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ABSTRACT

As policymakers consider expanding insurance coverage for HIV+ individuals, it is useful to ask if

insurance has any effect on health outcomes; and, if so, whether public insurance is as efficacious as private

insurance in preventing premature deaths among HIV+ patients. Using data from a nationally representative

cohort of HIV-infected persons receiving regular medical care, we estimate the impact of different types of

insurance on mortality in this population.

We find that ignoring observed and unobserved health status leads one to conclude (misleadingly) that

insurance may not be protective for HIV patients. After accounting for observed and unobserved heterogeneity,

insurance does protect against premature death, but private insurance is more effective than public coverage.

The better outcomes associated with private insurance are attributable to the more restrictive prescription drug

policies of Medicaid.
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1 Introduction

Most economic models treat health insurance as a hedge against financial
risk from illness. However the benefits from health insurance are not lim-
ited to the avoidance of financial risk, additional benefits are derived from
insurance’s ability to make available medical care that would otherwise be
unaffordable (Nyman, 1999). In fact, policymakers have often cited the lack
of affordability of health care and consequent poor health outcomes for the
uninsured as the primary reason for expanding health insurance coverage.
This view has motivated many investigations of the link between health in-
surance and health, including a recent study by the Institute of Medicine
(Institute of Medicine, 2002).

In their review of this literature, Levy and Meltzer (2001) found that
most of these studies were flawed. There was no causal link between having
health insurance and better health—rather, there were associations. Ex-
ceptional studies that use randomization or quasi-randomization to address
causation have found either no or limited effects on health, depending on the
population under investigation and the health measure used. One problem
with asking the broader question of how insurance affect health is that it
may just be too ambitious. The impact of insurance on health will obviously
depend on circumstances; from a policy perspective, it might be more useful
to ask what population can most benefit from insurance expansions (either
public or private), and how this relationship changes with changes in medical
treatment.

The treatment of human immunodeficiency virus (HIV) provides a use-
ful case study. In 1995, the Food and Drug Administration approved the
first protease inhibitor for treatment of HIV. When new viral particles break
off from an infected cell, protease cuts long protein strands into the parts
needed to assemble a mature virus. These drugs block the protease enzyme,
and hence prevent new viral particles from maturing. Clinical trials and
observational data soon confirmed their clinical usefulness in combination
with older drugs (so-called highly active anti-retroviral therapy or HAART)
in forestalling HIV-related mortality (Palella et al., 1998). After the intro-
duction of protease inhibitors into clinical practice, age-adjusted death rates
from HIV infection fell 25% from 1995 to 1996 and 47% from 1996 to 1997
(Center for Disease Control, 1998).1

1HAART is a combination therapy involving three types of drugs: nucleoside reverse
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HAART is expensive, costing on average about $13,000 per year. Thus
it is possible that health outcomes for HIV-infected persons will be very
responsive to the availability of insurance. Indeed, in previous work, we found
that insurance significantly reduced mortality in HIV+ patients (Goldman
et al., 2001). These results suggest that policies to expand insurance coverage
to the uninsured HIV+ population could save many lives. However, that
paper treats insurance as a single category for computational ease. HIV+
patients have coverage either through private insurance or public insurance—
typically Medicaid. Since these types of insurance differ in extent of coverage
and provider reimbursement we would expect that they differ in the quality
and intensity of treatment.

Several studies have examined the relationship between insurance type
and service utilization among HIV+ patients (Fleishman et al., 1994; Horner
et al., 1996; Joyce et al., 1998; Shapiro et al., 1999). Most of these studies
find that the uninsured or publicly insured HIV+ patients incur lower per
diem charges, receive fewer procedures and are less likely to receive expen-
sive drug therapy than privately insured HIV+ patients with similar medical
conditions. In addition, a majority of HIV patients covered by public insur-
ance are required to demonstrate a disability to qualify for coverage. Thus,
most patients with public insurance obtain coverage only in the advanced
stage of disease. These differences in the intensity of treatment and timing
of initiation of coverage among publicly and privately insured HIV+ patients
leads naturally to questions about how these insurance types differ in their
efficacy in preventing premature HIV related deaths.

