement error 

should be, however, mitigated when, as discussed below, we instrument for patent effectiveness. 
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4.3. Value of an innovation 

BUSINESS UNIT AND FIRM SIZE: Business unit size, measured by the natural logarithm of the 

number of business unit employees, and overall firm size, measured by the natural logarithm of the 

total employees of the lab�s parent firm, are both included as determinants of vi.11 Firms may profit 

from an innovation by incorporating it in its own output, so that the payoff is increasing in business 

unit output (Cohen and Klepper [1996]). We also include overall firm size since large overall size, 

especially where it reflects greater diversification, may increase the expected value of an innovation 

by providing economies of scope (cf. Cohen [1995] for a review of the R&D-size relationship, and 

Cockburn and Henderson, [2001], showing that scope increases the success probability of drug 

development R&D).  

TOTAL NUMBER OF RIVALS AND TECHNOLOGICAL RIVALS: The effect of competition on the 

expected returns to inventive activity is not clear a priori (e.g., Needham [1975]). On the one hand, 

rivals capable of both generating innovations and capturing some of the benefits of incumbents� 

R&D, what we refer to as technological rivals, are expected to diminish the value of a firm�s 

innovation through imitation or introduction of a substitute product, once the potential positive effect 

of entry on R&D productivity via incoming R&D spillovers is held constant. Competitive pressure 

from the rest of the rivals, on the other hand, has ambiguous effects on R&D incentives. Although 

average returns to R&D fall with the increase in the number of such rivals, marginal returns to R&D 

may increase (Boone [2000], Ceccagnoli [2001]), implying that increases in the number of 

competitors may be associated with increases in R&D. 

The CMU survey provide measures for both the total number of rivals and technological rivals, as 

categorical variables in the following ranges: 0,1-2, 3-5, 6-10, 11-20, or >20 competitors.12 These 

responses were recoded to category midpoints. These variables vary across respondents within 

                                            
11 Business unit employees is reported by R&D managers from the CMU survey, whereas total firm employees were 
obtained from sources such as Compustat, Dun and Bradstreet, Moody�s, and Ward�s. 
12 Technological rivals are defined in the CMS questionnaire as the number of U.S. competitors capable of 
introducing competing innovations in time that can effectively diminish the respondent�s profits from an innovation, 
with reference to the lab�s focus industry.  
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industries because they represent each respondent�s assessment of his or her focus industry 

conditions, often reflecting a particular niche or market segment. 

RIVALS� PATENT EFFECTIVENESS: The effectiveness of rivals� patents can have a variety of 

effects on the value of R&D investments. The most obvious one is that by diminishing the 

"technology space" in which a firm can work without infringing rivals� patents, increases in the patent 

effectiveness of a rival�s patents should reduce the expected value of the firm�s innovations. In terms 

of our model, this would decrease R&D investments.  

However, our model is in some sense the �reduced form� version of an equilibrium of more complex 

market interactions in which increases in rival patent effectiveness may spawn offsetting incentive 

effects. For example, if one considers the strategic interactions characteristic of patent races, an 

increase in the effectiveness of rivals� patents may actually increase the marginal payoff to own R&D 

by increasing rival R&D (cf. Reinganum [1989]). In the end, we can only hope to estimate a �net� 

effect and have no clear prior on the qualitative impact of rival patent effectiveness. Nonetheless, we 

clearly need to control for such an effect and accordingly, we include, among the determinants of vi, 

the % of firms in an industry - excluding the respondent - in each of the five patent effectiveness 

classes, thus allowing this measure to vary across respondents in an industry.13  

GLOBAL, FOREIGN, PUBLIC: We include binary variables indicating whether the firm owning the 

lab is GLOBAL (sells products in Japan or Europe), is FOREIGN (the respondent R&D lab is located 

in the U.S. but the parent firm is located abroad), or it is PUBLIC (publicly traded companies), as 

controls, to reflect possible differences in market opportunities and cost of capital.  

INDUSTRY FIXED EFFECTS: We include 19 industry dummy variables to control for industry-level 

effects of demand and technological opportunity in vi, constructed using the SIC code assigned to 

the focus industry of each respondent, where focus industry was defined as the principal industry for 

which the unit was conducting its R&D. The dummies are based on industry groupings described in 

table A1 in the appendix. 
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4.4. Factors affecting R&D productivity 

INFORMATION FLOWS FROM OTHER FIRMS: We do not directly measure information flows from 

rivals, and other firms such as suppliers and customers. However, the CMS contains several 

variables reflecting two key dimensions of the spillover mechanism: a) the frequency with which a 

respondent R&D lab obtains useful technical information from, respectively, rivals, customers and 

suppliers in the U.S.; b) the contribution of information flows from rivals, customers, and suppliers to 

suggesting or completing R&D projects. We employed factor analysis to develop a single factor-

based measure of information flows from other firms. The Appendix provides the details.  

In an earlier version of this paper, we treated information flows from other firms as the dependent 

variable in an additional fourth equation in our system to highlight a possible positive impact on own 

R&D productivity of the disclosures associated with patents. However, we found that patent 

disclosures appeared to have no measurable impact on information flows from other firms, and 

therefore no measurable effect on R&D productivity. It is unclear whether patent disclosures truly 

have little effect on the information flows from others that affect firms� R&D productivity, or whether 

the lack of an observable effect reflects that our measures are too imprecise to discern it. We do not 

specify a fourth equation but we do continue to treat information flows from other firms as potentially 

correlated with the error terms in both the patent application and R&D equations.  

INFORMATION FLOWS FROM UNIVERSITIES: We lack a direct measure here as well. The CMS 

provides measures which reflect two key dimensions of this variable: a) the frequency with which the 

R&D lab obtains useful technical information from universities or government research labs in the 

U.S.; b) the contribution of information flows from universities or government research labs to 

suggesting or completing R&D projects. We construct a single factor-based measure of flows from 

universities, as described in the Appendix. We also instrument for this variable, as explained below.  

INFORMATION TECHNOLOGY IN ORGANIZATION: We include a measure of one feature of the 

way in which the R&D process is managed within the firm, namely a dummy variable indicating 

                                                                                                                                             
13 Using alternative measures, such as the average patent effectiveness (computed using categorical range 
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whether computer network facilities are used within the firm to facilitate the interaction between R&D 

and other functions. This variable is intended to reflect progressive managerial practices more 

generally and should increase si and, in turn, R&D productivity.14 

5. Estimation 
We estimate our non-linear system of equations (12) with the method of nonlinear three stage least 

squares (NL3SLS ) using the sample of 737 observations, imposing the cross-equation restrictions15. 

5.1 Inter-industry versus intra-industry sources of variation  
We allow vi, the value of an innovation, to have an industry-specific fixed effect. Similarly, the patent 

application equation allows for the average number of patents per innovation to vary across 

industries. Given the inclusion of these industry fixed effects in these two equations of our structural 

model, each of our estimating equations has at least one complete set of industry dummies. One 

may nonetheless wonder whether our results are driven primarily by inter-industry variation in key 

variables. Cross-industry variation is indeed important, but as table 2 shows, there is very significant 

intra-industry variation in our key variables as well. Indeed, for patent applications, R&D, patent 

propensity and patent effectiveness, cross-industry variation represents less than 20% of the total 

variation.16 Thus, our results do not primarily reflect inter-industry differences in these key variables. 

5.2 Sources of variation in patent effectiveness 

Another concern for estimation is that sources of variation in patent effectiveness across 

respondents within an industry may be correlated with unobserved variations in R&D productivity 

and spillovers. It is plausible, for example, that managers who manage their patent holdings in a 

                                                                                                                                             
midpoints) at the industry level (excluding the respondent) does not make a difference to the results. 
14 We experimented with measures of other characteristics of the R&D organization within firms, namely whether the 
firm rotated their R&D personnel through other functional areas in the firm, such as marketing, and whether the firm 
used project-teams with cross-functional participation. 
15 NL3SLS is a moments type estimator, where instrumental variables are used to form the moment equations 
(Gallant [1987], p. 427-444). We used the exogenous variables included in the equations, additional instruments to be 
explained below, and the squares and cross-products of the continuous exogenous variables as instruments. 
16 We also estimated the system of equation (12) within the drugs and chemicals industries (SIC 28), including 
biotechnology companies, and the computer and electronics industries (SIC 36 � electronics and electrical 
equipment, plus SIC 357 � computers, and selected firms belonging to 4-digit electronic instruments), thus allowing 
all the parameters to vary across these two samples. The privately financed product R&D performed by these two 
industry clusters amount to more than 60% of the total in our sample, although the smaller number of observations 
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more sophisticated way also manage their R&D expenditures more effectively, for example by 

providing strong incentives to generate patentable innovations. Similarly, technical areas where 

patent protection is more effective may also have more productive R&D because of their greater 

proximity to science (Arora and Gambardella, 1994). Arguably, this may also increase spillovers 

from universities and firms. 

