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One of the inherent hazards of investing in financial markets is the risk of a major

event precipitating a sudden large shock to security prices and volatilities. There

are many examples of this type of event, including, most recently, the September

11th, 2001 terrorist attacks. Other recent examples include the stock market crash of

October 19, 1987 in which the Dow index fell by 508 points, the October 27, 1997 drop

in the Dow index by more than 554 points, and the flight to quality in the aftermath

of the Russian debt default where swap spreads increased on August 27, 1998 by

more than twenty times their daily standard deviation, leading to the downfall of

Long Term Capital Management and many other highly leveraged hedge funds. Each

of these events was accompanied by major increases in market volatility.1

The risk of event-related jumps in security prices and volatility changes the

standard dynamic portfolio choice problem in several important ways. In the standard

problem, security prices are continuous and instantaneous returns have infinitesimal

standard deviations; an investor considers only small local changes in security prices

in selecting a portfolio. With event-related jumps, however, the investor must also

consider the effects of large security price and volatility changes when selecting a

dynamic portfolio strategy. Since the portfolio that is optimal for large returns need

not be the same as that for small returns, this creates a strong conflict that must be

resolved by the investor in selecting a portfolio strategy.

This paper studies the implications of event-related jumps in security prices

and volatility on optimal dynamic portfolio strategies. In modeling event-related

jumps, we use the double-jump framework of Duffie, Pan, and Singleton (2000). This

framework is motivated by evidence by Bates (2000) and others of the existence of

volatility jumps, and has received strong empirical support from the data.2 In this

model, both the security price and the volatility of its returns follow jump-diffusion

processes. Jumps are triggered by a Poisson event which has an intensity proportional

to the level of volatility. This intuitive framework closely parallels the behavior of

actual financial markets and allows us to study directly the effects of event risk on

portfolio choice.

To make the intuition behind the results as clear as possible, we focus on the

simplest case where an investor with power utility over end-of-period wealth allocates
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his portfolio between a riskless asset and a risky asset that follows the double-jump

process. Because of the tractability provided by the affine structure of the model, we

are able to reduce the Hamilton-Jacobi-Bellman partial differential equation for the

indirect utility function to a set of ordinary differential equations. This allows us to

obtain an analytical solution for the optimal portfolio weight. In the general case,

the optimal portfolio weight is given by solving a simple pair of nonlinear equations.

In a number of special cases, however, closed-form solutions for the optimal portfolio

weight are readily obtained.

The optimal portfolio strategy in the presence of event risk has many interesting

features. One immediate effect of introducing jumps into the portfolio problem is

that return distributions may display more skewness and kurtosis. While this has

an important influence on the portfolio chosen, the full implications of event risk for

dynamic asset allocation run much deeper. We show that the threat of event-related

jumps makes an investor behave as if he faced short-selling and borrowing constraints

even though none are imposed. This result parallels Longstaff (2001) where investors

facing illiquid or nonmarketable assets restrict their portfolio leverage. Interestingly,

we find that the optimal portfolio is a blend of the optimal portfolio for a continuous-

time problem and the optimal portfolio for a static buy-and-hold problem. Intuitively,

this is because when an event-related jump occurs, the portfolio return is on the

same order of magnitude as the return that would be obtained from a buy-and-

hold portfolio over some finite horizon. Since these two returns have the same effect

on terminal wealth, their implications for portfolio choice are indistinguishable, and

event risk can be interpreted or viewed as a form of liquidity risk. This perspective

provides new insights into the effects of event risk on financial markets.

To illustrate our results, we provide two examples. In the first, we consider

a model where the risky asset follows a jump-diffusion process with deterministic

jump sizes, but where return volatility is constant. This special case parallels Merton

(1971) who solves for the optimal portfolio weight when the riskless rate follows a

jump-diffusion process. We find that an investor facing jumps may choose a portfolio

very different from the portfolio that would be optimal if jumps did not occur. In

general, the investor holds less of the risky asset when event-related price jumps can
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occur. This is true even when only upward price jumps can occur. Intuitively, this is

because the effect of jumps on return volatility dominates the effect of the resulting

positive skewness. Because event risk is constant over time in this example, the

optimal portfolio does not depend on the investor’s horizon.