In this paper, we identify the causal effects of different types of insurance
on mortality by analyzing observational data on a nationally representative
sample of adult HIV+ patients receiving care in the US. However, measuring
the efficacy of insurance in observational data is complicated by the fact that
insurance decisions might be correlated with unobserved differences in the
health status of patients. Thus, to account for this endogenity of insurance
choices we jointly estimate insurance decisions and mortality and allow for
arbitrary correlation between insurance and mortality in a parametric set-
ting. To identify the ‘true’ effect of different insurance types on mortality we
use state policy variables that affect the ease with which patients’ can ob-

transcriptase inhibitors, protease inhibitors, and non-nucleoside reverse transcriptase in-
hibitors. All regimens require at least three drugs, and the vast majority involve at least
one protease inhibitor.
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tain public insurance and a state level variables for firm size that affects the
likelihood of obtaining employer provided insurance as instruments. These
variables are clearly related to patient insurance status, but should not di-
rectly affect death rates (except through insurance).

The next section describes the data used for this analysis. We then
present our joint model of insurance and mortality and provide the details of
our identification strategy. Following that, we present results from a reduced
form model that treats insurance as exogenous and compare them to the
results from our structural model. The final sections discuss the conclusions
and limitations of our analysis.

2 Data

We use data from a nationally representative study of HIV+ patients in
care—the HIV Costs and Services Utilization Study (HCSUS). The HCSUS
employed a multi-stage national probability sample design to identify HIV+
patients over 18 years old, who made at least one visit for regular care in
the contiguous United States in January or February of 1996. It does not
include HIV+ patients whose only contact with the health care system was
through military, prison, or emergency department facilities, or who have not
made contact with the health care system for their HIV. HCSUS collected
three rounds of interviews: baseline, a first follow-up and a second follow-up
with a baseline response rate of 68% (Duan et al., 1999). The first follow-up
interview was conducted with 2466 subjects between December 1996 and July
1997; and the second follow-up was conducted with 2267 subjects between
August 1997 and January 1998. Much of the attrition between waves is
due to mortality. Toward the end of data collection for the baseline survey,
HAART entered clinical practice and disseminated widely as the first-follow-
up survey was in the field. Thus, we use the first follow-up sample of 2466
subjects with covariates measured at first follow-up for our analysis.

We construct analytic weights to adjust the sample to the reference pop-
ulation. A respondent’s analytic weight, which may be interpreted as the
number of people in the population represented by that respondent, is the
product of three patient-specific quantities – the sampling weight, the mul-
tiplicity weight, and the non-response weight. The sampling weight adjusts
for oversampling (of women, for example); the multiplicity weight adjusts
for patients who could potentially enter the sample via multiple providers;
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and the non-response weight adjusts for differential cooperation (Duan et al.,
1999). All analyses presented in this paper use these weights.

We use mortality one year after the interview date as our outcome vari-
able. Mortality is based on data collected by HCSUS interviewers in the
field, as well as from Equifax, Inc., a credit company that also tracks deaths
in the United States. The main explanatory variable we are interested in
is insurance type, which are derived from the HCSUS data. Table 1 shows
the proportion of respondents on HAART by sources of insurance coverage.
Table 1 shows that the majority of HIV+ patients obtain coverage through
either private insurance or Medicaid – 30% of the respondents are covered
by private insurance only, 28% are covered by Medicaid only, 16% are cov-
ered by both Medicaid and Medicare, and 18% are uninsured. However
there are sharp differences in the use of HAART by source of insurance cov-
erage. HIV patients with private insurance only are more likely to be on
HAART than patients with any public insurance coverage. This is despite
the higher incidence of AIDS (more advanced disease) among patients with
public insurance. Thus to account for this differential use of HAART we
classify patients into three mutually exclusive insurance categories –private
insurance only, (any) public insurance, no insurance.2

3 Empirical Model of Insurance and Mortality

Let m∗
i represent an index function that measures the mortality propensity for

HIV+ patient i one year after interview. We model this mortality propensity
as a function of the insurance status of the individual, observed covariates,
and and unobserved error:

m∗
i = c1 + γ × insuredi + β′

1Xi − εi (1)

The vector Xi represents observed exogenous covariates that determine
mortality propensity, such as age, gender, and education. Mortality is also
affected by insurance status, where privatei represents whether the patient
was covered by private insurance (only), and publici represents whether the
patient was covered by (any) public insurance. Mortality is also assumed

2We check the sensitivity of our results in an alternate specification where we exclude
patients with Medicaid and private insurance, Medicare and private insurance, and Medi-
care only from the public insurance category as patients in these insurance categories had
higher use of HAART than other patients in the public insurance category.
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to depend on an unobservable heterogeneity component, ρm,i that will also
relate to insurance choices. It is useful to think of this as unobserved health
status or attitudes towards risk, and they are assumed to be orthogonal to
the covariates Xi. There is also a random error εm,i that is uncorrelated with
Xi and insurance choice. We want to consistently estimate the parameters
c1, β1, γ1 and γ2, after accounting for the endogeneity of insurance status.

