
NBER WORKING PAPER SERIES

SPURIOUS REGRESSIONS IN FINANCIAL ECONOMICS?

Wayne E. Ferson
Sergei Sarkissian
Timothy Simin

Working Paper 9143
http://www.nber.org/papers/w9143

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2002

We are grateful to Eugene Fama for suggesting the question that motivates this research and to John
Cochrane, Frank Diebold, Richard C. Green, Gordon Hanka, Raymond Kan, Donald Keim, Jeffrey Pontiff,
Rossen Valkanov and an anonymous referee for helpful comments or help with data.  Ferson acknowledges
financial support from the Pigott-Paccar professorship at the University of Washington and the Collins Chair
in Finance at Boston College.  Sarkissian acknowledges financial support from FCAR and IFM2.  This paper
has benefited from workshops at McGill University, at the July 2000 NBER Asset Pricing Group, the 2000
Northern Finance Meetings and the 2001 American Finance Association Meetings.  The views expressed in
this paper are those of the authors and not necessarily those of the National Bureau of Economic Research.

© 2002 by Wayne E. Ferson, Sergei Sarkissian and Timothy Simin.  All rights reserved.  Short sections of
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Spurious Regressions in Financial Economics?
Wayne E. Ferson, Sergei Sarkissian and Timothy Simin
NBER Working Paper No. 9143
September 2002
JEL No. G100, G120, G140, C100, C120, C220

ABSTRACT
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PREDICTIVE MODELS for common stock returns have long been a staple of financial 

economics.  Early studies, reviewed by Fama (1970), used such models to examine 

market efficiency.  Stock returns are assumed to be predictable, based on lagged 

instrumental variables, in the current conditional asset pricing literature.  Standard 

lagged variables include the levels of short-term interest rates, payout-to-price ratios for 

stock market indexes, and yield spreads between low-grade and high-grade bonds or 

between long- and short-term bonds.  Many of these variables behave as persistent, or 

highly autocorrelated, time series.  Table I surveys major studies that propose predictor 

variables. 

 This paper studies the finite sample properties of stock return regressions with 

persistent lagged regressors.  We focus on two issues.  The first is spurious regression, 

analogous to Yule (1926) and Granger and Newbold (1974).  These studies warned that 

spurious relations may be found between the levels of trending time series that are 

actually independent.  For example, given two independent random walks, it is likely 

that a regression of one on the other will produce a "significant" slope coefficient, 

evaluated by the usual t-statistics. 

 In this paper the dependent variables are asset rates of return, which are not 

highly persistent.  Thus, one may think that spurious regression problems are unlikely.  

However, the returns may be considered to be the sum of an unobserved expected 

return, plus unpredictable noise.  If the underlying expected returns are persistent time 

series there is still a risk of spurious regression.  Because the unpredictable noise 

represents a substantial portion of the variance of stock returns, the spurious regression 
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results will differ from those in the classical setting. 

 The second issue is "data mining," as studied for stock returns by Lo and 

MacKinlay (1990), Foster, Smith and Whaley (1997) and others.  If the standard 

instruments employed in the literature arise as the result of a collective search through 

the data, they may have no predictive power in the future.  Stylized "facts" about the 

dynamic behavior of stock returns, using these instruments (e.g., Cochrane, 2001) could 

be artifacts of the sample.  Such concerns are natural, given the widespread interest in 

predicting stock returns.   

 We focus on spurious regression and the interaction between data mining and 

spurious regression bias.  If the underlying expected return is not predictable over time, 

there is no spurious regression bias, even if the chosen regressor is highly 

autocorrelated.  In this case, our analysis reduces to pure data mining as studied by 

Foster, Smith and Whaley (1997). 

 When expected returns are persistent, spurious regression bias calls some of the 

evidence of previous studies into question.  We examine univariate regressions for the 

Standard and Poors 500 (SP500) excess return using 13 popular lagged instruments, 

over the sample periods of the original studies.  We find that seven of 26 t-ratios or 

regression R-squares, significant by the usual 5% criteria, are consistent with the null 

hypothesis of a spurious regression.   

 The spurious regression and data mining affects reinforce each other.  If 

researchers have mined the data for regressors that produce high "R-squares" in 

predictive regressions, the mining is more likely to uncover the spurious, persistent 
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regressors.  The standard regressors in the literature tend to be highly autocorrelated, as 

expected if the regressors result from a spurious mining process.  For reasonable 

parameter values, all of the regressions that we review from the literature are consistent 

with a spurious mining process, even when only a small number of instruments are 

considered in the mining. 

 This paper contributes to a substantial literature which studies the sampling 

properties of predictive regressions for stock returns.  Stambaugh (1999), Nelson and 

Kim (1993), Goetzmann and Jorion (1993) and Bekaert, Hodrick and Marshall (1997) 

study biases due to dependent stochastic regressors.  Kim, Nelson and Startz (1991) 

study structural change induced misspecification.  Campbell and Shiller (1988) consider 

dependent regressors with unit roots.  Kandel and Stambaugh (1990), Fama and French 

(1988a) and Hodrick (1992) focus on autocorrelation for long-horizon stock returns.  

Lanne (2001) develops a general test of predictability in the presence of near unit roots.  

Pesaran and Timmermann (1995), Bossaerts and Hillion (1999), Goyal and Welch (1999) 

and Simin (2002) examine model selection and out-of-sample validity.  Boudoukh and 

Richardson (1994) provide an overview. 

   The rest of the paper is organized as follows.  Section I describes the data.  

Section II presents the models used in the simulation experiments.  Section III presents 

the results.  First, we study the spurious regression issue in isolation.  Then we consider 

the interaction between spurious regression and data mining biases.  Section IV offers 

concluding remarks. 

 I.  The Data 
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 Table I surveys nine of the major studies that propose instruments for predicting 

stock returns.  The table reports summary statistics for monthly data, covering various 

subperiods of 1926 through 1998.  The sample size and period depends on the study 

and the variable, and the table provides the details.  We attempt to replicate the data 

series that were used in the original studies as closely as possible.  The summary 

statistics are from our data.  Note that the first order autocorrelations frequently suggest 

a high degree of persistence.  For example, the short term Treasury bill yields, monthly 

book-to-market ratios, the dividend yield of the SP500 and some of the yield spreads 

have sample first order autocorrelations of 0.97 or higher.   

 Table I also summarizes regressions for the monthly return of the SP500 stock 

index, measured in excess of the one-month Treasury bill return from Ibbotson 

Associates, on the lagged instruments.  These are OLS regressions using one instrument 

at a time.  We report the slope coefficients, their t-ratios and the adjusted R-squares.  