There is a related concern. Levin et al. [1987] and Cohen et al. [2000] point out that firms use 

appropriability mechanisms, such as lead time and secrecy, in addition to patents. These other 

mechanisms may be substitutes or complements for patenting.17 Thus systematic differences across 

firms in the effectiveness of alternative appropriability mechanisms may also be a source of variation 

in reported patented effectiveness. Insofar as these alternative mechanisms also condition vi, the 

average value of an innovation, this may bias our estimate of the patent premium. Although we have 

reported effectiveness scores for each of these alternative mechanisms, we do not have any 

measure of their actual use--in contrast to patents, where we do observe use in the form of the 

propensity to patent and numbers of patent applications. In a corollary analysis, we estimated a 

model in which the effectiveness of other appropriation strategies, such as the use of secrecy or 

lead-time advantage, were included among the determinants of v. There was no qualitative change 

in the results, suggesting that, insofar as the use of such alternative strategies is correlated with their 

reported effectiveness, any bias due to the omission of other strategies, is likely to be small.18 

We also directly address the possibility that our patent effectiveness measure may be correlated with 

the errors in the R&D and patent equations by instrumenting for patent effectiveness. To do so, we 

exploit differences in the focus industry of the R&D lab (i.e., the industry sector of the business unit) 

and the primary industry of which the parent firm. We posit that factors that condition patent 

                                                                                                                                             
per sample (156 and 184 respectively) often results in large standard errors. In general, the estimates are similar to 
those reported here and consistent with the idea that our results are not driven by inter-industry differences. 
17 An implication of this observation is that our estimate of the patent premium reflects the incremental payoff to 
patenting when the firm optimally adjusts its use of other mechanisms. This is similar to estimating the long run 
impact of a change in a given factor price on the profit function. This impact assumes that the firm optimally changes 
not only the use of the factor whose price has changed, but also of the other factors inputs. Effectiveness measures 
can, in this instance, be analogized to factor prices. 
18 Consistent with this result, Cohen et al. [2000] find no significant correlation between the effectiveness of patents 
and that of any of the other appropriabilty mechanisms, such as secrecy or use of lead time advantage. 
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effectiveness and patenting behavior in the primary industry of the parent firm will reflect the firm�s 

broad approach to intellectual property management, and thereby affect the perceived effectiveness 

of patents in all the product markets in which the firm participates. We have in mind notions such as 

how carefully scientists and researchers document their work; how skillfully the in-house lawyers 

manage patent prosecution; and how effectively researchers and in-house lawyers communicate. 

Simply put, our instrumentation strategy is based on the premise that a business unit whose parent 

firm operates, for example, in the pharmaceutical industry, where sophisticated management of 

intellectual property and a belief in its value is the norm, will perceive a higher effectiveness of 

patents than an otherwise identical business unit whose parent firm is in textiles. 

Although we do not have information about the management of intellectual property for the parent 

firm of each R&D lab, roughly half of the responding business units belonged to an SIC different 

from that of the primary SIC of the parent firm. We thus use industry averages of the patent 

effectiveness and other survey-based dummy variables on the reasons to patent (and not to patent) 

for the primary industry of the parent firm as instruments for each respondent patent premium 

dummy class.19 We report estimates from the two specifications�one where we do not instrument 

for the patent effectiveness variable and another where we do instrument. Both are qualitatively 

similar. However, arguably, the endogenous patent effectiveness specification is theoretically more 

defensible and we shall focus on those estimates. 

5. 3 Endogeneity of the spillover measures 

As noted, we instrument for information flows from other firms and universities. For information flows 

from other firms, we use two instruments. The first measures the technology overlap with rivals� R&D 

                                            
19 We use as instruments for the 5 patent effectiveness dummies, % of respondents in the industry (of the parent firm) 
that have a positive value for the following ten indicator variables, available from the CMU survey: 1) the five patent 
effectiveness indicator variables (five instruments); 2) whether the amount of information disclosed in a patent 
application was a reason not to patent for a firm; 3) whether the ease of legally inventing around was a reason not to 
patent; 4) whether the prevention of other firm's attempts to patent a related innovation ("patent blocking") was a 
reason to patent; 5) whether the earning of licensing revenue was a reason to patent; 6) whether the prevention of 
suits was a reason to patent. The R-squares from the first stage regression of the five patent effectiveness dummies 
on the instruments are 0.26, 0.17, 0.14, 0.21,and 0.26 respectively. We also experimented with using predicted 
patent effectiveness from an ordered probit regression of patent effectiveness on the above and other exogenous 
variables as instruments for the actual patent effectiveness scores, with very similar results.  
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projects, which should increase information flows from other firms.20 As an additional instrument we 

construct a survey-based measure of the exogenous stock of patent-related knowledge relevant to 

the lab, which reflects information flows due to patent disclosures.21 To instrument for the university-

related information flows, we used the total R&D spending of doctoral granting institutions by state 

and field of science and engineering22, assigned to each respondent according to the state in which 

it is located and its reported rating of the importance of science and engineering field.23 

5.4 Unobserved heterogeneity in the value of innovations across and within firms 

Note that though we allow for unobserved firm heterogeneity in R&D productivity (and through that, 

in the patent application equation), we do not permit unobserved heterogeneity across firms in vi. 

Allowing for firm specific unobserved heterogeneity in vi would require us to move to maximum 

likelihood type estimation method because it would imply additively non-separable error terms, thus 

ruling out instrument variable based estimators. Maximum likelihood is an unattractive option 

because the nonlinearities present in our model, simple as it is, in practice pose convergence 

problems even for non-linear least squares estimation. 

As noted above, we also do not allow for unobserved heterogeneity across innovations within a firm. 

Since we do not observe innovation-specific characteristics, this seems like a sensible way to 

proceed. In the same spirit, we assume a constant cost of applying for patent protection, although it 

                                            
20 The CMU survey asks a subjective assessment of the percent of projects started by the R&D unit with the same 
technical goals as an R&D project conducted by at least one of its competitors. The responses categories are: 
1=0%;2=1-25%;3=26-50%;4=51-75%;5=76-100%. Responses were then recoded to category midpoints. 
21Each respondent is assigned the total number of R&D employees multiplied by the average patent propensity of the 
industry for which the field of science rated the most important contribution to R&D is the same as that indicated by 
the R&D lab. More formally, the instrument is constructed as follows: Qi=Σjaijpjrj with i=1,�,N, denoting R&D units; j 
denoting industries; pj is the industry average product patent propensity; rj is the sum of R&D employees in industry j; aij 
is a respondent specific dummy equal to 1 if wij = Wj , zero otherwise where: wij is a character variable representing the 
lab�s reported field of science and engineering whose research findings contributed the most to its R&D activity during 
the most recent three years (possible fields include Biology, Chemistry, Physics, Computer Science, Materials Science, 
Medical and Health Science, Chemical Engineering, Electrical Engineering, Mechanical Engineering, Mathematics); Wj 
is the modal value of wij in industry j. All measures available from CMS. 
22 University R&D expenditures have been taken from 1993 NSF/SRS Survey of Scientific and Engineering 
Expenditures at Universities and Colleges. 
23 The CMU science and engineering fields noted above have been aggregated taking average scores of their 
importance to match the NSF publication more aggregated fields (engineering, physical sciences, math & computer 
sciences, life sciences). The importance score assigned to each field is then used to compute a weighted average of 
the university R&D spending by state to be assigned to each observation as an instrument for the survey based 
measure of information flows from universities. 
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is plausible that this cost may vary across firms and even across innovations. Insofar as such 

heterogeneity is significant, it may be picked up to some extent in the estimated variance of the 

patent premium. To explore this possibility, we formulate and estimate a version of our model where 

we allowed for unobserved heterogeneity across innovations and across firms. 

In particular, we develop a model in which the cost of patent application is assumed to vary with the 

value of the innovation, that is where we set cij=ρijvij and vij = ψij + vi χi, where ψij captures the 

unobserved innovation-specific error in the value of the innovation and χi is an unobserved (by us) 

firm specific error. If the error terms are assumed to be independent, we derive a tractable model 

with unobserved heterogeneity across innovations within a firm and across firms in the net value of 

an innovation. In this specification, the only change of consequence is that the patent propensity 

equation contributes only to the estimation of the ratio of the patent premium and σ, and vi is 

estimated only from the R&D equation. It is clear that with this specification, we can only identify the 

patent premium net of the cost of patenting.24 Estimating this specification yields the same 

qualitative results as those reported here. The absolute levels of the patent premia and the impact of 

changes in the patent premium on R&D are, however, somewhat smaller. 

5.5 Estimation of the constant terms in the patent application and R&D equations 

Our model is estimated using a restricted version of the innovation production function, by setting d 

equal to unity in (4). A violation of this restriction would imply that our estimates of ki, the number of 

patent applications per innovation per firm, are only identified up to a scale parameter. The other  

estimates of the model would not be affected and a violation of this assumption would not affect the 

central results of the paper, with the exception of the constant in R&D equation. Indeed, to the extent 

that d is not equal to unity, it will be incorporated by the constant ω  in the R&D equation in (12). 