We define mi as an indicator variable that represents whether patient i
actually died one year after interview:

mi =

{
1
0

if m∗
i > 0

if m∗
i ≤ 0

(2)

We assume that εm,i are i.i.d standard normal errors, with zero mean
and unit variance. This distributional assumption implies a probit model for
mi, where the probability of death, conditional on observed characteristics
{privatei, publici, Xi} and unobserved characteristics ρm is:

P [mi = 1| {privatei, publici, Xi} , ρm] =
Φ (c1 + γ1privatei + γ2publici + β′

1Xi + ρm,i)
(3)

Here, Φ(.) is the cumulative distribution function for the standard normal
distribution.

Patients choose among insurance types j = {private, public, uninsured}
on the basis of a standard random indirect utility function:

V ∗
j,i = cj + β′

jZi + ρj,i + εj,i (4)

Here, Zi represents variables that determine insurance status including
our set of instrumental variables (that is, variables that belong in the insur-
ance equation, but not in the mortality equation); and ρj,i is a patient-specific
random intercept that reflects the patients’ propensity for insurance status j
that is unobserved by the researcher. Again, this could be due to unobserved
disease severity or preferences for risk. The parameters cj and βj are addi-
tional parameters to be estimated; and εj,i represents the orthogonal error
term.

Patients choose the insurance status that maximizes their indirect utility.
We assume that εj,i are independently and identically distributed according
to the Type II extreme value distribution. This distributional assumption
and normalizing {cuninsured, βunisured, ρuninsured,i} to zero yields a multinomial
logit model for insurance choice.
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P [privatei = 1|Zi, ρprivate, ρpublic] =
exp

(
cprivate + β′

privateZi + ρprivate,i

)
1 +

∑
j 6=uninsured

exp
(
cj + β′

jZi + ρj,i

)
(5)

P [publici = 1|Zi, ρprivate, ρpublic] =
exp

(
cpublic + β′

publicZi + ρpublic,i

)
1 +

∑
j 6=uninsured

exp
(
cj + β′

jZi + ρj,i

) (6)

To complete the model and allow for correlation between mortality and
insurance choices, we need to assume a joint distribution for the unobserved
heterogeneity vector ρ = (ρm, ρprivate, ρpublic). Our approach is semi para-
metric. We allow the unobserved heterogeneity in each equation to take
one of three values—intuitively, there are three types of people that oc-
cur with probabilities p1, p2, and 1 − p1 − p2. The effect of being a cer-
tain type has different effects on each outcome: (ρ1

m, ρ2
m, ρ3

m) for mortality,(
ρ1

private, ρ2
private, ρ3

private

)
for private insurance, and

(
ρ1

public, ρ2
public, ρ3

public

)
for

public insurance. For example, there is a p1 probability that a person will
be of the first type, which would imply realizations of ρ1

m for the propensity
to die, ρ1

public for the propensity to have public insurance, and ρ1
private for the

propensity to privately insurance.
This discrete factor distributional approach has several advantages over

specifying a continuous parametric density for the unobserved heterogeneity
vector. First, an incorrect specification of the parametric density function
might lead to biased parameter estimates. The discrete factor density allows
us to approximate any underlying distribution of heterogeneity. In fact,
Monte Carlo studies show that discrete factor distributions with 2-4 points of
support adequately model many distributions (Heckman, 2001; Mroz, 1999).
Second, discrete factor models are computationally simpler than parametric
models as they avoid multiple numerical integration in the construction of
the likelihood function.

Since the mortality, public insurance, and private insurance equations
have intercept terms, we normalize the mean of each heterogeneity compo-
nent to be zero. This implies that the third point of support in each equation
is not “free”.3 Thus we need to estimate 8 additional parameters: 2 points of

3For example, the third point of support ρ3
min the mortality equation can be written as
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support in the mortality equation, 2 points of support in the private insur-
ance equation, 2 points of support in the public equation, and 2 probabilities.
The resulting variance-covariance matrix for the unobserved heterogeneity is:

V ar (ρm, ρprivate, ρpublic) =
∑
k

pk

(
ρk

m

)2 ∑
k

pkρ
k
mρk

private

∑
k

pkρ
k
mρk

public∑
k

pk

(
ρk

private

)2 ∑
k

pkρ
k
privateρ

k
public∑

k

pk

(
ρk

public

)2

 (7)