In the second example, we consider a model where both the risky asset and its

return volatility follow jump-diffusion processes with deterministic jump sizes. The

stochastic volatility model studied by Liu (1999) can be viewed as a special case of

this model. As in Liu, the optimal portfolio weight does not depend on the level

of volatility. The optimal portfolio weight, however, does depend on the investor’s

horizon since the probability of an event is time varying through its dependence on

the level of volatility. We find that volatility jumps can have a significant effect

on the optimal portfolio above and beyond the effect of price jumps. Surprisingly,

investors may even choose to hold more of the risky asset when there are volatility

jumps than otherwise. Intuitively, this means that the investor can partially hedge

the effects of volatility jumps on his indirect utility through the offsetting effects of

price jumps. Note that this hedging behavior arises because of the static buy-and-

hold component of the investor’s portfolio problem; this static jump-hedging behavior

differs fundamentally from the usual dynamic hedging of state variables that occurs

in the standard pure-diffusion portfolio choice problem.

We provide an application of the model by calibrating it to historical U.S. data

and examining its implications for optimal portfolio weights. The results show that

even when large jumps are very infrequent, an investor still finds it optimal to reduce

his exposure to the stock market significantly. These results suggest a possible reason

why historical levels of stock market participation have tended to be lower than

would be optimal in many classical portfolio choice models. While volatility jumps

are qualitatively important for optimal portfolio choice, the calibrated exercise shows

that they generally have less impact than price jumps.

Since the original work by Merton (1971), the problem of portfolio choice in the

presence of richer stochastic environments has become a topic of increasing interest.

Recent examples of this literature include Brennan, Schwartz, and Lagnado (1997) on

asset allocation with stochastic interest rates and predictability in stock returns, Kim
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and Omberg (1996), Campbell and Viceira (1999), Barberis (2000), and Xia (2001) on

predictability in stock returns (with or without learning), Lynch (2001) on portfolio

choice and equity characteristics, Schroder and Skiadas (1999) on a class of affine

diffusion models with stochastic differential utility, Balduzzi and Lynch (1999) on

transaction costs and stock return predictability, and Brennan and Xia (1998), Liu

(1999), Wachter (1999), Campbell and Viceira (2001) on stochastic interest rates,

and Ang and Bekaert (2000) on time varying correlations. Aase (1986), and Aase

and Øksendal (1988) study the properties of admissible portfolio strategies in jump

diffusion contexts. Aase (1984), Jeanblanc-Picqué and Pontier (1990), and Bardhan

and Chao (1995) provide more general analyses of portfolio choice when asset price

dynamics are discontinuous. Although Merton (1971), Common (2000), and Das and

Uppal (2001) study the effects of price jumps and Liu (1999), Chacko and Viceira

(2000), and Longstaff (2001) study the effects of stochastic volatility, this paper

contributes to the literature by being the first to study the effects of event-related

jumps in both stock prices and volatility.3

The remainder of this paper is organized as follows. Section I presents the event-

risk model. Section II provides analytical solutions to the optimal portfolio allocation

problem. Section III presents the examples and provides numerical results. Section

IV calibrates the model and examines the implications for optimal portfolio choice.

Section V summarizes the results and make concluding remarks.