                                            
24 Specifically, an innovation is patented if xij vij -ρij vij > vij, which is equivalent to (xij-ρij-1) > 0. We define the net 
patent premium equal to xij-ρij=υij+νi ~N(νi ,συ

2). Details of the model and estimation results are contained in the 
appendix and also available at http://faculty.insead.edu/ceccagnoli/research/premiumapp.htm. 
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We were also unable to estimate ω  itself, the other component of the constant in the R&D equation, 

possibly because vi and c both contain constant terms, in addition to σ itself, and the only source of 

identification is the non-linearity in the functional form. We adopted two different approaches. The 

first was to do a preliminary grid search on the value of ω. Assuming that d=1, our model suggests 

that ω is bounded below by zero, but without an a priori upper bound the grid search cannot be 

definitive. We find that the objective function is insensitive to values of ω ranging from 0 to 5. We 

also find that virtually all structural parameter estimates and simulation results (such the impact on 

R&D of changing patent effectiveness) are insensitive to the value of ω, except the cost of patent 

application, c, and the estimated value of an innovation, vi. Even here, the ratio of the estimated 

average value of an innovation to the cost of patenting is not sensitive to the value ofω. A second 

approach is to assume that the different error components in the patent application equation are 

independent, so that we can also bound the constant ω from above and use the grid search to 

determine its value, as well as check the sensitivity of the results. We report here the results from 

this latter procedure, which yields a value ω = 0.47.25  

The upshot of the foregoing discussion is twofold. First, we estimate the number of patents per 

innovation only up to a scale parameter. Second, the data do not permit us to estimate a constant 

term unique to the R&D equation. This does not, however, affect the key structural parameter 

estimates such as the patent premium or the elasticity of innovations with respect to R&D. Indeed, 

only the estimated level of the average value of the innovation and the cost of patenting are sensitive 

to the value of the constant term in the R&D equation. Thus, since the principal results of the paper, 

                                            
25 Under the assumption of independent errors, the estimated error of the patent applications equation is 

)()�()()( aiξVarmiηVarmiηVaraiηVar ++= , which, divided by 2, represents an upper bound for 2/�miησω = . To actually estimate the 

upper bound we use an iterative procedure. We estimate the model setting ω = 0, and then calculate the upper bound 
for ω using the estimates of the variance of the patent applications equation. Then we re-estimate the system and the 
upper bound until the value converges. We thus find that ω is bounded between 0 and 0.47 for the endogenous 
premium case and 0-0.48 for the exogenous case. Even in this case the grid search reveals that the objective 
function is insensitive to these ranges, but either the lower bound or the upper bound are slightly more likely 
according to the convergence measures. Given that ω is unlikely to be null for theoretical reasons, we set the 
constant equal to the upper bound. 
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namely the patent premium and the impact of increasing the premium on R&D, depend chiefly on 

the ratio of value to cost rather than on their levels, our main results are unaffected.  

 

5.6 Other issues 

Heteroscedasticity 

The existence of a heteroscedastic sampling error in the patent propensity equation suggests the 

use of heteroscedasticity-consistent standard errors. One way to implement the correction is to 

estimate the system with the generalized method of moments (GMM). However, we failed to get 

convergence with GMM estimation. We thus estimated the model with NL3SLS, but the estimates 

are not robust to heteroscedasticity. The use of logarithms in the patent and R&D equation should, 

however, mitigate the problem.  

Variance of the patent premium 

Given the importance of the variance of the patent premium for our estimates, and the likelihood that 

variation across innovation in the patent premium (for a given firm) may be systematically higher in 

some industries (e.g., pharmaceuticals) than others (e.g., semiconductors), we also estimated a 

specification allowing σ to vary across industries.  

Outliers 

Our sample already reflects the trimming of 1% of the observations with unrealistically high levels of 

patents per million dollars of R&D investment. We also tried a more conservative trimming procedure 

by excluding observations with patents per million dollars R&D above the median plus twice the 

interquartile range. Estimation with the more conservative trimming procedure led to parameter 

estimates that are similar to the one presented here. 

6. Results 

In this section, we first review single equation estimates of our model. We subsequently present the 

estimates of the structural parameters, focusing on the elasticity of product innovations with respect 

to R&D, the determinants of the value of an innovation, the determinants of R&D productivity and the 
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cost of applying for patent protection. We then consider in detail the distribution of the estimated 

patent premium and the impact of increasing the premium on both R&D and patent propensity.  

6.1 Single equation estimates 

Before moving to the structural estimates, we report the single equation OLS and IV estimates in 

tables 3a and 3b. Note that since key parameters such as σ and µi are identified through cross 

equation restrictions, the single equations cannot be directly compared to the corresponding 

structural equations. We report these here to provide a sense of the robustness of some of the 

estimates, especially for β and R&D elasticity, and to probe the sources of identification of some of 

the key parameters. 

Note that when the patent propensity equation is estimated alone, one cannot identify 
σ
µi 1−  unless c 

is exogenously specified. We thus report the estimate obtained by setting Zi=Xβ in (3), where the X 

includes the various determinants of the value of an innovation and the patent effectiveness 

dummies, including a constant. From table 3a (first 2 columns), one can see that increasing patent 

effectiveness implies an increase in patent propensity, although only the first three coefficients are 

significantly different from one another, as is the case when we estimate the entire system, as 

discussed below. Moreover, various elasticities, such as that of patent propensity with respect to 

covariates such as business unit size, are close to those obtained from the system estimates.  

The patent application equation (10) clearly shows that the marginal R&D productivity parameter, β, 

is identified directly, not through cross equation restrictions. Table 3a shows the related single patent 

applications equation estimates. In particular, we obtain an estimate of β of 0.57, consistent with 

estimates of 0.53-0.55 obtained from the system, imposing all the cross equation restrictions. 

Finally, since the R&D equation requires hi, the expected value of an innovation, we cannot estimate 

corresponding structural parameters. We first estimated a reduced form linear relationship between 

the log of R&D and all the variables included in the system (determinants of v and s and the patent 

effectiveness dummies, including a full set of industry dummies). Results shown in table 3b, first two 
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columns, show that increasing patent effectiveness increases R&D, although the fourth and fifth 

effectiveness classes are not statistically different from each other. Moreover, an increase in patent 

effectiveness from the lowest to the highest class is associated with an increase in predicted log 

R&D by 0.6, reflecting about a 40% increase in R&D.26 Interestingly enough, our system estimates 

imply an effect of a similar magnitude. Estimates of specifications of the R&D equation where we 

control for patent propensity (table 3b, 3rd and 4th columns) show that increases in patent 

effectiveness are associated with an increase in R&D even after controlling for patent propensity.27 

The single equation estimates demonstrate the value of the estimating the system of equations and 

using cross-equation restrictions to identify key parameters such as σ and µi. They also show that 

the key results in this paper are not driven by the non-linearities that are inevitable in our structural 

model. Specifically, we find that patent effectiveness tends to increase patent propensity and R&D 

by a magnitude similar to that obtained from our system estimates.  

6.2. Estimates of the structural parameters of the model 

Table 4 shows the results of estimation of the nonlinear system (12) of three simultaneous equations 

with cross-equation restrictions imposed. The table shows two sets of results, where the first 

specification treats patent effectiveness as exogenous and the second specification instruments for 

patent effectiveness. We will refer to these as the exogenous and endogenous premium 

specifications, respectively. Unless otherwise noted, we focus on estimates from the specification 

with endogenous premium, though the results from the exogenous premium specification are similar 

in magnitude. In general, the specification with endogenous premium yields smaller estimated 

responses of patenting and R&D to changes in the patent premium. 

                                            
26 This result is more clearly seen in a regression when all the five patent effectiveness class dummies are included 
and the intercept term is dropped, unlike the specification reported in table 3 where we drop the first patent 
effectiveness dummy and retain an intercept term.  
27 We tried several specifications with both patent propensity and patent effectiveness treated as exogenous and 
endogenous variables with very similar results, although with exogenous patent effectiveness the impact on R&D is 
stronger, consistent with the results of the system estimation. 
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The elasticity of product innovations w.r.t. R&D (β) 

The elasticity of the number of innovations with respect to R&D (β) plays an important role in 

conditioning the impact of changes in the patent premium on R&D in our subsequent simulation. The 

smaller the elasticity, the more sharply the marginal productivity of R&D declines, and hence, the 

less responsive R&D is to factors that affect the payoff from R&D, such as the patent premium. It is 

reassuring therefore that this parameter is estimated with a high degree of precision and the point 

estimate is robust across a wide variety of specifications. Our point estimate of 0.54 is consistent 

with other studies that have looked at the relationship between patents and R&D (see for example 

Adams [2000]). The 95% confidence intervals around the parameter estimates indicate limits of 0.43 

and 0.64, with upper and lower bounds very similar for the two specifications.  

The determinants of the value of an innovation, the cost of applying for patent protection, and R&D 

productivity 

Table 4 shows that both business unit size and firm size have a positive and significant effect on the 

value of an innovation, but the effect of business unit size is more than twice as large, which is 

qualitatively consistent with Cohen and Klepper [1996]. Being public and being global are also 

associated with higher expected value per innovation. The hypothesized effects of the technological 

opportunity variables on R&D productivity, notably information flows from universities and from other 

firms, are largely confirmed, except in the endogenous specification where the coefficient estimate 

for information flows from other firms is not significant.28 More technological rivals, holding the total 

number of economic rivals constant, significantly decreases the value of an innovation, whereas an 

increase in the number of total rivals, holding the number of technological rivals constant has a 

negative effect, albeit insignificant.29  

                                            
28 In a prior version of this paper, where we explicitly introduce an equation explaining spillovers from other firms in 
the system, the coefficient λ3 is significant at the 5% confidence level. 
29 These results are consistent with Ceccagnoli [2001], who analyzes the relationship between market structure and 
R&D incentives, when only some firms are capable of R&D. 
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The impact of increasing rival patent effectiveness on vi is mixed and taken together, insignificant.30 

As discussed in section 4.3, theory has conflicting predictions of the direction of the effect. 

Measurement error is another concern. The other industry participants, whose patent effectiveness 

scores are included in the computation of rival patent effectiveness, may not in fact be rivals. 

Another possibility is that we are not able to clearly identify the separate effect of several industry 

level factors, partly captured by the industry dummies and other variables, such as the number of 

technological rivals, related to the focus industry. 

