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ABSTRACT
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or similar, policies that employ different modeling approaches can yield widely divergent results. Such
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(quite restrictive) conditions under which all approaches can yield quantitatively identical predictions;
and (4) we empirically demonstrate conditions under which the approaches diverge and the quantitative
extent of that divergence. All modeling approaches implicitly make assumptions about functional form
that impose restrictions on unobservable heterogeneity. Those assumptions can dramatically affect the
quantitative predictions made.
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I. Introduction 
 

Estimates of the costs and consequences of many types of public policy proposals play an 

important role when policymakers decide whether to proceed with an option.  They also figure 

centrally in the deliberations that go into the development of policy options.  Recently, Aaron 

(2000) and Penner (2002) have highlighted the policy problems of and some possible policy 

reactions to uncertainty in budget projections. Although they focus a great deal on general 

macroeconomic forecasting, they also address the problems of predicting the effects of policy 

proposals.  

An important feature of the uncertainties they address is that different estimates of the 

same, or similar, policies can yield widely divergent results, depending on which model is used 

to make the estimates.  The health care reform proposals of the Clinton Administration provide a 

striking example of both the power of and divergence among cost estimates (Bilheimer and 

Reischauer 1995, Nichols 1995, Sheils 1995, Thorpe 1995). The Medicare Catastrophic 

Coverage Act, which floundered on high CBO estimates of the premiums that seniors would be 

required to pay, provides another striking example of the tremendous political and policy 

consequences of divergent cost estimates (Glied and Brooks 1997). 

Consider a similar policy proposal currently under much discussion: prescription drug 

coverage for Medicare beneficiaries. Costs to the government and beneficiaries of such coverage 

are of considerable importance to the political future of such coverage as well as the form that 

such coverage might take. Although many more estimates are no doubt in progress, estimates 

already exist. CBO’s preliminary estimates for a particular catastrophic plan project government 

costs of $26 billion/year (CBO 2002). In contrast, RAND has estimated costs of only $5 

billion/year for a more generous catastrophic plan (Goldman, Joyce and Malkin 2002). Some of 

the discrepancy could be driven by differences in the programs being examined, but that should 

generally drive the cost difference in the opposite direction. Some of the discrepancy could also 

be due to different assumptions about program participation, different estimates of drug usage, 

different projections of drug costs or a variety of other factors.  

It is often difficult for even a well-trained observer to understand why the results of 

different cost estimates diverge so much. Results can diverge due to different assumptions about 

many behavioral parameters or starting data, as in the case above. However, as models get 
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increasingly complex, it is difficult, if not impossible, to even compare the assumptions of 

different approaches or have any sense of what drives the different predictions. Penner (2002) 

discusses how difficult it is to understand what drives the predictions of large-scale time series 

macroeconomic models or to relate them to more structural models. Similar problems occur 

when comparing different approaches in other modeling areas.  

Models are used for projections of a wide variety of public programs, including welfare 

reform, food-stamps, Medicare, Medicaid, school expenditures and all areas of Federal and most 

state government spending. Recent events make it likely that school voucher cost projections will 

become important. In this paper, we focus on health insurance expansion proposals (Glied, 

Remler and Graff Zivin 2002). Health insurance expansions are not only an important and 

difficult policy area in their own right, but they represent an area where a variety of divergent 

and complex approaches have been and continue to be developed. As such, they illustrate the 

kinds of issues that are likely to be central in future efforts to estimate the impact of school 

vouchers.  

Simulation models for health insurance expansions need to capture whatever features of 

the insurance purchasing process might affect the costs of an expansion.  Since we do not 

understand (and could not practically model, even if we did) all features of the purchasing 

decision, every modeler must make simplifying assumptions to carry out the simulation task. 

Foremost among these simplifying assumptions is the framework of the model itself.  One reason 

for the opacity of the simulation process – and perhaps for the observed diversity in findings -- is 

that there are many different, accepted, frameworks for simulation modeling.  Since different 

models use different frameworks, it is hard to see what drives the difference in their results. 

Moreover, the modeling approaches themselves may introduce distinct biases that generate the 

variation in outcomes. 

The purposes of this paper are to (1) explain conceptually how the most widely used 

modeling approaches are related to one another; (2) to show how the quantitative values of the 

parameters in the various methods can be directly compared; (3) to empirically illustrate the 

(quite restrictive) conditions under which all approaches yield identical results; and (4) to 

empirically demonstrate some common conditions under which the approaches diverge and the 

quantitative extent of that divergence. We will show that, theoretically, all the methods are 

tightly related, but that in many circumstances, the choice of functional form, and by extension, 
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decisions about how to model unobserved heterogeneity, can have substantial effects on results. 

The paper is organized as follows. Section II will formally demonstrate the relationships among 

reservation prices, elasticities and take-up rates. Section III briefly describes current modeling 

approaches and the conditions for their equivalence. Section IV empirically illustrates the 

conditions under which the approaches are equivalent and under which they diverge. Section V 

concludes.  