I. The Event-Risk Model

We assume that there are two assets in the economy. The first is a riskless asset

paying a constant rate of interest r. The second is a risky asset whose price St is

subject to event-related jumps. Specifically, the price of the risky asset follows the

process

dSt = (r + ηVt − µλVt) St dt +
p
Vt St dZ1t + Xt St− dNt, (1)

dVt = (α− βVt − κλVt) dt + σ
p
Vt dZ2t + Yt dNt (2)

where Z1 and Z2 are standard Brownian motions with correlation ρ, V is the in-
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stantaneous variance of diffusive returns, and N is a Poisson process with stochastic

arrival intensity λV . The parameters α, β, κ, λ, and σ are all assumed to be non-

negative. The variable X is a random price-jump size with mean µ and is assumed

to have support on (−1,∞) which guarantees the positivity (limited liability) of S.
Similarly, Y is a random volatility-jump size with mean κ and is assumed to have

support on [0,∞) to guarantee that V remains positive. In general, the jump sizes

X and Y can be jointly distributed with nonzero correlation. The jump sizes X and

Y are also assumed to be independent across jump times and independent of Z1, Z2,

and N .

Given these dynamics, the price of the risky asset follows a stochastic-volatility

jump-diffusion process and is driven by three sources of uncertainty: (1) diffusive

price shocks from Z1, (2) diffusive volatility shocks from Z2, and (3) realizations

of the Poisson process N . Since a realization of N triggers jumps in both S and

V , a realization of N has the natural interpretation of a financial event affecting

both prices and market volatilities. In this sense, this model is ideal for studying

the effects of event risk on portfolio choice. Because the jump sizes X and Y are

random, however, it is possible for the arrival of an event to result in a large jump

in S and only a small jump in V , or a small jump in S and a large jump in V . This

feature is consistent with observed market behavior; although financial market events

are generally associated with large movements in both prices and volatility, jumps

in only prices or only volatility can occur. Since µ is the mean of the price-jump

size X, the term µλV S in equation (1) compensates for the instantaneous expected

return introduced by the jump component of the price dynamics. As a result, the

instantaneous expected rate of return equals the riskless rate r plus a risk premium

ηV . This form of the risk premium follows from Merton (1980) and is also used by

Liu (1999), Pan (2002), and many others. Note that the risk premium compensates

the investor for both the risk of diffusive shocks and the risk of jumps.4

These dynamics also imply that the instantaneous variance V follows a mean-

reverting square-root jump-diffusion process. The Heston (1993) stochastic-volatility

model can be obtained as a special case of this model by imposing the condition

that λ = 0, which implies that jumps do not occur. Liu (1999) provides closed-form
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solutions to the portfolio problem for this special case.5 Also nested as special cases

are the stochastic-volatility jump-diffusion models of Bates (2000) and Bakshi, Cao,

and Chen (1997). Again, since κ is the mean of the volatility jump size Y , κλV in

the drift of the process for V compensates for the jump component in volatility.

This bivariate jump-diffusion model is an extended version of the double-jump

model introduced by Duffie, Pan, and Singleton (2000). Note that this model falls

within the affine class because of the linearity of the drift vector, diffusion matrix, and

intensity process in the state variable V . The double-jump framework has received a

significant amount of empirical support because of the tendency for both stock prices

and volatility to exhibit jumps. For example, a recent paper by Eraker, Johannes,

and Polson (2000) finds strong evidence of jumps in volatility even after accounting

for jumps in stock returns.6 Duffie, Pan, and Singleton also show that the double-

jump model implies volatility “smiles” or skews for stock options that closely match

the volatility skews observed in options markets.7

II. Optimal Dynamic Asset Allocation

In this section, we focus on the asset allocation problem of an investor with power

utility

U(x) =


1

1−γ x
1−γ , if x > 0,

−∞, if x ≤ 0,
(3)

where γ > 0, and the second part of the utility specification effectively imposes a

non-negative wealth constraint. This constraint is consistent with Dybvig and Huang

(1988) who show that requiring wealth to be non-negative rules out arbitrages of

the type described by Harrison and Kreps (1979). As demonstrated by Kraus and

Litzenberger (1976), an investor with this utility function has a preference for positive

skewness.