This model not only allows non-zero covariance across mortality and in-
surance propensities but also allows non-zero covariance between private and
public insurance propensities. Thus our model relaxes the IIA assumption
of standard multinomial logit model and allows completely general variance-
covariance matrix. The key correlations in our model may thus be written
as:

Corr (ρm, ρprivate) =

∑
k

pkρ
k
mρk

private√∑
k

pk (ρk
m)2 ∑

k

pk

(
ρk

private

)2
(8)

Corr (ρm, ρpublic) =

∑
k

pkρ
k
mρk

public√∑
k

pk (ρk
m)2 ∑

k

pk

(
ρk

public

)2
(9)

Corr (ρprivate, ρpublic) =

∑
k

pkρ
k
privateρ

k
public√∑

k

pk

(
ρk

private

)2 ∑
k

pk

(
ρk

public

)2
(10)

We use maximum likelihood to estimate the parameters of our model.
The problem is that we do not observe any patient’s type and so we must
integrate over all possible types (three in our model). However, conditional

a function of the other two points of support and the probabilities of each type, as follows:
E (ρm) = 0
⇒ p1 · ρ1

m + p2 · ρ2
m + (1− p1 − p2) · ρ3

m = 0
⇒ ρ3

m = −p1·ρ1
m+p2·ρ2

m

(1−p1−p2)
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on a given type, the heterogeneity is known. The contribution of patient i
to the likelihood function is thus given by:

li =
3∑

k=1

pk

(
P

[
mi = 1|ρk

m

]mi
)
×

(
1− P

[
mi = 1|ρk

m

]1−mi

)
×(

P
[
privatei = 1|ρk

private

]privatei

)
×

(
P

[
publici = 1|ρk

private

]publici

)
×(

1− P
[
privatei = 1|ρk

private

]
− P

[
publici = 1|ρk

private

])(1−privatei)(1−publici)

(11)
We have 6 possible outcomes for the dependent variables in our sample:

(dead/alive) x (none/private/public). To construct the contribution to the
likelihood function for each set of outcomes, we first obtain the likelihood
of observing that value of the dependent variables conditional on a realiza-
tion k of the unobserved heterogeneity ρk =

(
ρk

m, ρk
private, ρk

public

)
. We then

integrate over all all possible realizations to get Equation (11). Finally we
obtain the weighted log-likelihood function by summing the log-likelihood
across individuals:

ln (L|Γ) =
N∑

i=1

wi ln (li) (12)

Γ is the vector of model parameters; wi are the analytic weights and N
is the sample size. Because it is difficult to interpret the magnitude of the
parameter estimates directly, we also report the relative impact of private
and public insurance on average mortality. More precisely, we compute:

RI (private) ≡ Average mortality private
Average mortality not insured

− 1

=

∑
i

∑
k

pkΦ(c1+γ1+β′
1Xi+ρk

m)∑
i

∑
k

pkΦ(c1+β′
1Xi+ρk

m)
− 1

(13)

RI (public) ≡ Average mortality public
Average mortality not insured

− 1

=

∑
i

∑
k

pkΦ(c1+γ1+β′
1Xi+ρk

m)∑
i

∑
k

pkΦ(c1+β′
1Xi+ρk

m)
− 1

(14)

8



4 Identification

We use state Medicaid policies and average firm size as our instrumental
variables to explain insurance status but not mortality (except via insurance
status). Medicaid is the most common form of insurance for the HIV+
population in care, covering 46% of the population. HIV+ patients can
qualify for Medicaid through three distinct pathways.

First, patients who meet the state’s income eligibility and family compo-
sition requirements for Aid to Families with Dependent Children (AFDC) as
they existed on July 16, 1996 qualify for Medicaid coverage. Second, Sup-
plemental Security Income (SSI) beneficiaries are automatically eligible for
Medicaid in 38 states. The other states have different standards for eligibil-
ity either as a 209(b) state or a waiver state. Section 209(b) of the Social
Security Amendments Act of 1972 allows States to include more restrictive
definitions of “disability” and lower income and assets standards for Medicaid
eligibility. Medicaid eligibility is also available through a “medically needy”
program for individuals who meet Medicaid’s disability criteria but have
incomes that exceed the financial eligibility limit. The program allows indi-
viduals to “spend down” to Medicaid eligibility by deducting medical-related
expenses from their reported income. States have the option to but are not
required to establish a “medically needy” program. In addition, states vary
in their income eligibility levels for the “medically needy” program. For each
patient, we define the following four variables based on Medicaid eligibility
rules in the state in which the patient is sampled:

• Medically-Needy Threshold: This is the state’s income eligibility thresh-
old for the medically-needy program expressed as a percentage of the
federal poverty line4.