 

II. Heterogeneity and Measuring Insurance Uptake  

The underlying decision to enroll in any given insurance program is an individual level 

discrete choice, in which one of several insurance options is selected.  For ease of exposition, we 

will abstract from issues of different forms of insurance (ESI, Medicaid, non-group, etc.), 

different qualities of insurance, and issues of family structure. We consider only single 

individuals with a single insurance option and measure whether or not individuals have health 

insurance, not the quantity of that health insurance.  

This dichotomous approach differs from the continuous utility maximization approach 

typically used in public policy modeling.  In the continuous approach, the effect of different 

types of health insurance expansions (proportional vs. flat tax credits, for example) is illustrated 

by comparing the effects of linear and kinked rotations of the budget constraint.  Since we are 

modeling participation, this detail is generally irrelevant.1  We illustrate this with a diagram 

below.   

Figure 1 shows the budget constraints for three health insurance regimes: no favorable 

treatment of health insurance, a tax deduction and a tax credit, A, B, and C, respectively. Health 

insurance is plotted on the x-axis with all other goods on the y-axis. The purchase price for a 

minimum benefits health insurance policy, Hmin, is shown as a dotted line. The accessible parts 

of the budget constraints are shown by the bold lines and the mass-point at (0,Y0), where all the 

uninsured cluster.  The effect of an expansion program on participation is determined by how 

many people move from the mass-point of zero health insurance to any place beyond Hmin. In 

this case, the form of the subsidy does not matter: a tax-deduction and a tax-credit of equal size 

                                                           
1 The analysis below assumes that the value of any tax credit is less than or equal to the cost of the minimum health 
insurance package.   
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will have the same effect.  Rather than a budget constraint and indifference curve framework, 

discrete choice problems such as these are best represented through a reservation price 

framework, as we describe below.  

Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a population of observationally identical individuals. The population is 

homogeneous in all observable variables, such as income, employment status, etc. We assume 

that everyone faces a single price for health insurance. The population is heterogeneous only in 

unobservable variables, such as unobservable aspects of health status, attitudes towards risk, 

opportunities for free care, non-health economic needs, family support, etc. Such heterogeneity 

causes observationally identical individuals to make different decisions when faced with the 

same health insurance purchase choice. Thus, some members of our population are insured at the 

market price while others are not.  

The most intuitive way to represent such heterogeneity is through heterogeneity in the 

reservation price. The reservation price is the maximum amount that a given individual would be 

willing to pay for health insurance. The distribution of reservation prices in a population 

determines the number insured under any conceivable policy regime. This distribution is 

sufficient to fully characterize the market level demand for health insurance in this population.  
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Clearly, the population distribution of reservation prices can take on many shapes. While 

we illustrate the distribution functions graphically using the uniform distribution, as shown in 

Figure 2, all discussion and formulas will be completely general, unless otherwise stated. If the 

market price is above the maximum reservation price in the population, rmax, no one is insured.  

If the market price is below rmin, everyone in the population is insured. At market prices between 

rmin and rmax, the share of the population for whom the market price p0  is below their reservation 

price will be insured.  

 

Figure 2: Uniform distribution of reservation prices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Another way of representing the same distribution is through the cumulative distribution 

function, F(r). Since at prices below rmin, everyone is insured, the cumulative distribution 

function takes on the value 1. At prices above rmax it is zero, since no one is insured. For any 

given market price, the cumulative distribution function reveals the share of the population that 

will purchase insurance. Coupled with the total number of people in the population, this 

determines the number of insured. Thus, the cumulative distribution function is, in essence, the 

market demand function. Lowering the price from p0 to p1 raises the share of the population that 

is insured from F(p0) to F(p1).  
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Figure 3: Cumulative distribution function of reservation prices, for a uniform distribution.  

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 

The distribution of reservation prices can be used to derive an elasticity measure.  It is 

important to note, however, that while health insurance acquisition is an individual discrete 

choice, elasticity, as used in health insurance modeling, is a market-level concept. The demand 

elasticity represents a change in the number of individuals insured, not a change in the quantity 

of insurance purchased, as would be described by the elasticity of an individual demand curve. In 

this context, the elasticity should be thought of as a participation elasticity, which is only 

meaningful when applied to a population. A point elasticity, the percentage change in the number 

of insured per percentage change in price at a given price, can be expressed as:  

Point elasticity: 
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It is often convenient to use a semi-elasticity, which is used in some of the literature (e.g. 

Gruber and Poterba 1994). A semi-elasticity does not use the percentage change in the 

population insured but rather the percentage point change in the number insured. The point semi-

elasticity is: 
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In some empirical work and simulations, demand responsiveness is measured using a discrete 

price change. Since lowering price to p1 increases the share of the entire population who takes-up 

insurance by F(p1) - F(p0) percentage points2, 

Discrete Elasticity  
001

001

/)(
)(/))()((
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The elasticity varies with price as we move through the reservation price distribution. The 

extent and form of this variation depends on the shape of the distribution function. Depending on 

that shape, discrete change elasticities can be strikingly different from the point elasticity at the 

starting price, as we will illustrate in the empirical section. Further, we would expect very 

different elasticities at the floor where almost no one is insured and at the ceiling where almost 

everyone is insured. When almost everyone who is observationally identical has taken up 

insurance, it seems highly likely that the remaining few uninsured are different along some 

important unobserved dimensions that influence the participation decision.  