Given the opportunity to invest in the riskless and risky assets, the investor

starts with a positive initial wealth W0 and chooses, at each time t, 0 ≤ t ≤ T , to
invest a fraction φt of his wealth in the risky asset so as to maximize the expected
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utility of his terminal wealth WT ,

max
{φt, 0≤t≤T}

E0 [ U(WT ) ] , (4)

where the wealth process satisfies the self-financing condition

dWt = (r + φt (η − µλ) Vt) Wt dt+ φt
p
Vt Wt dZ1t +Xt φt− Wt− dNt. (5)

Although the model could be extended to allow for intermediate consumption, we use

this simpler specification to focus more directly on the intuition behind the results.

Before solving for the optimal portfolio strategy, let us first consider how jumps

affect the nature of the returns available to an investor who invests in the risky asset.

When a risky asset follows a pure diffusion process without jumps, the variance of

returns over an infinitesimal time period ∆t is proportional to ∆t. This implies that

as ∆t goes to zero, the uncertainty associated with the investor’s change in wealth

∆W also goes to zero. Thus, the investor can rebalance his portfolio after every

infinitesimal change in his wealth. Because of this, the investor retains complete

control over his portfolio composition; his actual portfolio weight is continuously

equal to the optimal portfolio weight. An important implication of this is that an

investor with leveraged or short positions in a market with continuous prices can

always rebalance his portfolio quickly enough to avoid negative wealth if the market

turns against him.

The situation is very different, however, when asset price paths are discontinuous

because of event-related jumps. For example, given the arrival of a jump event at time

t, the uncertainty associated with the investor’s change in wealth ∆Wt =Wt −Wt−
does not go to zero. Thus, when a jump occurs, the investor’s wealth can change

significantly from its current value before the investor has a chance to rebalance his

portfolio. An immediate implication of this is that the investor’s portfolio weight

is not completely under his control at all times. For example, the actual portfolio

weight will typically differ from the optimal portfolio weight immediately after a

jump occurs. This implies that significant amounts of portfolio rebalancing may be
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observed in markets after an event-related jump occurs. Without complete control

over his portfolio weight, however, an investor with large leveraged or short positions

may not be able to rebalance his portfolio quickly enough to avoid negative wealth.

Because of this, the investor not only faces the usual local-return risk that ap-

pears in the standard pure diffusion portfolio selection problem, but also the risk that

large changes in his wealth may occur before having the opportunity to adjust his

portfolio. This latter risk is essentially the same risk faced by an investor who holds

illiquid assets in his portfolio; an investor holding illiquid assets may also experience

large changes before having the opportunity to rebalance his portfolio. Because of

this event-related “illiquidity” risk, the only way that the investor can guarantee that

his wealth remains positive is by avoiding portfolio positions that are one jump away

from ruin. This intuition is summarized in the following proposition which places

bounds on admissible portfolio weights.

PROPOSITION 1: Bounds on Portfolio Weights. Suppose that for any t, 0 < t ≤ T ,
we have

0 < Et

"
exp

Ã
−
Z T

t

λVs ds

!#
< 1, (6)

where λVt is the jump arrival intensity. Then, at any time t, the optimal portfolio

weight φ∗t for the asset allocation problem must satisfy

1+ φ∗t XInf > 0 and 1+ φ∗t XSup > 0, (7)

where XInf and XSup are the lower and upper bounds of the support of Xt (the random

price jump size). In particular, if XInf < 0 and XSup > 0,

− 1

XSup
< φ∗t < −

1

XInf
. (8)

Proof: See Appendix.

Thus, the investor restricts the amount of leverage or short selling in his portfolio

as a hedge against his inability to continuously control his portfolio weight. If the

random price jump size X can take any value on (−1,∞), then this proposition

8



implies that the investor will never take a leveraged or short position in the risky

asset.

These results parallel Longstaff (2001) who studies dynamic asset allocation in

a market where the investor is restricted to trading strategies that are of bounded

variation. In his model, the investor protects himself against the risk of not being able

to trade his way out of a leveraged position quickly enough to avoid negative wealth

by restricting his portfolio weight to be between zero and one. Intuitively, the reason

for this is the same as in our model. Having to hold a portfolio over a jump event

has essentially the same effect on terminal wealth as having a buy-and-hold portfolio

over some discrete horizon. In this sense, the problem of illiquidity parallels that of

event-related jumps. Interestingly, discussions of major financial market events in

the financial press often link the two problems together.