The structural estimates imply that the average predicted value of an innovation without patent 

protection, vi, is around $1 million, and the average predicted value of an innovation, hi, is about $1.5 

million, whereas the estimated cost of patent application, c is $380,000. 31 As we have already noted, 

the estimates of the levels of vi and c, but not their ratio, are sensitive to the values of constants that 

we cannot pin down precisely.32 This is not surprising since we do not directly observe either the 

value of an innovation or the cost of patenting. 

We estimate the average number of patent applications per innovation, ki, introduced in equation 

(10), to be 5.6, varying from a minimum of 2 in biotech and pharmaceuticals to about 8-9 in 

semiconductors and transportation equipment. The only other empirical study we are aware of that 

measures the number of patent applications per innovation is by Reitzig [2002], which is based on 

data collected by the European Patent Office in 1994 from a survey of patentees (drawn from a 

stratified random sample of European patents).33 Reitzig finds that the average number of patents 

                                            
30 The overall impact of the rival patent effectiveness variables on v, as measured by the function of the parameters 
computed at the average of the sample (α8V8+α9V9+α10V10+α11V11, withV8-V11 representing the sample average of 
the related variables), is not significantly different from zero. 
31 Adjusting for the average number of patent applications per innovation, the cost of per patent, is about $67,000 
which, although still high, is more reasonable, because this includes both direct costs (patent filing fees, legal costs of 
drafting and prosecuting patent applications) and some share of the indirect costs (information disclosure) of patent 
application (cf. AIPLA [2001]). The grid search reveals that higher values of ω yield lower estimates of c, vi, and hi. 
For ω =1.34 the cost of applying for patent protection is about $157,000, obtained in a previous version of this model. 
32 Specifically, the ratio of the expected value of an innovation to the cost of applying for patent protection is about 4 
and the ratio of the expected value of an innovation without patent protection (vi) to the cost applying for patent 
protection is about 2.9. The robustness of these ratios implies that key results involving the impact of patent 
effectiveness on R&D investments and patent propensity are robust too. 
33 The patentees were asked if the individual patent referred to in the questionnaire was part of a group of related 
patents used to protect a coherent invention, and if so, the size (number of patents) of the group. Patentees were 
also asked to indicate the annual value of the individual patent on a cardinal scale. 
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per innovation is 5.35 (with a standard deviation of 21).34 Although both our and Reitzig�s findings on 

the average number of patents per innovation are subject to a variety of qualifications, the 

consistency in the point estimates is reassuring given that we estimate ki assuming the scale 

parameter in the innovation production function is unity. 

The distribution of the patent premium 

As expected, respondents with higher patent effectiveness scores are characterized by higher patent 

premium levels, as shown by the increasing value of the τ coefficients, with the exception of τ5 in the 

endogenous premium case.35 One possibly anomalous result in the endogenous effectiveness 

specification is that the premium for the lowest patent effectiveness class is negative (cf. 14). 

Although it is conceivable that patenting can yield - through disclosure of valuable information - a 

negative payoff (gross of the cost of patenting), this is unlikely.36 Instead, we suspect that this is due 

to the higher point estimate of σ in the endogenous specification (1.28 versus 0.68), and points to 

the need for more precise estimates of σ. This is discussed further below. 

For each industry, one can compute the mean of the patent premium distribution, which we call the 

unconditional expected patent premium, as well as the mean of the patent premium distribution for 

patented innovations, called here the conditional expected patent premium. These means vary 

across industries because the distribution of firms in the various patent effectiveness classes differs 

across industries. Table 5 shows that the unconditional expected patent premium for the sample as 

a whole is about 0.9 in the exogenous premium case and 0.5 in the endogenous one. Thus, the 

expected value of the typical innovation if patented is between 10% and 50% lower than without 

patent protection.  

                                            
34 His industry level findings are roughly consistent with ours except for the pharmaceutical industry, for which he 
finds a substantially higher number of patent applications per innovation (between 5 and 6) than ours (about 2).. 
35 The formal test of the equality of the coefficients, not shown, is rejected for the first three coefficients (τ1, τ2, andτ3) 
at the 5% confidence level. We cannot reject the null hypotheses that τ3 =τ4 or τ4 =τ5 , implying that firms that rated 
patent protection as effective for more than 60% of their product innovations have similar patent premia.  
36 A negative unconditional premium simply implies that the innovation specific premium must be high for the 
innovation to be patented. 
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The expected unconditional patent premium is greater than one across both specifications in the 

health care related industries (biotech, drugs, medical instruments), whereas it is also greater or 

equal to one in machinery and computers in the exogenous premium specification. Food and drink 

even has a small negative unconditional expected patent premium because over 70% of the 

respondents in that industry were in the lowest patent effectiveness class. To interpret these 

numbers, note that the estimates of the unconditional and conditional premia do not net out the cost 

of applying for patent protection. The estimated unconditional premium net of patenting costs is 0.17 

and the net expected conditional premium 1.91, with industry differences entirely similar to the 

pattern for the premium gross of costs.37 

An average patent premium far less than unity confirms that the opportunity cost of patenting, such 

as the cost of information disclosure and being �invented around� are substantial.38 This result both 

confirms earlier findings but also marks an advance. Earlier studies (e.g., Levin et al. [1987], Cohen 

et al. [2000]) had found that patents were not very effective except in selected industries. Our 

estimates of the unconditional patent premium confirm that in most industries, patenting the typical 

innovation is not profitable. However, even in these industries, some innovations are profitable to 

patent, thus explaining why firms may rate patents as ineffective relative to alternative appropriability 

mechanisms and yet file for patents themselves. 

Although the typical innovation may not be profitable to patent, conditional on patenting an 

innovation, the premium from patenting is substantial: As the last two columns of table 5 show, 

conditional on having patented an innovation, firms expect to earn, gross of the cost of patent 

application, between 75% to 125% more than if they had not patented those innovations. The 

conditional premium is highest in industries such as biotechnology, medical instruments, and drugs 

and medicines and the lowest in food and electronics. The variation across industries is, however, 

                                            
37 For the alternate specification where the value of innovations is allowed to differ within and across firms (discussed 
in Section 5.4 above), our estimates of the unconditional premium and the expected conditional premium are a bit 
lower, namely zero and 1.85, respectively. 
38 As a corollary result we find that respondents who indicated the amount of information disclosed in a patent 
application or the ease of legally inventing around a patent as reasons not to patent have an estimated patent 
premium 60% and 34% lower than those who did not report them, respectively. 
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low. There is much more variation across industries in the unconditional patent premium. This is 

partly because the standard deviation of the patent premium distribution, σ, is assumed to be 

common across industries. Also, if firms face similar costs of patenting, the expected premium 

conditional on patenting ought to vary less than the unconditional premium. 

Relaxing the assumption of uniform σ 

Given the sensitivity of the patent premium estimates to σ, we explored specifications where σ was 

allowed to vary by industry. The results implied that we could not reject the null hypothesis that σ 

was the same in all sectors, except in the combined biotechnology- pharmaceutical sector.39 Thus, 

we also estimated an additional specification, where σ was allowed to differ for bio-pharmaceuticals 

sector, while all other sectors continue to have a common σ. This yields a point estimate of σ equal 

to 1.19 in the manufacturing sector except the combined biotech-pharmaceutical industry sector, 

whose value jumps instead to 5.96. For manufacturing as a whole, the unconditional patent 

premium, µ, increases from 0.42 to 0.6 and the conditional premium increases from 2.25 to 2.44. 

The increase in σ in drugs and biotechnology implies that for these industries, the patent premium 

increases more sharply. The unconditional premium increases to 1.09 and 2.44, and the conditional 

premium to 6.48 and 7.13 in drugs and biotechnology respectively. The impact of the premium on 

patent propensity is sensitive to these differences in the variance of the patent premium distribution. 

The impact of the premium on R&D is, in contrast, robust to changes in the estimate of σ.  

6.3. The impact of patent protection on R&D and patent propensity 

A key objective in estimating the structural model is to assess not only the value of patent protection 

but also the extent to which it provides incentives for firms to invest in R&D. To our knowledge, ours 

                                            
39 We initially let σ vary across the 19 industry groups. However, the loss of degrees of freedom and identification 
problems due to inclusion of industry dummies in multiple variables in the R&D equation greatly reduced the fit of the 
estimates. We moved to a more aggregate, 2 digit SIC industry grouping, with the additional criterion of requiring at 
least 50 observations per group, resulting in a system with 7 industry groups. We found that only the bio-
pharmaceutical industry group had a significantly different σ from the rest (the results of these estimates and tests are 
available from the authors upon request). Finally, we estimated a specification setting σ equal to a constant and a 
bio-pharmaceutical industry dummy variable, i.e., σ=σ0+σbio-pha dbio-pha, with dbio-pha =1 for biotech or pharmaceuticals. 
We find (standard errors in parenthesis) σ0=1.19 (0.51) and σbio-pha=4.77 (2.34). The null of σ0= σbio-pha is only rejected 
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is the first study to assess the impact of patenting on R&D incentives while recognizing that 

patenting and R&D affect one another and are both driven by many of the same variables. 

Schankerman [1998] comes the closest to analyzing the impact on R&D of the patent premium when 

he constructs what he calls the equivalent subsidy rate (ESR) to company-funded R&D due to patent 

protection. The ESR is calculated by dividing the total value of patent rights by R&D and roughly 

corresponds to the subsidy that would have to be provided to firms to maintain R&D at current levels 

in the absence of patents. We calculate ESRs by first computing the difference between the 

expected value of an innovation with and without patent protection, (hi - vin), where vin is computed by 

assigning each respondent to the lowest patent effectiveness class.40 This is then multiplied by the 

number of innovations and divided by R&D expenditures. Using our benchmark specification 

(common σ  across industries) we find that ESRs range from 2% for food and drink to 39% for 

communication equipment. The average ESR is 17%, compared with an average 24% reported by 

Schankerman. Given the differences in data sources and method, it is reassuring that our results are 

broadly consistent with those obtained by Schankerman.41 Note, however, that the ESR is simply a 

ratio of the incremental value from patent protection to R&D and thus, as Schankerman [1988] 

himself notes, is not the best way to understand the R&D incentives provided by patent protection. 