 

Taking an elasticity estimated at the low part of the distribution and applying it to those at 

the high point of the distribution can generate significant errors.  For example, in the case of a 

uniform distribution, the elasticity is zero at prices below rmin, and above rmax , since either 

everyone or no one is insured and nothing further changes. Between those two prices, the 

uniform distribution elasticity is 
pr

p
−max

, as illustrated in Figure 43. As drawn, an elasticity 

measure derived from prices in the vicinity of rA but applied to individuals with reservation 

prices in the vicinity of rB would be off by roughly a factor of three.  

 

Figure 4: Possible (point) elasticity as a function of price for a uniform distribution of reservation 

prices.  

                                                           
2 It would be possible and preferable in real empirical work, of course, to define arc elasticity versions of the 
discrete elasticities. Since that issue is not central to our points, we avoid the arc elasticities to keep the formulas 
simpler.  
3 Due to the unrealistic abrupt changes at the edges of the distribution, the elasticity actually goes to infinity at rmax.  
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The elasticity is not the only measure of consumer responsiveness.  Some simulation 

methods use take-up rates instead. The take-up rate is the share of the initially uninsured 

population who take up insurance in response to some policy or price change. Imagine that our 

homogeneous population was initially ineligible for a free program and faced a non-zero market 

price for insurance. For simplicity, consider the effect of making the population eligible for free 

health insurance, resulting in a 100% price reduction.4 In that case, the semi-elasticity, denoted 

εs, is F(0) – F(p0), or the fraction of the entire population who take-up insurance.  The take-up 

rate is the fraction of the uninsured population newly insured,  (F(0) – F(p0)) / (1-F(p0)).  

 

In general, the take-up rate for an arbitrary price change is  








 −
−

=






 −
−

=
0

01
0

00

01

0

))((
)(1)(1 p

pp
pF

pFp
pp

pF
s εε

τ  

ε 

rmax rmin 
p 

rA 
rB 

εA 

εB 



 9 

If the initial group is all uninsured, the semi-elasticity and the take-up rate are identical. 

Applying an elasticity computed from a total population (including both the insured and 

uninsured) to an uninsured population, as if it were a take-up rate, creates a scaling error5. To 

illustrate the importance of scaling the measured elasticity correctly when applying it to the 

uninsured population only, consider the following simple example. 

Imagine a simple controlled experiment in which there are 10,000 people in the 

experimental group of whom 8000 are initially insured.  Suppose the experiment reduces the 

price of health insurance faced by this group by 10%.  In response, 1000 of those initially 

uninsured purchase coverage.  In this case, the estimated semi-elasticity is equal to the change in 

probability of having insurance = (9000-8000)/10,000 = .1 divided by the price change of .1, 

yielding a semi-elasticity = .1 / .1 = 1.0. (The corresponding elasticity is 1.25.)  

Now consider what happens if this semi-elasticity is applied to the initially uninsured 

population only, as would be the case with a take-up rate. Applying the 1.0 semi-elasticity to the 

10% price change over a population of 2000 initially uninsured people yields an estimate that 

200 people will gain new coverage.  In the example, however, 1000 people gained coverage, 5 

times as many as we estimate. Using a semi-elasticity as if it were a take-up rate will lead to 

inconsistencies. In order to be applied to a population that is entirely uninsured, the semi-

elasticity must be scaled by the inverse of the share of the population that was initially uninsured, 

in this case 1/5.  

On theoretical grounds, there is no reason to prefer elasticities over take-up rates or vice 

versa. However, if predictions across studies are to be compared, transparent and consistent 

descriptions of how parameters are employed is critical. More generally, in order to compare 

simulation results, we need to understand the origins of differences and the circumstances under 

which different modeling approaches would yield identical results.  

III. Modeling Approaches in Practice 

                                                                                                                                                                                           
4 Non-financial costs of insurance are not included in the price and would need to be incorporated elsewhere.  
5 Some researchers use the term take-up rate to refer to an average take-up rate, the share of all people who 
participate in a program. This rate is then applied only to the uninsured. The previously insured, albeit with a 
different form of insurance, have a different take-up rate (a crowd-out rate) applied to them. If not everyone in the 
initial population had been uninsured, then a similar scaling error occurs. In our simple model with only one form of 
insurance, the concept of crowd-out is not relevant. As such, we define the take-up rate as the share of the uninsured 
who take-up insurance, since that is how it will be applied.   
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Methods of modeling the effects of health insurance reform fall roughly into four broad 

categories.  Note that all implementations are not always pure forms of these categories and that 

hybrids exist (Blumberg and Nichols 20006). The first approach, which we call the elasticity 

approach (EA), applies price elasticities to data on current prices and current insurance patterns.  