The R-squares range from less than 1% to more than 7%, and eight of the 13 t-ratios are 

larger than 2.0.  The t-ratios are based on the OLS slopes and Newey-West (1987) 

standard errors, where the number of lags is chosen based on the number of statistically 

significant residual autocorrelations.1    

 The small R-squares in Table I suggest that predictability represents a tiny 

                                                 
    1 Specifically, we compute twelve sample autocorrelations and compare the values with 
a cutoff at two approximate standard errors: 2/√T, where T is the sample size.  The 
number of lags chosen is the minimum lag length at which no higher order 
autocorrelation is larger than two standard errors.  The number of lags chosen is indicated 
in the far right column. 
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fraction of the variance in stock returns.  However, even a small R-squared can signal 

economically significant predictability.  For example, Kandel and Stambaugh (1996) and 

Fleming, Kirby and Ostdiek (2001) find that optimal portfolios respond by a substantial 

amount to small R-squares in standard models.  Studies combining several instruments 

in multiple regressions report higher R-squares.  For example, Harvey (1989), using five 

instruments, reports adjusted R-squares as high as 17.9% for size portfolios.  Ferson and 

Harvey (1991) report R-squares of 5.8% to 13.7% for monthly size and industry portfolio 

returns.  These values suggest that the "true" R-squared, if we could regress the stock 

return on its time-varying conditional mean, might be substantially higher than we see 

in Table I.  To accommodate this possibility, we allow the true R-squares in our 

simulations to vary over the range from zero to 15%.  For exposition we focus on an 

intermediate value of 10%. 

 

A. Potential Instruments 

 To incorporate data mining, we compile a randomly-selected sample of 500 

potential instruments, through which our simulated analyst sifts to mine the data for 

predictor variables.  We select the 500 series randomly from a much larger sample of 

10,866 potential variables.  The specifics are described in the Appendix.  Essentially, the 

procedure is to generate uniformly distributed random numbers, order the series from 1 

to 10,866 and randomly extract 500 series.  The 500 series are randomly ordered, and 

permanently assigned numbers between 1 and 500.  When a data miner in our 

simulations searches through, say 50 series, we use the sampling properties of the 50 
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series to calibrate the parameters in the simulations.  

 We also use our sample of potential instruments to calibrate the parameters that 

govern the amount of persistence in the "true" expected returns in the model.  On the 

one hand, if the instruments we see in the literature, summarized in Table I, arise from a 

spurious mining process, they are likely to be more highly autocorrelated than the 

underlying "true" expected stock return.  On the other hand, if the instruments in the 

literature are a realistic representation of expected stock returns, the autocorrelations in 

Table I may be a good proxy for the persistence of the true expected returns.2  The mean 

autocorrelation of our 500 series is 15% and the median is 2%.  Eleven of the 13 sample 

autocorrelations in Table I are higher than 15%, and the median value is 95%.  We 

consider a range of values for the true autocorrelation based on these figures, as 

described below.  

 

 II. The Models 

 Consider a situation in which an analyst runs a time-series regression for the 

future stock return, rt+1, on a lagged predictor variable: 

 

                                                 
    2  There are good reasons to think that expected stock returns may be persistent.  Asset 
pricing models like the consumption model of Lucas (1978) describe expected stock 
returns as functions of expected economic growth rates.  Merton (1973) and Cox, Ingersoll 
and Ross (1985) propose real interest rates as candidate state variables, driving expected 
returns in intertemporal models.  Such variables are likely to be highly persistent.  
Empirical models for stock return dynamics frequently involve persistent, autoregressive 
expected returns (e.g. Lo and MacKinlay (1988), Conrad and Kaul (1988), Fama and 
French (1988b) or Huberman and Kandel, 1990). 
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    rt+1 =  +  Zt + vt+1.                                     (1) 

 

The data are actually generated by an unobserved latent variable, Zt*, as: 

 

    rt+1 =  + Zt* + ut+1,                                                    (2) 

 

where ut+1 is white noise with variance, u2.  We interpret the latent variable, Zt* as the 

deviations of the conditional mean return from the unconditional mean, , where the 

expectations are conditioned on an unobserved "market" information set at time t.  The 

predictor variables follow an autoregressive process:  

 

   (Zt*,Zt)’ = 








ρ
ρ
0

0*

 (Zt-1*,Zt-1)’ + ( t*, t)’.                       (3) 

 

 The assumption that the true expected return is autoregressive follows previous 

studies such as Lo and MacKinlay (1988), Conrad and Kaul (1988), Fama and French 

(1988b), and Huberman and Kandel (1990). 

 To generate the artificial data, the errors ( t*, t) are drawn randomly as a normal 

vector with mean zero and covariance matrix, .  We build up the time-series of the Z 

and Z* through the vector autoregression equation (3), where the initial values are 

drawn from a normal with mean zero and variances, Var(Z) and Var(Z*).  The other 

parameters that calibrate the simulations are { , u2, , *, and }.   

 We have a situation in which the "true" returns may be predictable, if Zt* could be 
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observed.  This is captured by the true R-squared, Var(Z*)/[Var(Z*)+ u2].  We set Var(Z*) 

to equal the sample variance of the SP500 return, in excess of a one-month Treasury bill 

return, multiplied by 0.10.  When the true R-squared of the simulation is 10%, the 

unconditional variance of the rt+1 that we generate is equal to the sample variance of the 

SP500 return, and the first order autocorrelation is similar to that of the actual data.  

When we choose other values for the true R-squared, these determine the values for the 

parameter u2.  We set  to equal the sample mean excess return of the SP500 over the 

1926-98 period, or 0.71 percent per month.     

 The extent of the spurious regression bias depends on the parameters,  and *, 

which control the persistence of the measured and the true regressor.  These values are 

determined by reference to Table I and from our sample of 500 potential instruments.  

The specifics differ across the special cases, as described below. 

 While the stock return could be predicted if Zt* could be observed, the analyst 

uses the measured instrument Zt.  If the covariance matrix  is diagonal, Zt and Zt* are 

independent, and the true value of  in the regression (1) is zero. 

 

A. Pure Spurious Regression 

 To focus on spurious regression in isolation, we specialize equation (3) as 

follows.  The covariance matrix  is a 2 x 2 diagonal matrix with variances (
22

* ,σσ ).  For 

a given value of * the value of 
2
*σ is determined as 

2
*σ =(1- *2)Var(Z*).  The measured 

regressor has Var(Z)=Var(Z*).  The autocorrelation parameters, *=  are allowed to vary 

over a range of values.  (We also allow  and * to differ from one another, as described 
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below.) 

 Following Granger and Newbold (1974), we interpret a spurious regression as 

one in which the "t-ratios" in the regression (1) are likely to indicate a significant relation 

when the variables are really independent.  The problem may come from the numerator 

or the denominator of the t-ratio: the coefficient or its standard error may be biased.  As 

in Granger and Newbold, the problem lies with the standard errors.3  The reason is 

simple to understand.  When the null hypothesis that the regression slope =0 is true, 

the error term ut+1 of the regression Equation (1) inherits autocorrelation from the 

dependent variable.  Assuming stationarity, the slope coefficient is consistent, but 

standard errors that do not account for the serial dependence correctly, are biased.   

 Because the spurious regression problem is driven by biased estimates of the 

standard error, the choice of standard error estimator is crucial.  In our simulation 

exercises, it is possible to find an efficient unbiased estimator, since we know the "true" 

model that describes the regression error.  Of course, this will not be known in practice. 