• AFDC Threshold: This is the State’s income eligibility threshold for
Aid to Families with Dependent Children (AFDC) eligibility in 1996
expressed as a percentage of the federal poverty line.

• SSI < 65% FPL (federal poverty line): This is an indicator variable for
whether the state’s income eligibility threshold for Medicaid eligibility

4States which did not institute a medically-needy program were coded as having an
income threshold of zero percent
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through the “SSI” category was at least 10 percentage points lower
than the federal guideline of 75 percent of the federal poverty line5.

• Average firm size: This is the average firm size in the state in which the
patient was sampled as instrument for insurance status. Several studies
have documented the strong positive association between firm size and
employer provided insurance offers (Bundorf, 2002; Cantor et al., 1995;
Employee Benefit Research Institute, 2001).

Distributional assumptions aside, as in all instrumental variable-based
studies, the credibility of our study rests on the believability of our instru-
ments. Our state policy instruments and average firm could fail in at least
two ways. First, the estimators perform poorly if the instruments are only
weakly correlated with the treatment variable—that is, insurance status (Nel-
son and Startz, 1990; Bound et al., 1995; Staiger and Stock, 1997). Thus,
we report Wald statistics for the joint significance of our instruments in pre-
dicting insurance status. Second, our instruments might be correlated with
unobserved determinants of mortality (like unmeasured health status vari-
ables). The assumption that an instrumental variable is uncorrelated with
the outcome measure cannot be directly tested. For these reasons, some
researchers have argued that IV estimates in this context should be viewed
with caution (Bound et al., 1995).

However, in our application, it seems clear that patients have little direct
influence at an individual level on state policies or firm size, so our state level
instruments seem valid. This argument is not enough to establish exogene-
ity, however, if there are unobserved state-level variables that determine both
health and insurance status. In that case, state policies would be endogenous
in our model despite the lack of control by patients over these policies. In
order to address this issue, we develop some indirect evidence that our in-
struments are not simply picking up differences in unobserved health across
states. If the latter hypothesis were true, then one would expect to find
that our state-level instruments predict the mortality of patients even in a
non-HIV population.

To check this assumption, we estimate a logit model of one-year mortality
using data from the Medicare Current Beneficiary Survey (MCBS). On the

5We coded this as a dummy variable as there were only a 4 states that implemented a
significantly more restrictive eligibility standard than the federal guideline.
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right-hand side, this mortality model includes a sparse set of health status in-
dicators, such as measures of Activities of Daily Living (ADLs) and a general
health index, and our state-policy instruments. Since this elderly or disabled
population is by definition insured by Medicare, our instruments should not
predict their mortality unless they proxy for unobserved state-level effects.
Table 2 reports the regression results and shows that our instruments are not
statistically significant in the model, with odds ratios near one. Of course,
these results do not prove that unobserved state effects are unimportant in
the HCSUS population, but they are certainly suggestive. There is no good
reason to expect that such effects should be present for HIV+ patients when
they are not present for the elderly or disabled.

5 Results

Descriptive means for all model variables are given in Table 3. Most of the
variables are self-explanatory. In some models, we include measures of the
lowest ever CD4+ t-lymphocyte cell count, a critical measure of the function
of a patient’s immune system. A depletion in these cells correlates strongly
with the worsening of HIV disease and the risk of death (Fauci et al., 1998).
In this paper, we categorize CD4+ counts into four categories, as shown in
Table 3. Patients with CD4+ lymphocyte counts below 50 have a very poor
prognosis in general; while those with counts above 500 are considered much
healthier.

To illustrate the consequences of selection bias, we estimate a “näıve”
probit model where insurance status is treated as an exogenous variable.
Table 4 reports the results from the näıve models. In order to demonstrate
the importance of including information on health status, we include two sets
of estimates; one set with controls for disease progression, particularly CD4
cell count, and one without.