This approach is the most familiar and widely used.  In some cases (for example, Gruber 2000 

and Baumgardner 1998), price elasticities are obtained from data sources other than the one used 

for the microsimulation, while in other cases (for example, RWJF 2000), the elasticities are 

estimated from the same data used for the microsimulation. The EA uses individual-level data in 

determining prices, incomes and other parameters, and is thus considered a microsimulation 

approach. However, while the prices and incomes are individual-specific in the EA, the elasticity 

is not.  

The second approach, which we call the matrix approach (MA), applies take-up rates to 

groups of individuals defined by particular characteristics, such as income, family-size, and so 

on.  This approach has primarily been used for Medicaid take-up calculations (e.g. Holahan, 

Uccello and Feder).  

We call the third approach the discrete choice approach (DCA). In this method, a discrete 

choice model is estimated and used to predict the effects of policy changes (e.g., Blumberg and 

Nichols; Pauly and Herring 2000a and 2000b). While only Pauly and Herring interpret such 

models as reservation prices, all discrete choice models implicitly define a cumulative 

distribution function of reservation prices.  Thus, these estimated discrete choice models are 

conceptually akin to the insurance demand model we described in the previous section.   

The final approach is the most recent. It compares health insurance options using 

reservation prices estimated through a utility-based structural model (Pauly and Herring, 2000a; 

2000b; Zabinski et al 1999). As we show below, the first three approaches, while appearing very 

different and, in existing practice, yielding quite different estimates, are actually closely related. 

The fourth approach is idiosyncratic in the particular structural model employed and difficult to 

compare to the other three and therefore we do not discuss it any further.  

The discussion in the previous section assumed an observationally homogeneous 

population.  In the matrix approach, however, observable covariates play an important role.  

                                                           
6 Blumberg and Nichols’ simulation methods also incorporates a novel and rather sophisticated set of general 
equilibrium conditions, which are beyond the scope of our discussion here.  
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Therefore, to illustrate the relationships between the three approaches, we need a formulation 

with observationally distinct groups. Consider a case with two groups, one, denoted E, is already 

eligible, while the other denoted N, is initially ineligible. Each group initially contains both 

insured and uninsured individuals. The take-up rate among the uninsured is distinct for each sub-

group.7 The market price for insurance is initially p0 and is p1 in the subsidized program.  

As we have emphasized in the previous section, elasticities vary across individuals and 

depend on the range of price changes. Each approach, therefore, will be applied to identical 

people and an identical price change. In this case, the price elasticity of demand for insurance is 

specific to the relevant population group, N, and calculated based on the discrete price change 

that corresponds to the policy proposal. Thus, the semi-elasticity for the N group is: 

0
01

01 )()(
p

pp
pFpF NNN

s ⋅
−
−

=ε .Applying that semi-elasticity in an EA microsimulation to the entire 

N population would result in a change in the number of insured of: 

))()(()( 01
0

01 pFpFN
p

pp
EAT N

N
s

Ni
−=







 −
=∆ ∑

∈

ε  

where NN is the number of people in the N group.  

The matrix approach uses take-up rates, rather than elasticities. A take-up rate is the 

fraction of the uninsured that participate in the new program.  Calculating the take-up rate for the 

relevant population group, N, based on the same discrete price change of the policy proposal, 

results in 
)(1

)()(

0

01

pF
pFpF

N −
−

=τ . Using the matrix approach, the take-up rate would be applied to 

the uninsured members of the newly eligible group, resulting in: 

))()(()( 01
,0

pFpFNMAT N
NUIi

N −==∆ ∑
∈

τ  

The discrete choice approach starts by estimating a discrete choice model, generally a 

logit or probit. To predict enrollment, the fitted model is applied to each individual to predict his 

probability of participating at the new price. This is equivalent to estimating the cumulative 

distribution function for each individual and adding them up.  

                                                           
7 For the matrix approach, there is also generally a different take-up rate for programs such as Medicaid among the 
already insured. Since we have only two states, insured and uninsured, that is not relevant here. Our already insured 
simply stay insured.  
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Clearly, if all parameters are estimated from the affected population facing the proposal 

to be simulated, then all approaches yield the same predictions. This begs the question of why 

empirical estimates derived using different methods generally produce inconsistent results. 

One reason estimates differ is that they use parameters drawn from different sources.  

Occasionally, parameters are estimated from the same population to which a proposal will be 

applied.  Sometimes, parameters are estimated from a larger sample that includes the small 

affected population (for example, a discrete choice model that uses the full population to 

estimate parameters more precisely and then applies these to an expansion targeted at those 

<250% FPL).  Alternatively, parameters may be drawn from an entirely different population (for 

example, an elasticity computed from an independent natural experiment)to avoid problems of 

selection bias and endogeneity.  Since the decision to acquire insurance is based on unobservable 

characteristics that may be correlated with price, any estimate of price responsiveness will falsely 

attribute all causality to the price change.  Using estimates of consumer responsiveness obtained 

from a different population, however, may lead to errors because the elasticity can vary 

substantially across the population.  The employment of these external sources must balance 

these bias and relevance concerns. Variations in predictions may also stem from differences in 

the choice of functional form and, implicitly, the treatment of unobservable heterogeneity. The 

relationship between functional form assumptions and predictions will be elucidated in the next 

section.   