 To mimic the practical reality, the analyst in our simulations uses the popular 

autocorrelation-heteroskedasticity-consistent (HAC) standard errors from Newey and 

West (1987), with an automatic lag selection procedure.  The number of lags is chosen 

by computing the autocorrelations of the estimated residuals, and truncating the lag 

                                                 
    3 While Granger and Newbold (1974) do not study the slopes and standard errors to 
identify the separate effects, our simulations designed to mimic their setting (not reported 
in the tables) confirm that their slopes are well behaved, while the standard errors are 
biased.  Granger and Newbold use OLS standard errors, while we focus on the 
heteroskedasticity and autocorrelation-consistent standard errors that are more common 
in recent studies. 
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length when the sample autocorrelations become "insignificant" at longer lags. (The 

exact procedure is described in Footnote 1, and modifications to this procedure are 

discussed below.)     

 This setting is related to Phillips (1986) and Stambaugh (1999).  Phillips derives 

asymptotic distributions for the OLS estimators of the regression (1), in the case where 

=1, ut+1≡0 and { t*, t} are general independent mean zero processes.  We allow a 

nonzero variance of ut+1 to accommodate the large noise component of stock returns.  

We assume <1 to focus on stationary, but possibly highly autocorrelated, regressors.  

 Stambaugh (1999) studies a case where the errors { t*, t} are perfectly correlated, 

or equivalently, the analyst observes and uses the correct lagged stochastic regressor.  A 

bias arises when the correlation between ut+1 and *t+1 is not zero, related to the well-

known small sample bias of the autocorrelation coefficient [e.g. Kendall (1954)].  In the 

pure spurious regression case studied here, the observed regressor Zt is independent of 

the true regressor Zt*, and ut+1 is independent of *t+1.  The Stambaugh bias is zero in 

this case.  The point is that there remains a problem in predictive regressions, in the 

absence of the bias studied by Stambaugh, because of spurious regression.   

 

B. Spurious Regression and Data Mining  

 We consider the interaction between spurious regression and data mining, where 

the instruments to be mined are independent as in Foster, Smith and Whaley (1997).  

There are L measured instruments over which the analyst searches for the "best" 

predictor, based on the R-squares of univariate regressions.  In Equation (3) Zt becomes 
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a vector of length L, where L is the number of instruments through which the analyst 

sifts.  The error terms ( t*, t) become an L+1 vector with a diagonal covariance matrix; 

thus, t* is independent of t.   

 The persistence parameters in the Equation (3) become an (L+1)-square, diagonal 

matrix, with the autocorrelation of the true predictor equal to *.  The value of * is 

either the average from our sample of 500 potential instruments, 15%, or the median 

value from Table I, 95%.  The remaining autocorrelations, denoted by the L-vector, , 

are set equal to the autocorrelations of the first L instruments in our sample of 500 

potential instruments, when *=15%.4  When *=95%, we rescale the autocorrelations to 

center the distribution at 0.95 while preserving the range in the original data.5  The 

simulations match the unconditional variances of the instruments, Var(Z), to the data.  

The first element of the covariance matrix  is equal to 
2
*σ .  For a typical i-th diagonal 

element of , denoted by i, the elements of (Zi) and Var(Zi) are given by the data, and 

                                                 
    4 We calibrate the true autocorrelations in the simulations to the sample 
autocorrelations, adjusted for first order finite sample bias as: )ˆ31(ˆ ρρ ++ /T, where  is the 
OLS estimate of the autocorrelation and T is the sample size. 

    5 The transformation is as follows.  In the 500 instruments, the minimum bias-adjusted 
autocorrelation is -0.571, the maximum is 0.999 and the median is 0.02.  We center the 
transformed distribution about the median in Table I, which is 0.95.  If the original 
autocorrelation  is less than the median, we transform it to: 
 
  .95 + ( -.02){(.95+.571 )/(.02+.571)}. 
 
If the value is above the median, we transform it to: 
 
  .95 + ( -.02){(.999-.95)/(.999-.02)}. 
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we set i2 = [1- (Zi)2]Var(Zi).   

 

 III.  Simulation Results 

 We first consider spurious regression in isolation.  Then we study spurious 

regression with data mining.    

 

A. Pure Spurious Regression    

 Table II summarizes the results for the case of pure spurious regression.  We 

record the estimated slope coefficient in regression (1), its Newey-West t-ratio and the 

coefficient of determination at each trial and summarize their empirical distributions.  

The experiments are run for two sample sizes, based on the extremes in Table I.  These 

are T=66 and T=824 in panels A and B, respectively.  In panel C we match the sample 

sizes to the studies in Table I.  In each case 10,000 trials of the simulation are run; 50,000 

trials produces similar results.   

 The rows of Table II refer to different values for the true R-squares.  The smallest 

value is 0.1%, where the stock return is essentially unpredictable, and the largest value 

is 15%.  The columns of Table II correspond to different values of *, the autocorrelation 

of the true expected return, which runs from 0.0 to 0.99.  In these experiments we set 

= *.  The subpanels labeled Critical t-statistic, and Critical estimated R2 report empirical 

critical values from the 10,000 simulated trials, so that 2.5% of the t-statistics or 5% of 

the R-squares, lie above these values.   

 The subpanels labeled Mean   report the average slope coefficients over the 



Spurious Regressions in Financial Economics 

 

13

10,000 trials.  The mean estimated values are always small, and very close to the true 

value of zero at the larger sample size.  This confirms that the slope coefficient 

estimators are well behaved, so that bias due to spurious regression comes from the 

standard errors. 

 When *=0, and there is no persistence in the true expected return, the spurious 

regression phenomenon is not a concern.  This is true even when the measured 

regressor is highly persistent.6  The logic is that when the slope in Equation (1) is zero 

and *=0, the regression error has no persistence, so the standard errors are well 

behaved.  This implies that spurious regression is not a problem from the perspective of 

testing the null hypothesis that expected stock returns are unpredictable, even if a 

highly autocorrelated regressor is used.   

 Table II shows that spurious regression bias does not arise to any serious degree, 

provided * is 0.90 or less, and the true R2 is 1% or less.  For these parameters the 

empirical critical values for the t-ratios are 2.48 (T=66, panel A), and 2.07 (T=824, panel 

B).  The empirical critical R-squares are close to their theoretical values.  For example, 

for a 5% test with T=(66, 824) the F distribution implies critical R-squared values of 

(5.9%, 0.5%).  The values in Table II when *=.90 and true R2=1%, are (6.2%, 0.5%); thus, 

the empirical distributions do not depart far from the standard rules of thumb. 

 Variables like short-term interest rates and dividend yields typically have first 

order sample autocorrelations in excess of 0.95, as we saw in Table I.  We find 

                                                 
    6 We confirm this with additional simulations, not reported in the tables, where we set 

*=0 and vary . 
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substantial biases when the regressors are highly persistent.  Consider the plausible 

scenario with a sample of T=824 observations where =.98 and true R2=10%.  In view of 

the spurious regression phenomenon, an analyst who was not sure that the correct 

instrument is being used and who wanted to conduct a 5%, two-tailed t-test for the 

significance of the measured instrument, would have to use a t-ratio of 3.6.  The 

coefficient of determination would have to exceed 2.2% to be significant at the 5% level. 