In the regression without severity controls, public insurance is associated
with an increased probability of 1-year mortality, and the effect is statisti-
cally and substantively significant. This finding persists in the analysis with
severity controls, although the effect is no longer significant. This finding
is analogous to that of Lancaster and Intrator (1998) who also found the
perverse result that health insurance increases the risk of death for HIV+
patients. In both the regression models, private insurance is associated with
a decreased probability of death, however the effect size is statistically in-
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significant in both models.
Table 5 summarizes the results on the impact of insurance status on

mortality. In general, the use of severity controls reduces the magnitude
of the both public and private insurance effect substantially. For instance,
the results without severity controls indicate that public insurance increases
relative mortality by 168%, including health status measures like CD4 cell
count reduces this effect to 31%, but it does not disappear. Similar results
are obtained for the private insurance effect—private insurance decreases
relative mortality by 9% without severity controls and by 46% with sever-
ity controls. We attribute these findings to a spurious correlation between
severity of illness and insurance for HIV patients. The correlation between
public insurance and severity of illness seems to be especially strong. A pos-
sible explanation is that the eligibility rules for Medicaid or Medicare require
HIV+ patients to demonstrate a “disability” – almost always associated with
advanced disease.

The parameter estimates for the mortality equation (1) in the structural
model are shown in Table 6, along with the correlation between insurance
status and mortality—equations (8) and (9)—and the correlation between
public and private insurance—equation (10). Table 7 gives the parameter
estimates for the private and public insurance equations and also reports
the joint significance of the excluded instruments in equation (4). This is
computed using a Wald statistic, since these are considered a test of the small
sample bias associated with the IV estimator (Staiger and Stock, 1997).

Table 6 shows several important differences from the näıve results. First,
we see that both private and public insurance decrease the likelihood of death.
This is in sharp contrast to the results from the näıve model where public
insurance was associated with a higher probability of death and private in-
surance had a statistically insignificant effect on mortality. This reversal in
the effects of private and public insurance on mortality can be explained
by the positive correlation between unobserved health status and insurance
choice. For instance, our results show that unobserved mortality propensity
and public insurance propensity are positively correlated (correlation coeffi-
cient 0.89). Similarly we also find positive correlation between unobserved
mortality propensity and private insurance propensity, although the degree
of correlation is much weaker than that for public insurance.

Second, the magnitude of the relative impact of insurance on mortality is
greater for private insurance (79%) than for public insurance (66%) (shown
in Table 5). These findings might be explained by the differential access to
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HAART among those with public and private insurance (shown in Table 1).
The findings are also consistent with the fact that most respondents receive
public insurance only when they demonstrate “disability” due to advanced
disease -this might delay treatment for the publicly insured patients thus
resulting in poorer outcomes than those for privately insured patients.

In an alternate model we excluded patients with Medicare and private
insurance, Medicaid and private insurance and Medicare only from the public
insurance categories. Since these patients had higher HAART use than others
on public insurance we would expect that excluding these patients would
increase the difference between the impact of public and private insurance
on mortality. Our results, confirm this hypothesis—the relative impact of
private insurance on mortality increases marginally to 80% and the relative
impact of public insurance on mortality decreases to 63%6.

It is also interesting to note that private and public insurance propensities
are positively correlated. This might be explained by unobserved character-
istics such as risk aversion and poor health that increase the propensity for
insurance, in general.

The results from the insurance equations in Table 7 show that the state
level instruments are highly correlated with both private and public insur-
ance choice and are jointly significant (p < 0.01). As expected, we find that
higher average firm size is associated with higher likelihood of having pri-
vate insurance. We also find that more generous Medicaid eligibility rules
are associated with higher likelihood of public insurance coverage. However,
contrary to our expectations the results indicate that higher AFDC threshold
is associated with a lower likelihood of public insurance. Multi-collinearity
between the three Medicaid policy variables, which reduces the power of our
estimates, seems to be the most likely explanation for this result (correla-
tion between AFDC threshold and Medically Needy threshold is 0.62). In
an alternate specification in which we excluded other Medicaid policy vari-
ables, we find that AFDC threshold has the expected sign and higher AFDC
threshold is associated with higher likelihood of public insurance.

6 Conclusion

Our main findings are that (1) ignoring observed and unobserved health sta-
tus in our structural mortality equation leads one to conclude that insurance

6The full results from this model are available from the authors upon request.
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may not be protective for HIV patients, (2) after accounting for observed
and unobserved heterogeneity, insurance does protect against death, and (3)
private insurance is more effective than public insurance in protecting HIV
patients.

The finding that insurance is protective surely is related to highly active
anti-retroviral therapy. By July 1997, approximately 75% of the HCSUS
sample had used a protease inhibitor or nonnucleoside reverse transcriptase
inhibitor (Shapiro et al., 1999). This rapid proliferation in clinical practice
is remarkable given the approval of the first protease inhibitor was only two
years earlier, and the expense associated with these new drugs.