 

 

IV. An Empirical Illustration 

Defining homogeneous sub-groups in a theoretical context is simple: one simply defines 

subscripts. In practice, this is considerably more difficult. In effect, the individual characteristics 

used as either regression model controls or a means of stratification, determine the populations 

effectively treated as homogeneous. In this section, we employ data to demonstrate the 

equivalence of the discrete choice approach (DCA), elasticity approach (EA) and matrix 

approach (MA) in one particular case and the various conditions under which the approaches do 
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not result in the same predictions.8 We also illustrate the impact of unobservable heterogeneity 

by deriving the empirically predicted variation in responsiveness among observationally identical 

individuals using the DCA.   

 The demonstration of the equivalence of modeling approaches proceeds as follows. We 

first fit a discrete choice model for having insurance using log price and other covariates. To 

implement the DCA, we use that model to predict the impact of a single health insurance 

expansion, a reduction in price for a certain sub-group. Next, we use the results of those 

predictions as if they were real world data from a policy change to calculate the implied discrete-

price-change elasticity and take-up rate, as described in the theory section. The EA predictions 

are made by applying that elasticity to each of the income categories used in the estimation. The 

MA predictions are made by applying the derived take-up rate to each income category.   

We illustrate how the methods diverge in their predictions in three different ways. First, 

when implementing the EA, we use the point elasticity estimated from the discrete choice model, 

rather than using the discrete-price-change elasticity, as described above. Second, we re-estimate 

the discrete choice model on a moderately high-income sub-group and use the implied discrete 

choice elasticity to predict the impacts of the policy change on a low-income sub-group. Third, 

we more closely mimic the MA as practiced, by using take-up rates estimated for different price-

income cells and applying them to those newly eligible for lower prices.  

 

IV.A. Empirical Methods 

For all calculations we will use the March 2000 Current Population Survey and include 

only the non-elderly (under 65) and those without Medicaid. We treat all forms of insurance, 

ESI, individually-purchased insurance and so on, as equivalent. For all models, we will consider 

a reduction of price by 50% for a certain sub-group910, specifically those below 200% of the 

federal poverty line. We estimate a weighted logistic regression model, 

 

                                                           
8 Note that we are only examining predictions of the total number of insured, not the distribution of who is insured. 
Clearly, policymakers and individuals are also concerned about how insurance is distributed among income groups 
and other categories.  
9 The prices used here are the out-of-pocket prices. There is controversy about whether the employer share should 
also be included for ESI. While this issue is important, it does not matter for the points we wish to illustrate.  
10 Prices are assigned to individuals in the CPS by matching them to actuarial data using covariates. Non-group 
prices are assigned based on age, sex, Census region and health status. Group prices are assigned based on firm size 
and Census region.  
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where the subscript i denotes the ith individual, log pi is the log out-of-pocket price of insurance, 

Xi is a vector of income categories: <50% FPL, 50-99% FPL, 100-149% FPL, and 150-199% 

FPL and the weights are the survey sample weights. The estimated coefficients can be used to 

predict the probability of having insurance for each person in the sample. The predicted number 

of insured for the population, ψ, is calculated by multiplying the predicted probability of each 

person in the sample by the person’s sample weight wi: ∑=Ψ
i

iii pfw )( .11   

 In our empirical exercise, we treat these predictions as if they were “real” data from an 

actual policy change. We use these to calculate the implied discrete semi-elasticity, 

p
p

N
s ∆

∆Ψ
=ε , 

and implied take-up rate, U
∆Ψ=τ  where N is the number of people affected by the policy 

change and U is the initial number of uninsured affected by the policy change.  

 To implement the EA, we calculate the final number of insured within an income cell 

as: ,0
cellscell

f
cell Np

p 




∆+Ψ=Ψ ε  where the subscript cell denotes the income cell, the superscript 

f denotes the final (post-intervention) state, 0 denotes the initial (pre-intervention) state, and Ncell 

denotes the total number of people in the cell affected by the policy. We first implement the EA 

approach using the discrete price change semi-elasticity implied by the discrete choice model’s 

predictions for the policy change. We later implement the EA in a manner more like that used in 

actual EA simulations, by using the point semi-elasticity implied by the discrete choice model. 

The point semi-elasticity is calculated by taking the derivative of the probability with respect to 

log price for each individual in the sample and then taking the weighted average of those 

derivatives: ∑ ′−−
i

iiiii
tot

Xppfw
N

}logexp{)]([1 2 γββ . 