 These cutoffs are substantially more stringent than the usual rules of thumb. 

 Panel C of Table II revisits the evidence from the literature in Table I.  The critical 

values for the t-ratios and R-squares are reported, along with the theoretical critical 

values for the R-squares, implied by the F distribution.  We set the true R-squared value 

equal to 10% and *=  in each case.  We find that seven of the 17 statistics in Table I that 

would be considered significant using the traditional standards, are no longer 

significant in view of the spurious regression bias.   

 While panels A and B of Table II show that spurious regression can be a problem 

in stock return regressions, Panel C finds that accounting for spurious regression 

changes the inferences about specific regressors that were found to be significant in 

previous studies.  In particular, we question the significance of the term spread in Fama 

and French (1989), on the basis of either the t-ratio or the R-squared of the regression.  

Similarly, the book-to-market ratio of the Dow Jones index, studied by Pontiff and 

Schall (1998) fails to be significant with either statistic.  Several other variables are 

marginal, failing on the basis of one but not both statistics.  These include the short-term 

interest rate (Breen, Glosten and Jagannathan, 1989), the dividend yield (Fama and 
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French, 1988a), and the quality-related yield spread (Keim and Stambaugh, 1986).  All of 

these regressors would be considered significant using the standard cutoffs. 

 It is interesting to note that the biases documented in Table II do not always 

diminish with larger sample sizes; in fact, the critical t-ratios are larger in the lower 

right corner of the panels when T=824 than when T=66.  The mean values of the slope 

coefficients are closer to zero at the larger sample size, so the larger critical values are 

driven by the standard errors.  A sample as large as T=824 is not by itself a cure for the 

spurious regression bias.  This is typical of spurious regression with a unit root, as 

discussed by Phillips (1986) for infinite sample sizes and nonstationary data.7  It is 

interesting to observe similar patterns, even with stationary data and finite samples.   

 Phillips (1986) shows that the sample autocorrelation in the regression studied by 

Granger and Newbold (1974) converges in limit to 1.0.  However, we find only mildly 

inflated residual autocorrelations (not reported in the tables) for stock return samples as 

large as T=2000, even when we assume values of the true R2 as large as 40%.  Even in 

these extreme cases, none of the empirical critical values for the residual 

autocorrelations are larger than 0.5.  Since ut+1=0 in the cases studied by Phillips, we 

expect to see explosive autocorrelations only when the true R2 is very large.  When R2 is 

small the white noise component of the returns serves to dampen the residual 

                                                 
    7 Phillips derives asymptotic distributions for the OLS estimators of equation (1), in the 
case where =1, ut+1≡0.  He shows that the t-ratio for  diverges for large T, while t( )/√T, 

 and the coefficient of determination converge to well-defined random variables.  
Marmol (1998) extends these results to multiple regression with partially integrated 
processes, and provides references to more recent theoretical literature.  Phillips (1998) 
reviews analytical tools for asymptotic analysis when nonstationary series are involved. 
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autocorrelation. Thus, we are not likely to see large residual autocorrelations in asset 

pricing models, even where spurious regression is a problem.  The residuals-based 

diagnostics for spurious regression, such as the Durbin-Watson tests suggested by 

Granger and Newbold, are not likely to be very powerful in asset pricing regressions.  

For the same reason, naive application of the Newey-West procedure, where the 

number of lags is selected by examining the residual autocorrelations, is not likely to 

resolve the spurious regression problem. 

 Newey and West (1987) show that their procedure is consistent when the number 

of lags used grows without bound as the sample size T increases, provided that the 

number of lags grows no faster than T1/4.  The lag selection procedure in Table II 

examines 12 lags.  Even though no more than nine lags are selected for the actual data 

in Table I, more lags would sometimes be selected in the simulations, and an 

inconsistency results from truncating the lag length.8  However, in finite samples an 

increase in the number of lags can make things worse.  When "too many" lags are used 

the standard error estimates become excessively noisy, which thickens the tails of the 

sampling distribution of the t-ratios.  This occurs for the experiments in Table II.   For 

example, letting the procedure examine 36 autocorrelations to determine the lag length 

(the largest number we find mentioned in published studies) the critical t-ratio in Panel 

A, for true R2=10% and *=0.98, increases from 2.9 to 4.8.  Nine of the 17 statistics from 

                                                 
    8 At very large sample sizes, a huge number of lags can control the bias.  We verify this 
by examining samples as large as T=5000, letting the number of lags grow to 240.  With 
240 lags the critical t-ratio for true R2=10% and =0.98 falls from 3.6 in Panel B of Table II, 
to a reasonably well-behaved value of 2.23. 
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Table I that are significant by the usual rules of thumb now become insignificant.   The 

results calling these studies into question are even stronger than before.  Thus, simply 

increasing the number of lags in the Newey-West procedure does not resolve the finite 

sample, spurious regression bias.9  

 We draw several conclusions about spurious regression in stock return 

regressions.  Given persistent expected returns, spurious regression can be a serious 

concern well outside the classic setting of Yule (1926) and Granger and Newbold (1974). 

  Stock returns, as the dependent variable, are much less persistent than the levels of 

most economic time series.  Yet, when the expected returns are persistent, there is a risk 

of spurious regression bias.  The regression residuals may not be highly autocorrelated, 

even when spurious regression bias is severe.  Given inconsistent standard errors, 

spurious regression bias is not avoided with large samples.  Accounting for spurious 

regression bias, we find that seven of the 17 t-statistics and regression R-squares from 

previous studies that would be significant by standard criteria, are no longer significant. 

  

 

B. Spurious Regression and Data Mining 

 We now consider the interaction between spurious regression and data mining.  

                                                 
    9 We conduct several experiments letting the number of lags examined be 24, 36 or 48, 
when T=66 and T=824.  When T=66 the critical t-ratios are always larger than the values 
in Table II.  When T=824 the effects are small and of mixed sign.  The most extreme 
reduction in a critical t-ratio, relative to Table II, is with 48 lags, true R2=15%, and *=0.99, 
where the critical value falls from 4.92 to 4.23. 
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Table III summarizes the results.  The columns of panels A-D correspond to different 

numbers of potential instruments, through which the analyst sifts to find the regression 

that delivers the highest sample R-squared.  The rows refer to the different values of the 

true R-squared.   

 The cases with true R2=0 refer to data mining only, which corresponds to the 

experiments in Foster, Smith and Whaley (1997).  The columns where L=1 correspond to 

pure spurious regression bias, with no data mining.  We hold fixed the persistence 

parameter for the true expected return, *, while allowing  to vary depending on the 

measured instrument.  When L=1, the value of =15%.  We consider two values for *, 

15% or 95%.    

 Panels A and B of Table III show that when L=1 and *=15%, there is no data 

mining, and consistent with Table II there is no spurious regression problem.  The 

empirical critical values for the t-ratios and R-squared statistics are close to their 

theoretical values under normality.  For larger values of L and *=15% there is data 

mining, and the critical values are close to the values reported by Foster, Smith and 

Whaley (1997) for similar sample sizes.10  There is little difference in the results for the 

various true R-squares.  Thus, there is no spurious regression problem, and no 

interaction with data mining. 