To understand these incentive effects, one needs to link�as we have done�firms� R&D 

investments to their patenting decisions and the perceived patent premium.42  

One way of assessing the impact of patent protection on R&D is to ask how much R&D would fall if 

patent protection were removed (both for a firm and its rivals). This can be computed from the 

difference between the predicted value of the log of R&D with and without patent protection, equal to 

(1/(1-β)(hi - vin), with vin defined above. We find that, on average, R&D would fall by about 35%. This 

                                                                                                                                             
at the 11% confidence level. The implied average standard deviation of the patent premium in the full sample is 1.49, 
slightly higher than the value of 1.28 estimated in the benchmark case.  
40 It is equivalent to setting the coefficients related to the rivals� patent premium in vi to zero (α8-α11).  
41 Note, however, that our estimates of the ESR critically depend on the estimated values of c, vi, and hi, as well as 
on the number of patents per innovation and thus may not be robust. 
42 The ESR reflects the average return to R&D conditional on patent protection. However, if R&D investments depend 
on the marginal return, not the average return to R&D, then even relatively small ESRs can be consistent with a 
sizable incentive from patent protection as long as the marginal product of R&D does not fall very rapidly (as would 
be the case with a low value of β) and conversely large ESRs can imply small marginal incentive impacts. 
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estimate is clearly sensitive to the estimate of β. If β were equal to 0.4, (the lower bound of the 95% 

confidence interval around our point estimate) R&D would fall by about 25%, still a substantial effect. 

A more conventional way to assess the impact of patenting on R&D is to use our results to compute 

the elasticities reported in the first column of table 6. Using (12), the % change in R&D for a given % 

change in the own patent premium is ( )
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Overall, the impact of a change in the patent premium on innovation is substantial. As shown in the 

first column of Table 6, the results indicate that a 10% increase in the patent premium would 

stimulate the patent holder R&D by about 6% in the benchmark, endogenous premium case. The 

results also suggest that the impact significantly varies across industries, with the elasticity varying 

from about 10% in the health care related industries, to 4-5% in electronics and semiconductors. The 

results are qualitatively consistent with Hall and Ziedonis [2001] who note that the strengthening of 

patent protection in the U.S. did not have significant impact on R&D in the semiconductors industry 

during the 80s, but largely stimulated patenting itself, with the consequence that the patent per 

million R&D dollars increased significantly.43 It is important to highlight, however, that our results 

imply that even where the returns to patenting innovations are lower and firms rely more heavily on 

other means such as first mover advantages to protect their innovations (cf. Cohen et al. [2000]), as 

in semiconductors, an increase in the patent premium still clearly stimulates R&D.44  

We also simulated the impact of increasing the patent premium on patent applications and patent 

applications per R&D dollar, computed as ea = eπ + β er and ear = eπ + (1-β) er, with ea and ear denoting 

the elasticities of patent applications and patent applications per R&D dollar w.r.t. the patent 

                                            
43 Our analysis of the elasticity of R&D, and, below, of patent applications and patent propensity with respect to the 
patent premium only considers the direct impact of increasing patent premium. However, since the indirect effects are 
small (and in the case of the impact on v, close to zero and insignificant), the net impact, which also accounts for the 
impact of the rivals� premium is very similar to the direct impact.  
44 The higher responsiveness of R&D to patent premium in biotech or pharmaceuticals relative to other industries 
may appear odd given the already high patent premia in the former. Indeed, given diminishing returns to R&D, a 
given absolute increase in the patent premium will have a smaller impact the higher the patent premium. However, 
the standard elasticity is premised on a given percentage increase in the premium, implying that a firm with a higher 
patent premium (e.g., a biotech firm) would face a larger absolute increase in the premium than a firm with a lower 
premium (e.g, a rubber products firm). 
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premium, er the R&D elasticity defined above, and ( )
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patent propensity w.r.t. the premium. The second and third columns of Table 3 show that on average 

a 10% increase in the patent premium increases patent applications by 12.3% and patent 

applications per R&D dollar by 6.3%. We find substantial differences across industries. Indeed, a 10 

percentage point increase in the patent premium would increase the number of patents per R&D 

dollar by 3.6% in drugs and medicines, and by 7.1% in semiconductors, about twice as much. These 

findings are qualitatively consistent with Hicks et al.�s [2001] finding that patents per million dollars of 

R&D grew much more sharply in information technology industries relative to health-related 

technology industries over the period 1989 to 1996�a period during which the patent premium 

arguably increased with stronger enforcement and greater plaintiff success rates in infringement 

suits. 45  

7. Conclusion 

Understanding the determinants of R&D is of first order importance given the central role of R&D in 

productivity growth. Patents are believed to provide an important stimulus to R&D. However, to our 

knowledge, this study is the first to systematically analyze the impact of patenting on R&D 

investment while explicitly recognizing that R&D and patenting affect one another, and are both 

driven by many of the same variables. We provide the first systematic estimates of the average 

patent premium for the U.S. manufacturing sector. By modeling how the patent premium conditions 

the decision to invest in R&D and to apply for a patent, we use our estimates to analyze the impact 

of increasing the patent premium on R&D and patenting.46 

We use a unique dataset based on the 1994 Carnegie Mellon Survey of R&D performing units in US 

manufacturing in the United States, which measures R&D, patent propensity, patent effectiveness, 

                                            
45 The specification with unobserved heterogeneity in cost and value yields mostly similar results: The elasticity of 
R&D is 0.5, (instead of 0.6) but that of patent applications is 1.72, compared to 1.23.  
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and information flows from other firms and universities, among other variables, at the R&D lab level. 

As noted above, having a measure for the percentage of innovations that are patented�along with 

our measures of R&D and patenting�allows us to treat the patenting and R&D as distinct 

constructs, which in turn allows us to empirically distinguish between the impact of the patent 

premium on R&D and on patenting. 

We find that on average patents provide a positive (greater than unity) expected premium gross of 

patent application costs in only a few industries, namely drugs, biotech and medical instruments, 

with machinery, computers, and industrial chemicals close behind. We also show that an increase in 

the mean of the patent premium distribution for a typical firm in our sample (US manufacturing) 

would significantly stimulate its own R&D. This is certainly true in industries where the patent 

premium tends to be high, such as drugs, biotech and medical instruments. But, even in industries 

where the patent premium is lower, such as electronics and semiconductors, the elasticity is still 

positive, though smaller. Thus, even in such industries where patent premiums are lower and firms 

rely more heavily on means other than patents to protect their innovations, patents stimulate R&D.  

We highlight two intriguing aspects of our results that might merit further exploration. First, we do not 

find any apparent effect of patent disclosures on information flows originating from other firms. 

Second, we do not find a clear effect of rival patent effectiveness on the value of the firm�s own 

innovations. While the absence of both of these effects may be real, they may, however, reflect the 

need for more accurate measures, especially of the impact of patent disclosures on information 

flows.47 Moreover, we have already noted the conflicting theoretical predictions of the relationship 

between the effectiveness of rivals� patents and own R&D investments. Thus, our results also point 

                                                                                                                                             
46 Mansfield [1986] surveyed 100 respondents and found that, in the period 1981-1983, even in the absence of patent 
protection, outside of the pharmaceutical and chemical sectors, relatively few inventions would have not been 
developed asked. Our results, particularly in Table 4, suggest a more pervasive positive impact of patenting on R&D 
spending across the manufacturing sector. We too use survey responses. However, can interpret the implications of 
responses to a survey question (regarding patent effectiveness) by considering those responses in the light of other 
responses (on the same survey) reflecting firms� observable R&D spending and patenting behavior. 
47 Our finding that patent disclosures do not play a key role in conditioning R&D spillovers in the U.S. is, however, 
consistent with Cohen et al.�s [2002] comparison between Japan and the U.S. of the impact of patent disclosures on 
R&D-related information flows across rivals.  
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to the need for a more fully elaborated model incorporating competitive interactions that can help 

disentangle the various effects.  

Our study points to a number of other research questions. One is what factors drive the patent 

premium, and especially the degree to which policy can affect it across technologies and industries. 

Although we have considered the impact on R&D and patenting of raising the premium, this was a 

way of discerning the impact of patenting rather than providing a guide for policy. It is conceivable 

that the key determinant of the patent premium is the nature of the patented technology and the 

degree to which it lends itself to �inventing around,� and the courts and Congress may consequently 

be limited in their ability to shift the premium.48 A second, and related, question is how the ways that 

patents are used condition their effectiveness in appropriating rents from innovation. Clearly, the 

uses of patents are themselves functions of the underlying technology and the policy environment, 

but also of market structure and the strategies of the major industry players. As noted earlier, we 

have ignored the impact of patent effectiveness on entry, and on vertical industry structure, both 

important determinants of the rate and direction of technical change. 

In conclusion, we are well aware of the limits of our analysis�limits associated with our structural 

model and others due to our underlying data and measures. We suggest, however, that our 

modeling approach and use of survey-based data provide a strong basis for attacking what is clearly 

an important problem, though a complex one from the perspective of modeling, measurement and 

estimation.  