                                                           
11 The logistic model fitting procedure ensures that predictions of the number of insured for the entire sample will 
return the correct number. The same, however, will not be true for any sub-group. This discrepancy can be and often 
is overcome through model calibration. We repeated the analysis using a calibrated model and there were no 
qualitative differences in our results.   
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 To implement the MA, we calculate the final number of insured within an income cell as: 

),( 00
cellcellcell

f
cell N Ψ−+Ψ=Ψ τ  applying the take-up rate τ to the uninsured group, as if they were 

eligible for a new program. We first use the take-up rate implied by the predictions of the 

discrete choice model for the policy change.  We later implement the MA in a manner more like 

that used in actual MA simulations, dividing the sample into cells defined by the usual income 

categories and the price categories: $0, $1-$499, $500-$999, $1000-$1499, $1500-$1999, $2000-

$2499, $2500-$2999, $3000-$3499, and >$3500. For example, one cell includes people with 

income 150-199% FPL who currently face prices of $500-$999 monthly.  We calculate a cell-

specific take-up rate by calculating the share of the cell that has insurance.12 We then implement 

the program by reducing everyone’s price by 50% so that they move into new price-income cells. 

For example, to the people in the cell in the example above we now apply the take-up rate of 

those with income 150-199% FPL who face prices of $1-$499 monthly.  We apply the 

appropriate take-up rate to all the uninsured newly eligible for the price. Those who are initially 

insured keep their prior insurance status. Those who do not move cells also keep their prior 

insurance status.  

 

IV.B. Equivalence of Approaches 

The change in the number of insured resulting from the 50% price reduction, as predicted 

by the discrete choice model, is 12.2 million (Table 1). The implied discrete-price-change semi-

elasticity and take-up rates are used in the EA and MA, respectively, and yield essentially 

identical predictions (Table 1).  

                                                           
12 This may seem like a contradiction with our definition of a take-up rate as the share of the uninsured who take-up 
a particular program. However, if one understands the existing data as being those otherwise uninsured people who 
respond to this price level by taking up insurance, the methods are consistent. In effect, this treats everyone in the 
cell facing a particular price as those eligible for a particular program (price level). The program we evaluate is then 
a new one, which changes the prices available to different individuals.  
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Table 1: Equivalence of Approaches and Point EA 
DCA: Predicted Change in Number Insured 12,222,288 
Implied Discrete Change Price Semi-elasticity .381 
Implied Discrete Price Take-up Rate .510 
Implied Elasticity EA: Predicted Change in Number Insured 12,222,288 
Implied Take-up Rate MA: Predicted Change in Number Insured 12,222,288 
  
Point Semi-elasticity  .256 
Point Elasticity EA: Predicted Change in Number Insured 8,886,978 
Notes:  Newly Eligible Population (those < 200% FPL without Medicaid):  69,183,929 
 Initial Number Insured in That Population:    41,413,953 
 

This agreement is exactly that predicted by the theory section. Of course, this precise 

agreement requires the same data set and the same policy change. Moreover, the discrete-

change-price elasticity is calculated from the very numbers of insured that resulted from the 

policy change. In our exercise, we create such numbers through the DCA, which serves as a 

benchmark for methodological comparisons. In effect, as our theory section showed, the results 

are the same, because the calculation is essentially the implementation of an identity. 

 

IV.C. Discrete versus Point Semi-Elasticity 

If instead, we make predictions using the point semi-elasticity-- a practice much more 

like that commonly employed by EA simulation-- we do not get the same results. As shown in 

Table 1, the predicted change in the number of insured is now 8.9 million. Both approaches use a 

semi-elasticity from the same model applied to the same data and apply it identically. The only 

difference between these methods is the size of the price change used to measure the semi-

elasticity—the discrete vs. point semi-elasticity. Despite the tremendous similarities across 

methods, the results now differ by 27%. 

The very different predictions that result from the point semi-elasticity vs. the discrete-

price-change semi-elasticity belie a more general phenomenon. The elasticity varies throughout 

the population, as individuals vary in both observable and unobservable dimensions. The 

treatment of unobservable heterogeneity is embodied by functional form assumptions, which 

impose restrictions on the distribution of reservation prices, and, in turn, on the point elasticity 

variation with price.  

We illustrate the effects of different functional form assumptions using the logistic 

model.  First, we calculate the point semi-elasticity, by calculating the effect of a marginal 
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increase in price for each person in the sample, starting from that individual’s current price. The 

weighted average of each of those effects is calculated to give a unique point semi-elasticity 

based on current prices: ∑ ′−−
i

iiiii
tot

Xppfw
N

}logexp{)]([1 2 γββ . 

Second, we calculate a continuum of point semi-elasticities at all possible prices. In this 

case, we calculate the effect of a marginal increase in price for each person in the sample, where 

each of those individuals is facing the same given price but otherwise maintains their original 

covariates. We then take the weighted average of the marginal effects over all individuals at that 

price, ∑ ′−−
i

iii
tot

Xppfw
N

}logexp{)]([1 2 γββ . We repeat this calculation throughout the 

distribution of prices.  