 Panels C and D of Table III tell a different story.  When the underlying expected 

                                                 
    10 Our sample sizes, T, are not the same as in Foster, Smith and Whaley (1997).  When 
we run the experiments for their sample sizes, we closely approximate the critical values 
that they report. 
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return is persistent ( *=0.95) there is a spurious regression bias.  When L=1 we have 

spurious regression only.  The critical t-ratio in Panel C increases from 2.3 to 2.8 as the 

true R-squared goes from zero to 15%.  The bias is less pronounced here than in Table II, 

with = *=0.95, which illustrates that for a given value of *, spurious regression is 

worse for larger values of .  

 Spurious regression bias interacts with data mining.  Consider the extreme 

corners of Panel C.  Whereas, with L=1 the critical t-ratio increases from 2.3 to 2.8 as the 

true R-squared goes from zero to 15%, with L=250, the critical t-ratio increases from 5.2 

to 6.3 as the true R-squared is increased.  Thus, data mining magnifies the effects of the 

spurious regression bias.  When more instruments are examined, the more persistent 

ones are likely to be chosen, and the spurious regression problem is amplified.  The 

slope coefficients are centered near zero, so the bias does not increase the average slopes 

of the selected regressors.  Again, spurious regression works through the standard 

errors. 

 We can also say that spurious regression makes the data mining problem worse.  

For a given value of L the critical t-ratios and R2 values increase moving down the rows 

of Table III.  For example, with L=250 and true R2=0, we can account for pure data 

mining with a critical t-ratio of 5.2.  But when the true R-squared is 15%, the critical t-

ratio rises to 6.3.  The differences moving down the rows are even greater when T=824, 

in Panel D.  Thus, in the situations where the spurious regression bias is more severe, its 

impact on the data mining problem is amplified. 

 Finally, Panel E of Table III revisits the studies from the literature in view of 
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spurious regression and data mining.  We report critical values for L, the number of 

instruments mined, sufficient to render the regression t-ratios and R-squares 

insignificant at the 5% level.  We use two assumptions about persistence in the true 

expected returns: * is set equal to the sample values from the studies, as in Table I, or 

*=95%.  With only one exception, the critical values of L are ten or smaller.  The 

exception is where the instrument is the lagged excess return on a two-month Treasury 

bill, following Campbell (1987).  This is an interesting example because the instrument 

is not very autocorrelated, at 0.08, and when we set *=8% there is no spurious 

regression effect.  The critical value of L exceeds 500.  However, when we set *=95% in 

this example, the critical value of L falls to ten, illustrating the strong interaction 

between the data mining and spurious regression effects. 

 

 IV. Conclusions 

 We study regression models in which lagged variables predict stock returns, 

focussing on the issues of data mining and spurious regression.  The spurious 

regression problem is related to the classic studies of Yule (1926) and Granger and 

Newbold (1974).  Unlike the regressions in those papers, asset-pricing regressions use 

asset rates of return, which are not highly persistent, as the dependent variables.  

However, asset returns are the expected returns plus unpredictable noise.  If the expected 

returns are persistent, there is a risk of finding a spurious regression relation between 

the return and an independent, highly autocorrelated lagged variable. 

 When there is no persistence in the true expected return, the spurious regression 
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phenomenon is not a concern.  This is true even when the measured regressor is highly 

persistent.  This implies that spurious regression is not a problem from the perspective 

of testing the null hypothesis that expected stock returns are unpredictable, even if a 

highly autocorrelated regressor is used.  The evidence that expected stock returns vary 

over time is therefore not overturned by spurious regression bias.   

 Given persistent expected returns, we find that spurious regression can be a 

serious concern.  The problem for stock returns gets worse as the autocorrelation in the 

expected return increases, and as the fraction of the stock return variance attributed to 

the conditional mean increases.  Assuming that expected returns are as persistent as the 

median instrument in the samples of nine classic studies, we find that seven of the 17 

statistics that would be considered significant using traditional standards, are no longer 

significant in view of the spurious regression bias.  We call into question the validity of 

specific instruments identified in the literature, such as the term spread, book-to-market 

ratio and dividend yield. 

 Data mining, in the form of a collective search through the data for high-R2 

predictors, results in regressions whose apparent explanatory power occurs by chance.  

Consistent with Foster, Smith and Whaley (1997), if between 10 and 500 instruments are 

examined, depending on the study, all of the univariate regression results summarized 

in Table I, become insignificant.  In the presence of spurious regression, persistent 

variables are likely to be mined, and the two effects reinforce each other.  As a result, 

the critical values for significant t-statistics and regression R-squares increase.  If the 

expected return accounts for 10% of the stock return variance, we only have to consider 
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mining among 5 to 10 instruments to obtain critical values as high as those obtained 

with 50 to 100 instruments and no spurious regression.  Even with a modest amount of 

data mining, the combined effects have a powerful impact.  Assuming we sift through 

only ten instruments, all of the regressions from the previous studies in Table I appear 

consistent with a spurious mining process. 

 Our results have distinct implications tests of predictability and model selection. 

 In tests of predictability, the researcher chooses a lagged instrument and regresses 

future returns on the instrument.  The null hypothesis is that the slope coefficient is 

zero.  Spurious regression presents no problem from this perspective, because under the 

null hypothesis the expected return is not persistent.  In model selection, the researcher 

chooses a lagged instrument to model time variation in expected returns, for purposes 

such as implementing or testing an asset pricing model.  Here is where the spurious 

regression problem is the most pernicious.  

 The pattern of evidence for the instruments in the literature is similar to what is 

expected under a spurious mining process with an underlying persistent expected 

return.  In this case we would expect instruments to arise, then fail to work out of 

sample.  With fresh data, new instruments would arise, then fail.  The dividend yield 

rose to prominence in the 1980s, but fails to work in post 1990 data (e.g. Goyal and 

Welch, 1999).  The book-to-market ratio seems to have weakened in recent data.  With 

fresh data, new instruments appear to work (e.g. Lettau and Ludvigson (2001), Lee, 

Myers and Swaminathan, 1999).  There are two implications.  First, we should be 

concerned that these new instruments are likely to fail out of sample.  Second, any 



Spurious Regressions in Financial Economics 

 

23

stylized facts based on empirically motivated instruments and asset pricing tests based 

on such instruments, should be viewed with skepticism.   

 

 Appendix: The Sample of 500 Instruments  

 All the data come from the web site Economagic.com: Economic Time Series 

Page, maintained by Ted Bos.  The sample consists of all monthly series listed on the 

main homepage of the site, except under the headings of LIBOR, Australia, Bank of 

Japan, and Central Bank of Europe.  From the Census Bureau we exclude Building 

Permits by Region, State, and Metro Areas (more than 4,000 series).  From the Bureau of 

Labor Statistics we exclude all non-civilian Labor force data and State, City, and 

International Employment (more than 51,000 series).  We use the CPI measures from the 

city average listings, but include no finer subcategories.  The PPI measures include the 

aggregates and the 2-digit subcategories.  From the Department of Energy we exclude 

data in Section 10, the International Energy series. 