                                            
48 In their comparison of changes in patent effectiveness between 1983 when the Levin et al. [1987] survey was 
administered and 1994 when the Carnegie Mellon Survey was administered, Cohen et al. [2000] find that large firms� 
evaluations of patent effectiveness increased only modestly despite a strong pro-patent movement in the policy 
environment during that period. 
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Figure 1.  R&D and patenting: the payoff structure.

x ij = ε ij + µ i : Patent premium;
     ε ij = innovation-specific random component of the premium observed by the firm at the time of
             patenting, but not the econometrician ~ N(0, σ 2 );
     µ i  = firm-specific component of the premium, observed by the firm at the time of the R&D
             investment, and treated as a parameter in the analysis;
v i : Private value of an innovation without patents; function of firm and industry characteristics;
c: Cost of applying for patent protection; treated as a parameter in the analysis.   
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Fig 2.  The patent premium probability distribution 

a) Probability density function of the patent premium for firm i  and innovation j  (x ij )

b) Probability density function of the patent premium conditional on having applied for patent protection ( x * ij )

iµ

*
iµ
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Figure 3.  Relationship between endogenous and exogenous variables

 

*: The exogenous variables are denoted by labels in italics, whereas the endogenous by bold 
characters labels.  We estimate two model specifications: one with exogenous and one with 
endogenous patent premium. Note that although the premium varies across innovations and firms, 
only the firm specific component, µ i , treated as a firm specific parameter, needs to be taken into 
account to estimate the model with firm-level data.  Endogeneity of the premium comes from 
endogeneity of the related survey based patent effectiveness measures, as explained in the 
estimation section.
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Table 1.  Descriptive statistics
Variable Mean   St. Dev. Median  Min. Max.

% prod. innov. applied for patent 0.32 0.3 0.25 0 1

Product R&D (Mil. $) 8.18 31.04 1.35 0.02 420.75

No. of Product Patent Applications 6.43 18.64 1.4 0 283.33

Spill-in-other-firms (factor measure) 0.06 0.68 -0.02 -1.44 2.14

Spill-in-university (factor measure) 0.03 0.69 -0.24 -0.63 1.91

Patent premium dummy, class 1 0.34 0.47 0 0 1

Patent premium dummy, class 2 0.23 0.42 0 0 1

Patent premium dummy, class 3 0.16 0.37 0 0 1

Patent premium dummy, class 4 0.15 0.35 0 0 1

Patent premium dummy, class 5 0.12 0.32 0 0 1

Business Unit Employees 6 406 27 451 550 10 448 000

Firm Employees 21 841 57 426 3 000 10 710 800

No. of U.S. Technological Rivals 3.96 4.9 4 0 30

No. of Total U.S. Rivals 10.34 9.32 8 0 30

Firm is Global 0.77 0.42 1 0 1

Firm is Public 0.65 0.48 1 0 1

Firm is Foreign 0.1 0.3 0 0 1

I.T. Used in Organization 0.54 0.5 1 0 1

N. of obs.=737
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Table 2: Within and across industries variation in key variables

Mean TSS 

% variance 
explained by 

inter-ind. 
differences*

R&D (Mil. $) 8.18 709 249 8.0%
Pat. Applications 6.43 255 852 3.6%
Patent Propensity (%) 0.32 67 13.1%
Patent Effectiveness (%) 0.38 75 12.6%

TSS: Total Sum of Squared Deviations.
*Proportion of the variable's variance explained by cross industry variation (explained sum of squared deviations 
from the mean as a fraction of the total sum of squared deviations from an OLS regression of the variable on a 
constant and the industry dummies used in the analysis, with identical sample - N=737  and industry definitions - 
cf. Appendix).
Note: Patent effectiveness measured using mid-points of the related patent effectiveness classes for descriptive 
purposes (cf. main text).
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Table 3a. Single equations estimates

Intercept -2.21 ** -2.69 ** 1.77 ** 1.71 **

0.26 0.79 0.16 0.18
Patent effectiveness dummy, class 2 0.65 ** 0.87 % rivals with patent premium dummy=2 0.55 0.98

0.10 0.74 0.45 0.80
Patent effectiveness dummy, class 3 1.08 ** 1.21 % rivals with patent premium dummy=3 0.38 0.37

0.10 0.92 0.50 0.86
Patent effectiveness dummy, class 4 1.32 ** 1.50 * % rivals with patent premium dummy=4 0.90 0.64

0.10 0.72 0.56 0.95
Patent effectiveness dummy, class 5 1.34 ** 2.27 ** % rivals with patent premium dummy=5 2.17 ** 3.77 *

0.11 0.75 0.69 1.52
Log of business unit employees 0.06 ** 0.06 * I.T. used in organization -0.11 -0.26 *

0.02 0.03 0.09 0.11
N. of U.S. technological rivals -0.01 a -0.02 a Spill-in from firms-FACTOR 0.07 0.53 *

0.01 0.01 0.07 0.25
Firm is global 0.05 0.08 Spill-in from universities-FACTOR 0.16 * 0.08

0.07 0.11 0.07 0.25
Firm is public 0.17 * 0.19 a Elasticity of innovation w.r.t. R&D (β) 0.49 ** 0.57 **

0.08 0.11 0.03 0.06
Tot. N. of U.S. rivals 0.00 0.00

0.00 0.00 Adj. R-square 0.46 0.38 0.43 0.37
Firm is foreign 0.02 0.05 N 737 737 529 529

0.11 0.15

Log of parent firm employees 0.01 0.01
0.02 0.02

Footnotes at bottom table 3b

IV NONLINEAR 
OLS NONLINEAR IV OLS IV

Patent propensity 
equation

Log of patent 
applications 

equation
Patent propensity equation

Log of patent 
applications 

equation

NONLINEAR 
OLS NONLINEAR IV OLS

π ~

π ~
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Table 3b. Single equations estimates (cont.)
Log of R&D equation

Intercept -4.66 ** -4.52 ** -4.60 ** -4.95 ** % rivals with patent premium dummy=2 -0.80 0.09 0.18 0.48
0.37 0.77 0.86 1.20 0.66 1.01 1.09 1.33

Patent effectiveness dummy, class 2 0.30 * 0.54 0.63 0.88 % rivals with patent premium dummy=3 0.30 1.98 a 2.00 1.96
0.12 0.95 1.03 1.23 0.75 1.17 1.17 1.25

Patent effectiveness dummy, class 3 0.52 ** 2.16 a 2.31 2.66 % rivals with patent premium dummy=4 2.11 * 2.53 2.58 2.89
0.14 1.28 1.42 1.70 0.90 1.57 1.60 1.83

Patent effectiveness dummy, class 4 0.56 ** 0.97 1.17 2.03 % rivals with patent premium dummy=5 -2.40 * -1.73 -1.50 0.17
0.15 1.01 1.38 2.40 1.06 1.90 2.14 4.36

Patent effectiveness dummy, class 5 0.57 ** 0.81 1.05 2.31 I.T. used in organization 0.49 ** 0.18 0.18 0.24
0.16 0.98 1.46 3.21 0.10 0.16 0.16 0.22

Log of business unit employees 0.33 ** 0.22 ** 0.22 ** 0.26 * Spill-in from firms-FACTOR 0.15 * 0.93 0.89 0.78
0.03 0.07 0.07 0.12 0.07 0.79 0.81 0.89

N. of U.S. technological rivals -0.01 -0.03 -0.03 -0.03 Spill-in from universities-FACTOR 0.15 * 0.90 * 0.92 * 0.94 *

0.01 0.02 0.02 0.03 0.07 0.44 0.44 0.47
Firm is global 0.44 ** 0.38 * 0.38 * 0.43 * Patent Propensity -0.28 -2.45

0.11 0.16 0.16 0.21 1.05 4.97
Firm is public 0.25 * 0.09 0.10 0.21 Elasticity of inventions w.r.t. R&D (b)

0.12 0.17 0.16 0.30
Tot. N. of U.S. rivals 0.01 0.00 0.00 0.00 Adj. R-square 0.53 0.22 0.21 0.11

0.01 0.01 0.01 0.01 N 737 737 737 737
Firm is foreign 0.19 0.08 0.07 0.10

0.18 0.26 0.26 0.28

Log of parent firm employees 0.11 ** 0.12 ** 0.12 ** 0.13 **

0.03 0.04 0.04 0.04

OLS IV specif. I IV specif. II IV specif. IIIOLS IV specif. I IV specif. II IV specif. III

π ~

π ~

Standard Errors in italics.
**, *, a: Significantly different than 0 at the .01, .05, and .10 confidence levels.
Note 1: Industry fixed effects estimates are suppressed.
Note 2: All the IV specifications treat the patent effectiveness dummies and the spillover measures as endogenous when appropriate, using the same instruments as for the case of the system estimation (cf. the main 
the text).  Furthermore, products and cross products of the inlcuded continuous exogenous variables, in addition to the exogenous and instrumental variables, are included as instruments in the nonlinear IV estimation 
of the patent propensity equation.
Note 3: The actual dependent variable of the patent applications equation is the log of product patent applications minus the log of product patent propensity, as explained in the main text. Furthermore, as instruments 
for R&D and spillovers for the IV estimation of such equation we use the same instruments used for patent effectiveness and spillovers in the other equations, in a linear fashion.
Note 4: The IV estimates  of the R&D equation differ in that specification I does not include patent propensity on the RHS, whereas II and III do, and only specification III treats patent propensity as endogenous, for 
which the set of instruments used for patent effectiveness is sufficient for identification.
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Table 4.  System estimates of the structural parameters