Figure 5 presents graphically the results from these two calculations.  It is the empirical 

counterpart to our earlier theoretical illustration in Figure 4. This illustrates the potentially 

enormous impact of unobservable heterogeneity.  The constant semi-elasticity represents the 

simple assumption that semi-elasticity is invariant to starting prices. The variable semi-elasticity 

reflects the assumption that the coefficients of a logistic regression, including the coefficient of 

log price, are invariant to starting prices. Both approaches combine data with particular 

functional form assumptions, characterizing the unobservable heterogeneity. The correct 

characterization of unobservable heterogeneity is unknowable, but clearly different 

characterizations of that heterogeneity, through different functional form assumptions, will 

greatly influence predictions.   
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Figure 5: Variation of semi-elasticity with price. Dotted line is the constant semi-elasticity of the EA. Solid 
line is the semi-elasticity implicit in the DCA.
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IV.D. Out-of-Sample Predictions 

Table 2 shows the results from fitting the discrete choice model on the population > 

250% FPL and using that model to predict the effects on those < 200% FPL. We do this for both 

the DCA and the EA. For the DCA we assume that the coefficients of the logistic model fitted on 

the high-income group apply to the low-income group. For the EA, we use the high-income 

logistic model to predict the effects of a 50% price reduction on the high-income group and use 

those predictions to calculate an implied discrete semi-elasticity. We then apply that semi-

elasticity to the low-income group for the EA predictions. Clearly in this case the models do not 

yield identical results. The DCA predicts a change of 7.06 million while the EA predicts a 

change of 3.65 million.  This difference arises despite the fact that the two methods differ only in 

the functional form with which parameters estimated are applied to predict changes for the lower 

income group.  



 19 

It is interesting to note that the size of the predicted effect is dramatically smaller than 

that predicted when the model was fitted on the entire sample. This is not surprising because in 

our estimation high-income individuals are less responsive to price than are low-income 

individuals.  

 
 

Table 2: Predictions in Lower Income Group Sample from Higher Income Group Parameters 
DCA: Predicted Change in Number Insured 7,060,728 
Implied Discrete Change Price Semi-elasticity .656 
Implied Elasticity EA: Predicted Change in Number Insured 3,653,989 
Notes:  Newly Eligible Population (those < 200% FPL without Medicaid):  69,183,929 
 Initial Number Insured in That Population:    41,413,953 

 

  

IV.E. Income-Price Cell Matrix Approach 

The MA relies on tabulations of insured individuals disaggregated by a variety of 

covariates. An example of such a tabulation is shown in Table 3 with the initial number of 

insured, initial total population, and the take-up rates applied for each income-price cell. The 

pattern of variation by price is quite strange, reflecting the institutional realities of employer-

sponsored health insurance, rather than any real behavior determined by price itself. A real-world 

matrix approach, of course, would make use of a variety of important other covariates and 

therefore would not imply such unrealistic behavior.  
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Table 3: INITIAL CONDITIONS 
  Income relative to FPL 
Price  0%-50% 50%-100% 100%-150% 150%-200% Total 

Take-up rate 1.0000 1.0000 1.0000 1.0000 1.0000 
Number insured 3,559,070 947,331 1,569,684 1,928,792 8,004,877 $0  
Pop'n total 3,559,070 947,331 1,569,684 1,928,792 8,004,877 
Take-up rate 1.0000 1.0000 1.0000 1.0000 1.0000 
Number insured 475,008 1,841,223 4,072,107 5,805,723 12,194,061 $0-$499 
Pop'n total 475,008 1,841,223 4,072,107 5,805,723 12,194,061 
Take-up rate 0.6302 0.6554 0.8027 0.8431 0.7532 
Number insured 1,436,140 1,690,627 2,905,743 3,309,970 9,342,480 $500-$999 
Pop'n total 2,278,830 2,579,480 3,620,046 3,925,951 12,404,307 
Take-up rate 0.5253 0.6599 0.7595 0.8125 0.7078 
Number insured 427,336 618,707 1,026,751 958,625 3,031,419 $1000-$1499 
Pop'n total 813,569 937,569 1,351,914 1,179,814 4,282,866 
Take-up rate 0.4132 0.4069 0.3837 0.4512 0.4127 
Number insured 1,269,725 800,122 876,786 888,602 3,835,235 $1500-$1999 
Pop'n total 3,073,075 1,966,295 2,285,239 1,969,282 9,293,891 
Take-up rate 0.5588 0.3552 0.3390 0.4066 0.4523 
Number insured 846,362 221,150 222,636 236,145 1,526,293 $2000-$2499 
Pop'n total 1,514,514 622,675 656,678 580,843 3,374,710 
Take-up rate 0.1657 0.2074 0.2030 0.1765 0.1863 
Number insured 327,049 264,966 318,081 219,183 1,129,279 $2500-$2999 
Pop'n total 1,973,742 1,277,429 1,567,026 1,241,837 6,060,034 
Take-up rate 0.2354 0.2172 0.2412 0.2586 0.2374 
Number insured 274,248 140,334 209,386 148,020 771,988 $3000-$3499 
Pop'n total 1,165,186 646,120 868,177 572,397 3,251,880 
Take-up rate 0.1341 0.1479 0.1630 0.1974 0.1530 
Number insured 579,215 320,274 368,946 309,886 1,578,321 $3500+ 
Pop'n total 4,319,915 2,164,923 2,262,958 1,569,507 10,317,303 
Take-up rate 0.4795 0.5272 0.6338 0.7353 0.5986 
Number insured 9,194,153 6,844,734 11,570,120 13,804,946 41,413,953 Total 
Pop'n total 19,172,909 12,983,045 18,253,829 18,774,146 69,183,929 