 We first randomly select (using a uniform distribution) 600 out of the 10,866 

series that were left after the above exclusions.  From these 600 we eliminated series that 

mixed quarterly and monthly data and extremely sparse series, and took the first 500 

from what remained.   

 Because many of the data are reported in levels, we tested for unit roots using an 

augmented Dickey-Fuller test (with a zero order time polynomial).  We could not reject 

the hypothesis of a unit root for 361 of the 500 series and we replaced these series with 

their first differences.  
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 We estimate a sample correlation matrix of the 500 instruments as follows.  We 

take each pair of instruments and compute the sample correlation between the two 

series, using all of the periods in which our data for the two series overlap.  For some 

pairs, there is no overlapping data.  For these cases we substitute the average of all the 

sample correlations that we can compute. 
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Table I 
Common Instrumental Variables: Sources, Summary Statistics and OLS Regression Results 

This table summarizes variables used in the literature to predict stock returns.  The first column indicates the published study. The second column denotes the 
lagged instrument.  The next two columns give the sample (Period) and the number of observations (Obs) on the stock returns.  Columns five and six report the 
autocorrelation (ρΖ) and the standard deviation of the instrument (σΖ), respectively.  The next three columns report regression results for Standard & Poors 500 
excess return on a lagged instrument.  The slope coefficient is β, the t-statistic is t, and the coefficient of determination is R2.   The last column (HAC) reports the 
method used in computing the standard errors of the slopes.  The method of Newey-West (1987) is used with the number of lags given in parentheses.  The 
abbreviations in the table are as follows.  TB1y is the yield on the one-month Treasury bill. Two-one, Six-one, and Lag(two)-one are computed as the spreads on 
the returns of the two and one-month bills, six and one-month bills, and the lagged value of the two-month and current one-month bill.  AAAy is the yield on the 
AAA rated corporate bonds.  UBAAy is the yield on corporate bonds with a below BAA rating.  “Cay” is the linear function of consumption, asset wealth, and 
labor income.  DJBM and SPBM are the book-to-market ratios for the Dow Jones Industrial Average and the S&P500 respectively.  ALLy denotes the yield on 
all corporate bonds. 
 

Reference Predictor Period Obs ρΖ σΖ β t R2 HAC 

Breen, Glosten & Jagannathan (89) TB1y 5404-8612 393 0.97 0.0026 -2.49 -3.58 0.023 NW(5) 

Campbell (87) Two–one 5906-7908 264 0.32 0.0006 11.87 2.38 0.025 NW(0) 

 Six–one 5906-7908 264 0.15 0.0020 2.88 2.13 0.025 NW(0) 

 Lag(two) − one 5906-7908 264 0.08 0.0010 9.88 2.67 0.063 NW(6) 

Fama (90) ALLy–AAAy 5301-8712 420 0.97 0.0040 0.88 1.46 0.005 MA(0) 

Fama & French (88) Dividend yield 2701-8612 720 0.97 0.0013 0.40 1.36 0.007 MA(9) 

Fama & French (89) AAAy–TB1y 2601-8612 732 0.92 0.0011 0.51 2.16 0.007 MA(9) 

Keim & Stambaugh (86) UBAAy 2802-7812 611 0.95 0.0230 1.50 0.75 0.002 MA(9) 

 UBAAy–TB1y 2802-7812 611 0.97 0.0320 1.57 1.48 0.007 MA(9) 

Kothari & Shanken (97) DJBM 1927-1992 66 0.66 0.2270 0.28 2.63 0.078 MA(0) 

Lettau & Ludvigson (00) “Cay” 52Q4-98Q4 184 0.79 0.0110 1.57 2.58 0.057 MA(7) 

Pontiff & Schall (98) DJBM 2602-9409 824 0.97 0.2300 2.96 2.16 0.012 MA(9) 

 SPBM 5104-9409 552 0.98 0.0230 9.32 1.03 0.001 MA(5) 
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Table II 
The Monte Carlo Simulation Results for Regressions with a Lagged Predictor Variable 

The table reports the 97.5 percentile of the Monte Carlo distribution of 10000 Newey-West t-statistics, the 95 

percentile for the estimated coefficients of determination, and the average estimated slopes from the regression 

11 ++ +δ+α= ttt vZr , 
where rt+1 is the excess return, Zt is the predictor variable, and t=1,...,T.  The parameter ρ∗  is the 

autocorrelation coefficient of the predictors, 
*
tZ  and Zt.  The R2 is the coefficient of determination from the 

regression of excess returns 1+tr  on the unobserved, true instrument
*
tZ .  Panel A depicts the results for T=66 

and Panel B for T=824.  Panel C gives the simulation results for the number of observations and the 

autocorrelations in Table I.  In Panel C, the true R2 is set to 0.1.  The theoretical critical R2 is from the F-

distribution. 

 
Panel A: 66 observations 

R2/ ρ∗  0 0.5 0.9 0.95 0.98 0.99 
 Mean δ 
0.001 -0.0480 -0.0554 -0.0154 -0.0179 -0.0312 -0.0463 
0.005 -0.0207 -0.0246 -0.0074 -0.0088 -0.0137 -0.0193 
0.010 -0.0142 -0.0173 -0.0055 -0.0066 -0.0096 -0.0129 
0.050 -0.0055 -0.0075 -0.0029 -0.0037 -0.0040 -0.0042 
0.100 -0.0033 -0.0051 -0.0023 -0.0030 -0.0026 -0.0021 
0.150 -0.0024 -0.0040 -0.0020 -0.0026 -0.0020 -0.0012 
 Critical t-statistic 
0.001 2.1951 2.3073 2.4502 2.4879 2.4746 2.4630 
0.005 2.2033 2.3076 2.4532 2.5007 2.5302 2.5003 
0.010 2.2121 2.3123 2.4828 2.5369 2.5460 2.5214 
0.050 2.2609 2.3335 2.6403 2.7113 2.7116 2.6359 
0.100 2.2847 2.3702 2.8408 2.9329 2.9043 2.7843 
0.150 2.2750 2.3959 3.0046 3.1232 3.0930 2.9417 
 Critical estimated R2 
0.001 0.0593 0.0575 0.0598 0.0599 0.0610 0.0600 
0.005 0.0590 0.0578 0.0608 0.0607 0.0616 0.0604 
0.010 0.0590 0.0579 0.0619 0.0623 0.0630 0.0612 
0.050 0.0593 0.0593 0.0715 0.0737 0.0703 0.0673 
0.100 0.0600 0.0622 0.0847 0.0882 0.0823 0.0766 
0.150 0.0600 0.0649 0.0994 0.1032 0.0942 0.0850 
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Table II (continued) 