The finding that private insurance is more effective than public insurance
in preventing premature HIV-related deaths might be explained by differ-
ences in the intensity of treatment and use of HAART. In the HCSUS, less
than 5% of those with private insurance did not have drug coverage. But
while all Medicaid programs provide prescription drug coverage to those who
are categorically eligible, many states do not provide such coverage to the
Medically-Needy7. Using program participation and income data in the HC-
SUS, we have estimated elsewhere that 30% of those with Medicaid coverage
qualified through the Medically-Needy program. Thus we expect that many
of the HIV+ population with Medicaid do not have coverage of HAART.

In addition, the differences in the effectiveness of private and public insur-
ance might be explained by differences in the timing of initiation of coverage.
Some private insurers may place limits on when it will cover HAART, but
Medicaid limits can be quite severe. Many states place limits on how many
prescriptions can be filled per month, and since HAART therapy alone av-
erages 4.8 prescriptions, these can limit coverage for not only HAART but
also drugs to treat opportunistic infections associated with advanced disease.
Many of the drugs also required prior authorization that restricted use to ad-
vanced illness. The result is that privately insured patients are able to start
treatment earlier in the disease than the publicly insured, and the latter often
have no coverage at all. The results suggest that extending public insurance
coverage to HIV+ patients in the early stage of the disease and creating in-
centives to increase treatment intensity and the use of HAART might prevent
a significant number of premature HIV related deaths. These findings are
especially relevant in light of the fact that treatment of HIV with prescription
drugs not only saves lives but also result in lower total health care costs as

7Currently, 39 states offer drug coverage to the medically-needy.
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increases in pharmaceutical costs are offset by reduction in hospitalization
and other related costs.
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Table 1: Insurance, Use of HAART, and AIDS

HAART by first
Insurance status % of Sample followup (%) AIDS (%)

None 18 32 21
Public 52 34 53
Medicaid Only 28 33 47
Medicaid and Medicare 16 33 58
Medicaid and Private 2 42 57
Medicare Only 4 43 64
Medicare and Private 2 53 62
Private (only) 30 50 34

Source: HCSUS first follow-up (N=2466).
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Table 2: Medicare beneficiary 1-year mortality—logit regression

95% Conf. Interval
Variables Odds Ratio Lower Limit Upper Limit

State Instruments
Medically-Needy Threshold 1.001 0.997 1.004
AFDC Threshold 1.001 0.997 1.003
SSI Threshold < 65% of FPL 1.140 0.816 1.592
Average Firm Size 0.985 0.924 1.050
Number of ADL limitations
No Limitation (Ref. cat.) - - -
1 ADL 2.375 1.803 3.129
2 ADL 2.503 1.819 3.443
3 ADL 3.296 2.307 4.723
4 ADL 3.376 2.331 4.889
5 ADL 5.857 4.347 7.893
6 ADL 7.589 5.786 9.954
Self reported Health Status
Excellent (Ref. Cat) - - -
Very Good 1.625 1.042 2.536
Good 1.839 1.205 2.805
Fair 2.415 1.574 3.703
Poor 4.283 2.7726 6.618

Source: Medicare Current Beneficiary Survey, 1996 (N=9,968). Excludes states not included in the HCSUS

sample.
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Table 3: Descriptive Statistics

Proportion or mean
Variable (N = 2,466)

Insurance Status
Private Insurance 30%
Public Insurance 52%
Uninsured 18%
Demographics
Age 39 years
Nonwhite 51%
Female 23%
Education
Less than HS degree 25%
High school degree 27%
Some College or more 48%
Years since diagnosis:
Less than one year 9%
1-2 years 12%
2-3 years 23%
3-4 years 27%
4-5 years 18%
5+ years 11%
State Instruments
Medically-Needy Threshold 50% of FPL
AFDC Threshold 181% of FPL
SSI Threshold < 65% of FPL 7%
Average Firm Size 147 workers
Lowest ever CD4 count (cells per mm3)
500+ 8%
200 – 499 38%
50 – 200 31%
0 – 50 23%
Died within 12 months after interview 4%

Note: FPL – Federal Poverty Line;

Source: HCSUS first followup survey (N=2,466)
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Table 4: Results for the näıve model