 

 

 

We implement the MA for the proposed policy change by reducing by 50% the price of 

insurance for each person below 200% FPL.  The proportion of the currently uninsured newly 
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entering each cell that acquire insurance is equal to the old proportion of those in the cell who 

took-up insurance (the take-up rate marked).  Table 4 shows the results of the MA with 

16,806,756 million people predicted to be newly insured.  

 
 

Table 4: Comparison of MA methods 
DCA: Predicted Change in Number Insured 12,222,288 
Implied Take-up Rate MA: Predicted Change in Number Insured 12,222,288 
Price Cell Based MA: Predicted Change in Number Insured 16,806,756 
Notes:  Newly Eligible Population (those < 200% FPL without Medicaid):  69,183,929 
 Initial Number Insured in That Population:    41,413,953 
  

Figure 6
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 The price-cell MA assumes that if anyone is given a particular price, his insurance take-

up behavior will be the same as those who currently face that particular price. In contrast, the 

DCA predicts insurance take-up behavior using a model estimated from cross-sectional 
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correlations in price and insurance status. Figure 6 illustrates the take-up rate as a function of 

price implied by both methods.13  

 

In this section we have shown the empirical conditions under which the different 

approaches produce identical predictions. In addition, we have shown some commonly used 

practices that yield different predictions across the approaches-- using the point instead of the 

discrete-price-change semi-elasticity, applying parameters estimated for one sub-group to 

another, and calculating take-up rates as existing average take-up rates.  We have also 

demonstrated the potential of unobservable heterogeneity to render out-of-sample predictions 

enormously inaccurate.  

 

V. Conclusions 

Given the variety of people engaged in estimating the responses to policies to expand 

health insurance as well as the great variety of policy changes examined, there is a great onus on 

researchers to precisely and exhaustively explain all modeling assumptions (Glied, Remler and 

Graff Zivin). In order to allow a conversion of one simulation’s parameters into the terms of 

another simulation, it is critical to spell out exactly how an elasticity or take-up measure is 

actually employed.   

Since all predictions inevitably involve out of sample predictions, it is important to assess 

how well parameters estimated in one situation generalize to the situation in which they will be 

employed. Obviously, there are limited sources for parameter estimation, particularly sources 

that do not suffer from selection bias, such as natural experiments. Therefore, there is an 

unavoidable tension between “clean” parameters and “relevant” parameters. While researchers 

may differ in how they handle this tension, they do policy makers a great service by clearly 

delineating the limitations of their choice. 

                                                           
13 The DCA curve is calculated as follows. To trace out the curve, we give each person in the sample the same new 
insurance price, starting with $1 and repeating over the entire range of prices. The take-up rate is the share of the 
initially (predicted) uninsured that is predicted to become insured at the new price. However, if the new price is 
higher than the original price, we assume that they stay with the original price and that individual does not take-up at 
all.   

Formally, 
∑

∑
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People are different. It is not sensible to assume that individuals who heretofore have 

resisted acquiring insurance will respond to a subsidy in the same way as those who eagerly 

scooped up less generous subsidies.  Hence, unobservable heterogeneity will always be 

important. All modeling approaches implicitly make assumptions about functional form that 

impose restrictions on unobservable heterogeneity. Such functional form restrictions can have a 

profound impact on the quantitative predictions of policy simulations. Researchers should 

explore the sensitivity of their predictions to specific functional form assumptions in order to 

disentangle the data-driven and model-driven elements of their predictions. 

While our focus has been on simulations to model health insurance expansions, many of 

the same concerns arise in simulations of other types of policy proposals (e.g., tax policy and 

non-health care benefits policies). For school voucher proposals, as for health insurance 

expansion proposals, heterogeneity and take-up are particularly critical issues making the 

concerns of this paper particularly relevant in this context. The choice of functional form implies 

an assumption about unobservable heterogeneity that can have substantial effects on the 

estimates.     

The fates of many policy proposals hinge on the actual numbers predicted for them: how 

many will participate and at what cost. It is often the case that evaluators, using different 

methods, will generate widely different numbers for the same proposal. Policy makers 

predisposed to reject the proposal will chose the less favorable numbers while those predisposed 

to support the proposal will chose the more favorable numbers. Without the ability to discuss the 

particular assumptions embedded in each estimate, there is little potential for constructive debate.  
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