One issue that is not formally investigated in this paper is the role of options

in alleviating the cost associated with the jump risk. Intuitively, put options could

be used to hedge against the negative jump risk, allowing investors to break the

jump-induced constraint and hold leveraged positions in the underlying risky asset.8

In practice, the benefit of such option strategies depends largely on the cost of such

insurance against the jump risk. Moreover, in a dynamic setting with jump risk, it

might be hard to perfectly hedge the jump risk with finitely many options. Putting

these complications aside, it is potentially fruitful to introduce options to the portfolio

problem, particularly in light of our results on the jump-induced constraints.9 A

formal treatment, however, is beyond the scope of this paper.

We now turn to the asset allocation problem in equations (4) and (5). In solving

for the optimal portfolio strategy, we adopt the standard stochastic control approach.

Following Merton (1971), we define the indirect utility function by

J(W,V, t) = max
{φs, t≤s≤T}

Et[ U(WT ) ]. (9)

The principle of optimal stochastic control leads to the following Hamilton-Jacobi-

Bellman (HJB) equation for the indirect utility function J ,
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max
φ

Ã
φ2W 2V

2
JWW + φρσWV JWV +

σ2V

2
JV V

+ (r + φ(η − µλ)V )WJW + (α− βV − κλV )JV

+ λV
¡
E[J(W (1+ φX), V + Y, t)]− J¢+ Jt! = 0, (10)

where JW , JV , and Jt denote the derivatives of J(W,V, t) with respect to W , V , and

t, and similarly for the higher derivatives, and the expectation is taken with respect

to the joint distribution of X and Y .

We solve for the optimal portfolio strategy φ∗ by first conjecturing (which we

later verify) that the indirect utility function is of the form

J(W,V, t) =
1

1− γW
1−γ exp(A(t) +B(t)V ), (11)

where A(t) and B(t) are functions of time but not of the state variables W and

V . Given this functional form, we take derivatives of J(W,V, t) with respect to its

arguments, substitute into the HJB equation in equation (10), and differentiate with

respect to the portfolio weight φ to obtain the following first-order condition,

(η − µλ)V + ρσBV − γφ∗V + λV E[(1+ φ∗X)−γXeBY ] = 0. (12)

Before solving this first-order condition for φ∗, it is useful to first make several

observations about its structure. In particular, note that if λ is set equal to zero, the

risky asset follows a pure diffusion process. In this case, the investor faces a standard

dynamic portfolio choice problem in which the first-order condition for φ∗ becomes

ηV + ρσBV − γφ∗V = 0. (13)

Alternatively, consider the case where the investor faces a static single-period portfolio

problem where the return on his portfolio during this period equals (1+φX). In this
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case, the investor maximizes his expected utility over terminal wealth by selecting a

portfolio to satisfy the first-order condition,

E[(1+ φ∗X)−γX] = 0. (14)

Now compare the first-order conditions for the standard dynamic problem and the

static buy-and-hold problem to the first-order condition for the event-risk portfolio

problem given in equation (12). It is easily seen that the left-hand-side of equation

(12) essentially incorporates the first-order conditions in equations (13) and (14). In

the special case where µ and Y equal zero, the left-hand-side of equation (12) is

actually a simple linear combination of the first-order conditions in equations (13)

and (14) in which the coefficients for the dynamic and static first-order conditions

are one and λV , respectively. This provides some economic intuition for how the

investor views his portfolio choice problem in the event-risk model. At each instant,

the investor faces a small continuous return, and with probability λV , may also face

a large return similar to that earned on a buy-and-hold portfolio over some discrete

period. Thus, the first-order condition for the event-risk problem can be viewed as

a blend of the first-order conditions for a standard dynamic portfolio problem and a

static buy-and-hold portfolio problem.