 
Panel B: 824 observations 

R2/ ρ∗  0 0.5 0.9 0.95 0.98 0.99 
 Mean δ 
0.001  0.0150 0.0106 0.0141 0.0115 0.0053 -0.0007 
0.005  0.0067 0.0049 0.0069 0.0055 0.0021 -0.0011 
0.010  0.0048 0.0035 0.0052 0.0040 0.0014 -0.0012 
0.050  0.0021 0.0017 0.0029 0.0021 0.0003 -0.0014 
0.100  0.0015 0.0013 0.0023 0.0016 0.0001 -0.0014 
0.150  0.0012 0.0011 0.0021 0.0014 -0.0000 -0.0014 
 Critical t-statistic 
0.001 1.9861 2.0263 2.0362 2.0454 2.0587 2.0585 
0.005 1.9835 2.0297 2.0429 2.1123 2.1975 2.2558 
0.010 1.9759 2.0279 2.0655 2.1479 2.3578 2.4957 
0.050 1.9878 2.0088 2.2587 2.5685 3.1720 3.7095 
0.100 1.9862 2.0320 2.3758 2.7342 3.6356 4.4528 
0.150 2.0005 2.0246 2.4164 2.8555 3.8735 4.9151 
 Critical estimated R2 
0.001 0.0046 0.0047 0.0047 0.0047 0.0049 0.0049 
0.005 0.0046 0.0047 0.0048 0.0051 0.0056 0.0059 
0.010 0.0046 0.0047 0.0050 0.0054 0.0065 0.0073 
0.050 0.0046 0.0047 0.0066 0.0085 0.0132 0.0183 
0.100 0.0047 0.0049 0.0084 0.0125 0.0220 0.0316 
0.150 0.0046 0.0050 0.0104 0.0166 0.0308 0.0450 

  
Panel C: Table I simulation  

Obs  ρ∗  Critical 
theoretical R2 

Critical t-
statistic 

Critical 
estimated R2 

393 0.97 0.0098 3.2521 0.0311 
264 0.32 0.0146 2.0645 0.0151 
264 0.15 0.0146 2.0560 0.0151 
264 0.08 0.0146 2.0318 0.0146 
420 0.97 0.0092 3.2734 0.0304 
720 0.97 0.0053 3.2005 0.0194 
732 0.92 0.0053 2.3947 0.0103 
611 0.95 0.0063 2.8843 0.0167 
611 0.97 0.0063 3.2488 0.0219 
66 0.66 0.0586 2.4221 0.0656 

184 0.79 0.0209 2.2724 0.0270 
824 0.97 0.0047 3.1612 0.0173 
552 0.98 0.0070 3.6771 0.0293 
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Table III 
The Monte Carlo Simulation Results of Regressions with Spurious Regression 

and Data Mining, with Independent Regressors 
 
The table reports the 97.5 percentile of the Monte Carlo distribution of 10000 Newey-West t-statistics, the 95 

percentile for the estimated coefficients of determination, and the average estimated slopes from the regression 

11 ++ +δ+α= ttt vZr , 
where rt+1 is the excess return, Zt is the predictor variable, and t=1,...,T.  The R2 is the coefficient of 

determination from the regression of excess returns 1+tr  on the unobserved, true instrument
*
tZ , which has the 

autocorrelation ρ*.  The parameter L is the number of instruments mined, where the one with the highest 

estimated R2 is chosen.  Panels A and B depict the results for T=66 and T=824, respectively when the 

autocorrelation of the true predictor, ρ* = 0.15.  Panels C and D depict the results for T=66 and T=824, 

respectively when the autocorrelation of the true predictor, ρ* = 0.95, the median autocorrelation in Table 1.  
In Panel E, the true R2 is set to 0.1 and the original distribution of instruments is transformed so that their 

median autocorrelation is set at 0.95.  The left-hand-side of Panel E gives the critical L for the given number of 

observations and autocorrelation that is sufficient to generate critical t-statistics or R2’s in excess of the 

corresponding statistics in Table I.  The right-hand-side of Panel E gives the critical L that is sufficient to 

generate critical t-statistics or R2’s in excess of the corresponding statistics in Table I when ρ* = 0.95.  
 
 
 

Panel A: 66 observations; ρ* = 0.15 
R2/L 1 5 10 25 50 100 250 
 Mean δ 
0 -0.0004 0.0002 -0.0002 0.0004 -0.0001 0.0001 0.0005 
0.001 -0.0114 0.0044 -0.0069 0.0208 -0.0078 0.0012 0.0162 
0.005 -0.0050 0.0017 -0.0017 0.0113 -0.0014 -0.0031 0.0109 
0.010 -0.0035 0.0008 -0.0014 0.0076 -0.0002 -0.0011 0.0098 
0.050 -0.0014 0.0004 -0.0004 0.0018 -0.0023 -0.0013 0.0063 
0.100 -0.0009 0.0006 -0.0004 0.0014 -0.0013 -0.0007 0.0044 
0.150 -0.0007 0.0007 -0.0002 0.0009 -0.0010 -0.0010 0.0035 
 Critical t-statistic 
0 2.2971 3.2213 3.5704 4.1093 4.4377 4.8329 5.2846 
0.001 2.2819 3.2105 3.5418 4.1116 4.4351 4.8238 5.2803 
0.005 2.2996 3.2250 3.5466 4.1190 4.4604 4.7951 5.2894 
0.010 2.2981 3.2109 3.5492 4.1198 4.4728 4.7899 5.2900 
0.050 2.2950 3.2416 3.5096 4.0981 4.4036 4.8803 5.2527 
0.100 2.3175 3.2105 3.5316 4.1076 4.4563 4.8772 5.2272 
0.150 2.3040 3.2187 3.5496 4.0644 4.5090 4.8984 5.2948 
 Critical estimated R2 
0 0.0594 0.0974 0.1153 0.1387 0.1548 0.1738 0.1944 
0.001 0.0589 0.0969 0.1149 0.1386 0.1546 0.1739 0.1944 
0.005 0.0591 0.0972 0.1151 0.1383 0.1545 0.1734 0.1948 
0.010 0.0592 0.0967 0.1158 0.1386 0.1544 0.1733 0.1950 
0.050 0.0596 0.0970 0.1163 0.1390 0.1557 0.1738 0.1955 
0.100 0.0608 0.0969 0.1165 0.1392 0.1570 0.1738 0.1954 
0.150 0.0612 0.0975 0.1165 0.1397 0.1577 0.1745 0.1967 
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Table III (continued) 
 