β 0.55 ** 0.53 ** Elast. of innovation w.r.t. R&D VALUE:
0.05 0.05 α 0 -0.57 * -0.56 * Intercept, value of innovation

PATENT PREMIUM: 0.23 0.22

σ 0.68 ** 1.28 * St. dev. of patent prem. distrib. α 1 0.12 ** 0.12 ** Log of business unit empl.
0.22 0.52 0.03 0.03

τ 1 -0.86 ** -1.42 ** Pat. premium dummy, class 1 α 2 -0.01 * -0.01 * N. of U.S. technological rivals
0.12 0.33 0.00 0.005

τ 2 -0.18 a -0.57 ** Pat. premium dummy, class 2 α 3 0.15 ** 0.14 ** Firm is global
0.10 0.16 0.05 0.05

τ 3 0.32 ** 0.58 ** Pat. premium dummy, class 3 α 4 0.08 0.06 Firm is public
0.10 0.19 0.05 0.05

τ 4 0.52 ** 0.59 ** Pat. premium dummy, class 4 α 5 0.00 0.00 Tot. N. of U.S. rivals
0.10 0.15 0.00 0.003

τ 5 0.54 ** 0.53 ** Pat. premium dummy, class 5 α 6 0.04 0.02 Firm is foreign
0.10 0.16 0.09 0.09

COST: α 7 0.05 ** 0.05 ** Log of parent firm empl.
δ 0.30 ** 0.38 * Cost of appl. for pat. protection 0.02 0.02

0.12 0.19 α 8 -0.21 -0.25 % rivals with pat. effectiv.=2
κ 0 4.87 ** 4.91 ** Interc., n. of pat. appl. per innov. 0.27 0.29

0.89 0.91 α 9 0.48 0.49 % rivals with pat. effectiv.=3
R&D  PRODUCTIVITY: 0.32 0.33

λ 1 0.07 0.06 I.T. used in organization α 10 0.92 * 0.70 a % rivals with pat. effectiv.=4
0.05 0.05 0.41 0.40

λ 2 0.26 * 0.18 Spill-in from firms-FACTOR α 11 -0.86 a -1.06 * % rivals with pat. effectiv.=5
0.11 0.11 0.46 0.48

λ 3 0.40 ** 0.41 ** Spill-in from univer.-FACTOR
0.10 0.10

Exogenous 
premium

Endogenous 
premium

Exogenous 
premium

Endogenous 
premium

π ~

Standard Errors in italics.
**, *, a: Significantly different than 0 at the .01, .05, and .10 confidence levels.
Note 1: Industry fixed effects estimates are suppressed.  A full set of 18 industry dummies is indeed included to control for the number of patent applications per patented innovation, k i, and the value of the innovation 
without patent protection, vi  (in both cases we dropped the 19th dummy, “Other manufacturing industries”).
Note 2: In both specifications we estimate 60 parameters with 737 observations and 3 equations. There are 5 endogenous (R&D, patent propensity, patent applications, spillovers from firms and universities) and 35 
exogenous variables in the exogenous premium case, and 10 endogenous (those indicated above with the addition of the 5 patent effectiveness dummies) and 30 exogenous variables in the endogenous premium 
specification. 
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Table 5.  Patent premium estimates

Exogenous 
Premium

Endogenous 
Premium

Exogenous 
Premium

Endogenous 
Premium

Biotech 1.20 1.34 1.79 2.45
Medical instruments 1.14 1.22 1.77 2.41
Drugs and medicines 1.11 1.05 1.73 2.29
Machinery, excl. computers 1.02 0.88 1.79 2.38
Computers and other office equipment 1.00 0.83 1.72 2.27
Industrial chemicals 0.95 0.66 1.72 2.24
Transportation, excl. Aircrafts 0.91 0.52 1.80 2.32
Other chemicals 0.92 0.51 1.72 2.19
Aircraft and missiles 0.91 0.51 1.79 2.26
Communication equipment 0.89 0.49 1.66 2.11
Metals 0.85 0.39 1.73 2.22
Semiconductors 0.87 0.39 1.79 2.25
Other electrical equipment 0.84 0.37 1.73 2.24
Instruments, excl. Medical 0.83 0.31 1.71 2.17
Petroleum refining and extraction 0.83 0.30 1.69 2.15
Other manufacturing industries 0.80 0.26 1.79 2.28
Rubber products 0.80 0.22 1.86 2.37
Electronic components, excl. Semicond. 0.72 0.01 1.70 2.11
Food, kindred, and tobacco products 0.60 -0.34 1.66 1.99

Total 0.90 0.52 1.75 2.25

Note: Sorted by the expected patent premium estimated with the endogenous premium specification

Expected Patent Premium Conditional Patent Premium
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Table 6.  % change in R&D, Patent Applications, and patent applications
per R&D $ w.r.t. a 10% change in the patent premium

Industry R&D
Patent 

Applications

Patent 
applications per 

R&D $

Biotech 10.6% 14.3% 3.6%
Medical instruments 9.7 13.4 3.7
Drugs and medicines 8.9 12.5 3.6
Machinery, excl. computers 7.6 12.4 4.8
Computers and other office equipment 7.3 11.6 4.3
Industrial chemicals 6.9 12.2 5.4
Transportation, excl. Aircrafts 6.1 13.1 7.0
Other chemicals 5.8 11.4 5.6
Other electrical equipment 5.8 13.6 7.8
Petroleum refining and extraction 5.7 13.3 7.6
Metals 5.5 12.6 7.1
Communication equipment 5.4 10.3 4.9
Aircraft and missiles 5.2 10.7 5.4
Other manufacturing industries 4.8 12.8 8.0
Semiconductors 4.8 11.9 7.1
Instruments, excl. Medical 4.6 11.2 6.6
Electronic components, excl. Semicond. 4.1 13.0 8.9
Rubber products 4.0 11.3 7.3
Food, kindred, and tobacco products 2.2 12.2 10.0

6% 12.3% 6.3%

Note: Estimates refer to the endogenous premium specification and are sorted by the R&D elasticity
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APPENDIX 
A) Computing product patent applications 
To get the number of product patent applications from total applications, an adjustment factor has been derived as 

follows.  Let a=a1+a2=(m1π1+m2π2)k be the total number of patent applications, with a1 and a2 the number of product and 
process applications, m1 and m2 the number of product and process innovations, π1 and π2 the % of product and process 
innovations for which patent applications are made, and k≥1 the number of patent applications per patented innovation, 
assumed to be equal across product and process innovations.  We assume that product and process R&D are also equally 
efficient, so that m1/m2=r1/r2, ρ1=m1/(m1+m2)=r1/(r1+r2), and ρ2=m2/(m1+m2)=r2/(r1+r2), with r1 and r2 the level of product and 
process R&D effort, and ρ1 and ρ2 the % share of R&D effort devoted to product and process innovation respectively.  Then, 
a/k=m1π1+m1(ρ2/ρ1)π2 and the number of product innovations can be written as m1=a/k(π1+(ρ2/ρ1)π2).  The endogenous 
variable used to estimate the second equation of (12) is then computed as logm1=loga -log(π1+(ρ2/ρ1)π2)- logk , with logk  
being a parameter to be estimated using industry fixed effects. 

B)  Industry groupings used to create industry dummies  
Description SIC N 
Food, kindred, and tobacco products 20,21 54 
Industrial chemicals 281�82,286 51 
Drugs and medicines 283 26 
Biotech49  various 21 
Other chemicals 284�85,287�89 57 
Petroleum refining and extraction 13,29 10 
Rubber products 30 23 
Metals 33-34 39 
Computers and other office equipment 357 21 
Machinery, excl. computers 35, exc.357 86 
Communication equipment 366 25 
Electronic components, excl. Semic. 367 exc. 3674 15 
Semiconductors 3674 17 
Other electrical equipment 361�65,369 43 
Transportation, excl. Aircrafts 37 exc. 372,376 36 
Aircraft and missiles 372,376 31 
Instruments, excl. Medical 38 excl. 384 61 
Medical instruments 384 49 
Other manufacturing industries 22-27,31-32,39 72 
All  737 

C)  Factor-based measures 
To measure the amount of information flows from other firms and public research benefiting the R&D lab we are faced 

with the problem that we cannot measure these variables directly.  We do have however several survey measures, available 
in the CMS, which represent different dimensions of the variables of interest.  In order to both develop measures of the 
underlying unobserved variables and to reduce the number of variables we have to deal with in our analysis, we used factor 
analysis to create new composite measures. 

C1.  Information flows from other firms 
We have data related to the following dimensions of the information flows from other firms: 
1) Whether the R&D unit obtained information from RIVALS which either suggested new R&D projects or 
contributed to completion of existing R&D Projects; 
2) Whether the R&D unit obtained information from INDEPENDENT SUPPLIERS which either suggested new R&D 
projects or contributed to completion of existing R&D Projects; 
3) Whether the R&D unit obtained information from CUSTOMERS which either suggested new R&D projects or 
contributed to completion of existing R&D Projects (yes/no response); 
4) Frequency with which the R&D unit obtains useful technical information about NORTH AMERICAN 
COMPETITORS activities (response measured in ordinal scale, from 1 reflecting �rarely or never,� to 5, reflecting 
�daily�); 
5) Frequency with which the R&D unit obtains useful technical information from NORTH AMERICAN SUPPLIERS 
activities, measured in ordinal scale (response measured in ordinal scale, from 1 reflecting �rarely or never,� to 5, 
reflecting �daily�). 
 The correlation matrix for the five items confirmed the substantial correlations among groups of items.  We then 

conducted an exploratory factor analysis of the respondent level data on the five measures to uncover the factor structure 

                                            
49 Identified  from questionnaire product description and Compustat classification. 



 ii

generating the correlations among the variables50.  This factor analysis generated one underlying variable corresponding to 
the first extracted factor, the only one which accounted for meaningful amounts of variance.  We then assigned each 
respondent the estimated factor score, which is a linear composite of the optimally weighted variables under analysis.   