So far, we have placed little structure of the joint distribution of the jump sizes

X and Y . To guarantee the existence of an optimal policy, however, we require that

the following mild regularity conditions hold for all φ that satisfy the conditions of

Proposition 1,

M1 ≡ E[(1+ φ∗X)−γXeBY ] <∞, (15)

M2 ≡ E[(1+ φ∗X)1−γeBY ] <∞. (16)

The following proposition provides an analytical solution for the optimal portfolio

strategy.
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PROPOSITION 2: Optimal Portfolio Weights. Assume that the regularity conditions

in equations (15) and (16) are satisfied. Then the asset allocation problem in equa-

tions (4) and (5) has a solution φ∗. The optimal portfolio weight is given by solving

the following nonlinear equation for φ∗,

φ∗ =
η − µλ
γ

+
ρσB

γ
+
λM1

γ
, (17)

subject to the constraints in (7), and where B is defined by the ordinary differential

equation

B0 + σ2B2/2 + (φ∗ρσ(1− γ)− β − κλ)B

+

µ
γ(γ − 1)φ∗2

2
+ (η − µλ)(1− γ)φ∗ + λM2 − λ

¶
= 0. (18)

Proof: See Appendix.

From this proposition, φ∗ can be determined under very general assumptions

about the joint distribution of the jump sizes X and Y by solving a simple pair of

equations. Given a specification for the joint distribution of X and Y , equation (17)

is just a nonlinear expression in φ∗ and B. Equation (18) is an ordinary differential

equation for B with coefficients that depend on φ∗. These two equations are easily

solved numerically using standard finite difference techniques. Starting with the

terminal condition B(T ) = 0, the values of φ∗ and B at all earlier dates are obtained

by solving pairs of nonlinear equations recursively back to time zero. Given the

simple forms of equations (17) and (18), the recursive solution technique is virtually

instantaneous. Observe that solving this pair of equations for φ∗ and B is far easier

than solving the two-dimensional HJB equation in (10) directly. For many special

cases, the optimal portfolio weight can actually be solved in closed-form, or can be

obtained directly by solving a single nonlinear equation in φ∗. Several examples are

presented in the next section.

We first note that the optimal portfolio weight is independent of the state vari-

ables W and V . In other words, there is no “market timing” in either wealth or

stochastic volatility. The reason why the portfolio weight is independent of wealth

stems from the homogeneity of the portfolio problem in W . The reason the optimal
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portfolio does not depend on V is formally due to the fact that we have assumed that

the risk premium is proportional to V . Intuitively, however, this risk premium seems

sensible since both the instantaneous variance of returns and the instantaneous risk

of a jump are proportional to V ; by requiring the risk premium to be proportional

to V , we guarantee that all of the key instantaneous moments of the investment

opportunity set are of the same order of magnitude.

Recall from the earlier discussion that the event-risk portfolio problem blends a

standard dynamic problem with a static buy-and-hold problem. Intuitively, this can

be seen from the expression for the optimal portfolio weight given in equation (17). As

shown, the right-hand-side of this expression has three components. The first consists

of the instantaneous risk premium η − µλ divided by the risk aversion parameter γ.
It is easily shown that when λ = 0 and V is not stochastic, the instantaneous risk

premium become η and the optimal portfolio policy is η/γ. Thus, the first term

in (17) is just the generalization of the usual myopic component of the portfolio

demand. The second component is directly related to the correlation coefficient ρ

between instantaneous returns on the risky asset and changes in the volatility V .

When this correlation is nonzero, the investor can hedge his expected utility against

shifts in V by taking a position in the risky asset. Thus, this second term can be

interpreted as the volatility hedging demand for the risky asset. A similar volatility

hedging demand for the risky asset also appears in stochastic-volatility models such

as Liu (1999). Note that in this model, the hedging demand arises not only because

the state variable V impacts the volatility of returns, but also because it drives the

variation in the probability of an event occurring. Thus, investors have a double

incentive to hedge against variation in V through their portfolio holdings of the risky

asset. Finally, the third term in equation (17) is directly related to the first-order

condition for the static buy-and-hold problem from equation (14). Thus, this term

can be interpreted as the event-risk or “illiquidity” hedging term; this term does not

appear in portfolio problems where prices follow continuous sample paths.