No severity With severity
Coefficient controls controls

Insurance
Private -0.0442 -0.3071
Public 0.4521** 0.1389
No Insurance (Ref. Cat.) - -
Demographics
Age 0.0139 -0.0098
Age2 -0.0001 0.0003
Nonwhite -0.1327 -0.1520
Female -0.0516* 0.0154
Education
High school degree -0.0134 -0.0075
Some College or more 0.0326 -0.0568
Less than HS degree (Ref. Cat.) - -
Years since diagnosis
Less than one year 0.1836 0.0633
1-2 years 0.2441 0.3820
2-3 years -0.0200 -0.0152
3-4 years 0.3746** 0.4657**
4-5 years 0.0761 0.1171
5+ years (Ref. Cat.) - -
Lowest ever CD4 count
(cells per mm3)
500+ - -0.9305**
200 – 499 - -1.3007**
50 – 200 - -0.7420**
0 – 50 (Ref. Cat.) - -
Constant -2.5688** -1.3810

Note: Estimates are from a single equation (weighted) probit of one-year mortality with and without
severity controls (N=2,466).
** Statistically significant at 95% confidence level

* Statistically significant at 90% confidence level
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Table 5: Mortality Results (Deaths per 1,000 HIV+ patients)

Insurance Status
Private Public None

Unadjusted Raw Means 19 63 26
Näıve Model
No severity controls 20 (-9%) 59 (+168%) 22
With severity controls 21 (-46%) 51 (+31%) 39
Structural Model 25 (-79%) 41 (-66%) 120

Note: Numbers in parentheses report percentage change in mortality relative to no insurance case (RI)

for each empirical model (equations 13 and 14).
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Table 6: Structural Model—Mortality Equation

Parameters Estimate

Insurance
Private -6.7153**#

Public -5.2764**#

No Insurance (Ref. Cat.) -
Demographics
Age -0.2059
Age2 0.0032
Nonwhite -0.5536
Female 0.3652
Education
High school degree 0.4813
Some College or more -0.5750
Less than High School (Ref. Cat.) -
Years since diagnosis
Less than one year -1.9967*
1-2 years -0.1727
2-3 years -0.9995
3-4 years -0.1966
4-5 years -0.2927
5+ years (Ref. Cat.) -
Lowest ever CD4 count
500+ cells per mm3 -4.5941**
200 – 499 cells per mm3 -4.8722**
50 – 200 cells per mm3 -3.5580**
0 – 50 cells per mm3 (Ref. Cat.) -
Constant -0.6411
Correlations
Corr

(
ρm, ρprivate

)
0.325

Corr
(
ρm, ρpublic

)
0.892

Corr
(
ρpublic, ρprivate

)
0.717

Note: Estimates are maximum likelihood estimates of equation (12) (N=2,466). Correlations are computed
using equations (8)-(10).
** Statistically significant at 95% confidence level
* Statistically significant at 90% confidence level

# Coefficient on private insurance is not equal to coefficient on public insurance at 95% confidence level
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Table 7: Structural Model—Insurance Equations

Private Public
Parameters Insurance Insurance

Demographics
Age 0.0932* -0.0143
Age2 -0.0007 0.0007
Nonwhite -0.9247** 0.0508
Female -0.0141 0.7064**
Education
High school degree 0.8768** -0.2089
Some College or more 1.5504** -0.6675**
Less than High School (Ref. Cat.) - -
Years since diagnosis
Less than one year -1.0090** -1.4389**
1-2 years -0.0787 -0.5448**
2-3 years -0.1152 -0.4162
3-4 years 0.0215 -0.0699
4-5 years 0.2848 0.2300
5+ years (Ref. Cat.) - -
Lowest ever CD4 count
500+ cells per mm3 -0.8453** -1.8698**
200 – 499 cells per mm3 -1.1291** -1.8803**
50 – 200 cells per mm3 -1.0054** -1.1391**
0 – 50 cells per mm3 (Ref. Cat.)
State-Level Instruments
SSI Threshold < 65 -0.1179 -0.1526
AFDC Threshold -0.0107* -0.0142**
Medically-Needy Threshold 0.0167** 0.0166**
Average Firm Size 0.1494** 0.0461
Constant -2.7945 3.6412
Wald test (of instruments) 41.83** 38.08**

Note: Estimates are maximum likelihood estimates of equation (12) (N=2,466). Correlations are computed
using equations (8)-(10).
** Statistically significant at 95% confidence level
* Statistically significant at 90% confidence level

# Coefficient on private insurance is not equal to coefficient on public insurance at 95% confidence level.
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