The factor analysis results presented in Table C1 show the factor loadings (that is the correlations between the 
measures and the factor) and the eigenvalue (representing the amount of variance that is accounted for by the factor).  The 
only two variables with factor loadings greater than 0.3 are the two frequency related measures.  In other words, our factor 
based measure of information flows from other firms mostly reflects the frequency with which respondents obtain useful 
technical information about the activities of North American suppliers and competitors. 
Table C1.  Factor analysis of variables related to information flows from other firms 
 Factor Loading
Variable First Factor
Frequency of Interaction with North American Suppliers 0.39
Frequency of Interaction with North American Competitors 0.30
Independent Suppliers � Suggested or contributed to completion of R&D Projects 0.20
Competitors � Suggested or contributed to completion of R&D Projects 0.13
Customers � Suggested or contributed to completion of R&D Projects 0.06
Eigenvalue 0.77

C2.  Information flows from public research 
CMS contains data on  the following dimensions of the information flows from public research: 
1) Whether the R&D unit obtained information from UNIVERSITIES or GOVERNMENT RESEARCH INSTITUTES 
and LABS which either suggested new R&D projects or contributed to completion of existing R&D Projects (yes/no 
response); 
2) Frequency with which the R&D unit obtains useful technical information from UNIVERSITIES or GOVERNMENT 
RESEARCH INSTITUTES and LABS (response measured in ordinal scale, from 1 reflecting �rarely or never,� to 5, 
reflecting �daily�). 
As in the previous case, the factor analysis generated only one underlying variable corresponding to the first extracted 

factor accounting for meaningful amount of variance.  The results suggest that the two survey-based measures reflecting 
both the frequency of interaction and the importance of contribution of external public research are highly correlated with the 
underlying factor � information flows from public research, as shown in table C2. 

Table C2.  Factor analysis of variables related to information flows from public research 
 Factor Loading
Variable First Factor 

Frequency of interaction with North American universities/government research institutes and labs 0.40
Universities/ government research institutes and labs � suggested or contributed to R&D projects 0.40
Eigenvalue 0.70

As before, we assigned each respondent the estimated factor score, which is a an estimate of a respondent�s standing 
on the underlying factor and computed as a linear composite of the optimally weighted variables under analysis. 
 

                                            
50 A limitation of the implemented factor analysis is that we are treating all our raw measures as though they are continuous, although they 
are not; the response scales are categorical.  The state of the art in factor analysis itself has only recently begun to address this issue. 
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Additional Tables, Baseline Model (No unobserved heterogeneity in v i )

Appendix D

Industry k

Rubber products 8.8
Transportation, excl. Aircrafts 7.8
Semiconductors 7.2
Petroleum refining and extraction 6.9
Other electrical equipment 6.7
Machinery, excl. computers 6.7
Industrial chemicals 6.6
Instruments, excl. Medical 6.3
Metals 6.1
Other chemicals 5.8
Electronic components, excl. Semicond. 5.7
Computers and other office equipment 5.1
Other manufacturing industries 4.9
Medical instruments 4.7
Food, kindred, and tobacco products 4.6
Aircraft and missiles 4.3
Communication equipment 2.9
Biotech 2.2
Drugs and medicines 2.0

Total 5.6

Table D3.  Estimated number of patent applications per 
innovation by industry
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Additional Tables, Baseline Model (No unobserved heterogeneity in v i )

Appendix D

Table D4. The equivalent subsidy rate
ESR

Communication equipment 39%
Other electrical equipment 34%
Petroleum refining and extraction 28%
Metals 23%
Semiconductors 23%
Biotech 22%
Drugs and medicines 22%
Medical instruments 21%
Machinery, excl. computers 20%
Rubber products 19%
Other manufacturing industries 18%
Transportation, excl. Aircrafts 17%
Instruments, excl. Medical 16%
Other chemicals 14%
Electronic components, excl. Semicond. 13%
Industrial chemicals 11%
Computers and other office equipment 8%
Aircraft and missiles 4%
Food, kindred, and tobacco products 2%

Total 17%
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Appendix E:  �A simple model with unobserved heterogeneity across innovations and 
across firms in both vi and the patent premium.� 

Recall that if a firm applies for patent protection it earns xijvi � cij and vi otherwise, where the 
subscript i indexes firms (i=1,�,n), and j indexes innovations (j=1,�,m).  Let cij=ρijvij, so that 
an innovation is patented if xij vij - ρij vij > vij, which is equivalent to (xij -ρij -1) > 0.  Define xij -ρij  
to be the net patent premium and denote it as wij.  We introduce within firm (innovation 
specific) and across firm heterogeneity in value as follows: 

 
 

Model payoffs structure 
 

 
 
 
wij = υij+νi :  Patent premium net of patenting costs, ~N(νi ,συ

2);   

υij =  innovation-specific random component of the net premium observed by the 
firm at the time of the patent decision, but not the econometrician and 
distributed i.i.d. ~ N(0,συ

2); 
νi =  firm-specific component of the net premium, observed by the firm at the time 

of the R&D investment, and treated as a parameter in the analysis. 
 

vij = ψij + vi χi :  Private value of an innovation if not patented;  

ψij =  innovation-specific random component of the value of an innovation 
observed by the firm at the time of the patenting decision, but not the 
econometrician i.i.d (0, σψ

2);  
χi =  firm-specific component of the value of an innovation, observed by the firm at 

the time of the R&D investment, but not the econometrician with log χi ~ (0, 
σχ

2);  
vi =  firm-specific component of the value of the innovation, function of observed 

firm and industry characteristics. 

Assumption:  The unobserved errors are independently distributed so that for all i, 
 E(ψij |vi, χi, νi, υij)=0; E(υij | vi, χi, νi, ψij)=0, E(log(χi)| vi) = 0. 

 
 
 
 

R&D INVESTMENTS 

INNOVATION

APPLY FOR PATENT 
PROTECTION

wij vij vij 

NOT APPLY FOR 
PATENT
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The expected value of an innovation is  

( ) ( ) iiiiiijijijijijiji vZvZwvEwwvwEh )1()()1Pr()()1Pr()1|( * Φ−+Φ=<+>>= ν ,  
 
where 

( )
( )
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υ
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−
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Thus, following along the lines of the text, the system of equations to be estimated is:  

 
( )

( )













+++
−

=

++++=−

+Φ=

irisihr 

iairisdikiia 
ipZi i

ηγ
β

ηβπ

ηπ

log
1

1log

log)log(logloglog
 

with: 

vv ikkii VVv ααα +++= ...110 ;  

332211 iiii SSSs λλλ ++= ;  

ωβγ ++= dloglog ; 

ηip = sampling error; iaimimia ξηηη ++= � ; 
iriimir ξχη

β
η ++

−
= log

1
1 . 

Where iria ξξ , represent measurement error in product patent application and product R&D 
respectively. 

 

As for the benchmark model, we also set : 

υσ
ν 1−i  = τ1Ti1+ τ2Ti2 + τ3Ti3  + τ4Ti4 + τ5Ti5  and estimate five levels of the net premium: 

.          1;1;1;1;1 5544332211 +=+=+=+=+= υυυυυ στνστνστνστνστν  
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Table E2. Net patent premium and elasticities 
   Elasticities, wrt  the net premium, of: 

 Expected 
Net 

Patent 
Premium 

Conditional 
Net Patent 

Premium 

R&D Patent 
Application

s 

Patent 
applications 

per R&D $ 

Food, kindred, and tobacco products -1.11 1.60 0.17 2.55 2.38 
Industrial chemicals 0.14 1.89 0.56 1.64 1.07 
Drugs and medicines 0.63 2.01 0.75 1.37 0.62 
Biotech 0.95 2.09 0.90 1.36 0.45 
Other chemicals -0.01 1.85 0.48 1.61 1.13 
Petroleum refining and extraction -0.35 1.79 0.47 2.21 1.74 
Rubber products -0.36 1.76 0.32 1.68 1.37 
Metals -0.20 1.81 0.46 1.90 1.44 
Computers and other office equipment 0.36 1.93 0.59 1.33 0.74 
Machinery, excl. computers 0.43 1.95 0.63 1.36 0.72 
Communication equipment -0.02 1.83 0.42 1.43 1.01 
Electronic components, excl. Semicond. -0.69 1.71 0.35 2.40 2.04 
Semiconductors -0.17 1.81 0.41 1.66 1.25 
Other electrical equipment -0.27 1.80 0.48 2.11 1.63 
Transportation, excl. Aircrafts -0.03 1.85 0.53 1.81 1.28 
Aircraft and missiles 0.02 1.84 0.43 1.36 0.93 
Instruments, excl. Medical -0.26 1.78 0.37 1.70 1.32 
Medical instruments 0.81 2.04 0.80 1.28 0.48 
Other manufacturing industries -0.37 1.77 0.40 2.00 1.59 

      
Total -0.03 1.85 0.50 1.72 1.22 

 