Panel B: 824 observations; ρ* = 0.15  
R2/L 1 5 10 25 50 100 250 
 Mean δ 
0 0.0000 0.0000 0.0000 0.0000 -0.0001 -0.0002 0.0000 
0.001 -0.0004 0.0032 -0.0017 0.0000 -0.0028 -0.0058 0.0015 
0.005 -0.0002 0.0012 -0.0004 0.0000 -0.0020 -0.0031 0.0007 
0.010 -0.0001 0.0009 -0.0004 -0.0003 -0.0015 -0.0020 0.0004 
0.050 -0.0001 0.0005 0.0000 -0.0005 -0.0006 -0.0009 0.0004 
0.100 0.0000 0.0005 -0.0001 -0.0003 -0.0001 -0.0002 0.0003 
0.150 0.0000 0.0003 -0.0003 -0.0003 0.0001 -0.0002 0.0002 
 Critical t-statistic 
0 2.0283 2.5861 2.8525 3.1740 3.3503 3.5439 3.8045 
0.001 2.0369 2.6000 2.8534 3.1785 3.3616 3.5443 3.7928 
0.005 2.0334 2.6043 2.8565 3.1769 3.3625 3.5440 3.7906 
0.010 2.0310 2.6152 2.8694 3.1782 3.3544 3.5477 3.7917 
0.050 2.0272 2.6229 2.8627 3.1846 3.3450 3.5552 3.8039 
0.100 2.0115 2.6304 2.8705 3.1807 3.3648 3.5673 3.8041 
0.150 2.0044 2.6327 2.8618 3.1766 3.3691 3.5723 3.7965 
 Critical estimated R2 
0 0.0047 0.0079 0.0096 0.0116 0.0130 0.0145 0.0166 
0.001 0.0047 0.0079 0.0096 0.0116 0.0130 0.0145 0.0166 
0.005 0.0047 0.0080 0.0096 0.0116 0.0129 0.0145 0.0166 
0.010 0.0047 0.0080 0.0096 0.0115 0.0129 0.0145 0.0166 
0.050 0.0047 0.0081 0.0096 0.0116 0.0130 0.0145 0.0167 
0.100 0.0047 0.0081 0.0097 0.0117 0.0131 0.0146 0.0168 
0.150 0.0047 0.0082 0.0096 0.0117 0.0130 0.0146 0.0168 
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Table III (continued) 
 
 

Panel C: 66 observations; ρ* = 0.95 

R2/L 1 5 10 25 50 100 250 
 Mean δ 
0 -0.0005 0.0002 0.0006 -0.0001 -0.0006 -0.0003 0.0017 
0.001 -0.0140 0.0069 0.0212 -0.0105 -0.0134 -0.0112 0.0557 
0.005 -0.0060 0.0042 0.0082 -0.0068 -0.0024 -0.0033 0.0240 
0.010 -0.0042 0.0031 0.0051 -0.0029 -0.0018 -0.0027 0.0145 
0.050 -0.0016 0.0006 0.0035 -0.0023 -0.0016 -0.0019 0.0012 
0.100 -0.0010 -0.0002 0.0021 -0.0013 -0.0017 -0.0005 0.0028 
0.150 -0.0007 -0.0005 0.0015 -0.0008 -0.0011 -0.0001 0.0013 
 Critical t-statistic 
0 2.3446 3.3507 3.6827 4.1903 4.4660 4.9412 5.2493 
0.001 2.3641 3.3547 3.6776 4.1756 4.5157 4.9201 5.2441 
0.005 2.4030 3.3864 3.7013 4.1984 4.5625 4.9381 5.2760 
0.010 2.3939 3.4197 3.7308 4.1952 4.6039 4.9718 5.3083 
0.050 2.5486 3.5482 3.9676 4.4703 4.9512 5.2027 5.5539 
0.100 2.6955 3.7336 4.1899 4.7485 5.2335 5.5027 5.9006 
0.150 2.8484 3.9724 4.4329 4.9748 5.5547 5.8256 6.2563 
 Critical estimated R2 
0 0.0579 0.0974 0.1140 0.1374 0.1515 0.1689 0.1885 
0.001 0.0587 0.0981 0.1143 0.1376 0.1518 0.1692 0.1884 
0.005 0.0596 0.0987 0.1153 0.1385 0.1530 0.1699 0.1895 
0.010 0.0604 0.1002 0.1166 0.1402 0.1543 0.1711 0.1910 
0.050 0.0691 0.1113 0.1307 0.1552 0.1711 0.1859 0.2057 
0.100 0.0802 0.1265 0.1508 0.1774 0.1952 0.2099 0.2307 
0.150 0.0911 0.1451 0.1728 0.2021 0.2209 0.2370 0.2587 
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Table III (continued) 
 
 

Panel D: 824 observations; ρ* = 0.95 
R2/L 1 5 10 25 50 100 250 
 Mean δ 
0 -0.0001 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 
0.001 -0.0027 -0.0016 -0.0007 0.0005 0.0015 0.0072 0.0039 
0.005 -0.0012 -0.0004 0.0003 0.0006 -0.0008 0.0029 0.0026 
0.010 -0.0009 -0.0005 0.0000 0.0003 -0.0008 0.0013 0.0006 
0.050 -0.0004 -0.0005 0.0001 -0.0002 0.0007 -0.0006 0.0001 
0.100 -0.0003 -0.0002 -0.0001 -0.0003 0.0000 0.0001 -0.0004 
0.150 -0.0003 0.0000 0.0000 -0.0002 0.0001 0.0002 -0.0002 
 Critical t-statistic 
0 1.9807 2.6807 2.8535 3.1579 3.3640 3.5673 3.8103 
0.001 1.9989 2.6876 2.8758 3.1745 3.3702 3.5792 3.8252 
0.005 2.0406 2.7588 2.9269 3.2218 3.4497 3.6493 3.9075 
0.010 2.1108 2.8538 3.0150 3.3500 3.5548 3.7836 4.0351 
0.050 2.4338 3.3118 3.6292 4.1202 4.3685 4.6795 4.9741 
0.100 2.6274 3.6661 4.0003 4.5660 4.9129 5.2567 5.6937 
0.150 2.7413 3.8720 4.2048 4.8481 5.2200 5.5846 6.0420 
 Critical estimated R2 
0 0.0045 0.0080 0.0096 0.0113 0.0129 0.0145 0.0164 
0.001 0.0046 0.0082 0.0097 0.0115 0.0130 0.0146 0.0167 
0.005 0.0048 0.0086 0.0102 0.0121 0.0137 0.0153 0.0176 
0.010 0.0050 0.0092 0.0108 0.0131 0.0146 0.0163 0.0187 
0.050 0.0077 0.0145 0.0173 0.0216 0.0244 0.0273 0.0314 
0.100 0.0113 0.0216 0.0264 0.0331 0.0374 0.0421 0.0482 
0.150 0.0151 0.0293 0.0356 0.0446 0.0508 0.0568 0.0647 

 
 
  

Panel E: Table I simulation  

Obs ρ∗  Critical L 
(t-statistic) 

 

Critical L 
(R2) 

ρ∗  Critical L 
(t-statistic) 

Critical L 
(R2) 

393 0.97 2 1 0.95 4 2 
264 0.32 2 5 0.95 1 1 
264 0.15 2 5 0.95 1 1 
264 0.08 5 >500 0.95 1 10 
420 0.97 1 1 0.95 1 1 
720 0.97 1 1 0.95 1 1 
732 0.92 1 1 0.95 1 1 
611 0.95 1 1 0.95 1 1 
611 0.97 1 1 0.95 1 1 
66 0.66 2 2 0.95 1 2 

184 0.79 2 7 0.95 1 3 
824 0.97 1 1 0.95 1 2 
552 0.98 1 1 0.95 1 1 

 

 