III. Examples and Numerical Results

In this section, we illustrate the implications of event-related jumps for portfolio
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choice through several simple examples.

A. Constant Volatility and Deterministic Jump Size

In the first example, V is assumed to be constant over time. This implies that

α = β = κ = σ = Y = 0. In addition, we assume that price jumps are deterministic

in size, implying X = µ. In this case, the risky asset follows a simple jump-diffusion

process. This complements Merton (1971) who studies asset allocation when the

riskless asset follows a jump-to-ruin process.

In this example, the model dynamics reduce to

dSt = (r + ηV0 − µλV0) St dt+
p
V0 St dZ1t + µ St− dNt, (19)

dVt = 0. (20)

Substituting in the parameter restrictions and solving gives the following simple ex-

pression for the optimal portfolio weight,

φ∗ =
η − µλ
γ

+
µλ

γ
(1+ µφ∗)−γ , (21)

which is easily solved for φ∗. Assuming that η > 0, it is readily shown that φ∗ > 0.

Note that the optimal portfolio strategy does not depend on time or the investor’s

horizon. This occurs since the instantaneous distribution of returns does not vary

over time; the instantaneous expected return, return variance, and probability of a

jump are constant through time.

There are several interesting subcases for this example which are worth examin-

ing. For example, consider the subcase where λ = 0, implying that the price follows

a pure diffusion. In this situation, the optimal portfolio weight is simply

φ∗ =
η

γ
. (22)

Alternatively, consider the related (but non-nested) case where the price of the risky

asset follows a pure jump process; where the diffusion component of the price dynam-

ics is set equal to zero. In this situation, the optimal portfolio weight becomes
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φ∗ =
1

µ

"µ
1− η

µλ

¶− 1
γ

− 1
#
. (23)

These cases make clear that the portfolio that is optimal when the price process

follows a pure diffusion is very different from the optimal portfolio when the price

process follows a pure jump process. When the price process follows a jump diffusion,

the investor has to choose a portfolio that captures aspects of both of these special

cases. Because of the nonlinearity inherent in the expression for the portfolio weight

in equation (21), however, the optimal portfolio cannot be expressed as a simple linear

combination or portfolio of the optimal portfolios for the two special cases given in

equations (22) and (23).

Differentiating φ∗ with respect to the parameters implies the following compar-

ative static results,

∂φ∗

∂η
> 0,

∂φ∗

∂λ
< 0,

∂φ∗

∂γ
< 0, (24)

provided η > 0. Interestingly,

∂φ∗

∂µ
> 0, if µ < 0,

∂φ∗

∂µ
≤ 0, if µ ≥ 0. (25)

To illustrate this result, the top graph in Figure 1 plots the optimal portfolio weight

as a function of the value of the jump size µ. As shown, the optimal portfolio weight

is highly sensitive to the size of the jump µ. When the jump is in the downward

direction, the investor takes a smaller position in the risky asset than he would if

jumps did not occur. Surprisingly, however, the investor also takes a smaller position

when the jump is in the upward direction. The rationale for this is related to the

effects of jumps on the variance and skewness of the distribution of terminal wealth.

Holding fixed the risk premium, jumps in either direction increase the variance of the

distribution. On the other hand, jumps also affect the skewness (and other higher

moments) of the return distribution and the investor benefits from positive skewness.

Despite this, the variance effect dominates and the investor takes a smaller position
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in the risky asset for nonzero values of µ. The skewness effect, however, explains why

the graph of φ∗ against µ is asymmetric.

To illustrate just how different portfolio choice can be in the presence of event

risk, the second graph in Figure 1 plots the optimal portfolio as a function of the risk

aversion parameter γ for various jump sizes µ. When µ = 0 and no jumps occur, the

investor takes an unboundedly large position in the risky asset as γ → 0. In contrast,

when there is any risk of a downward jump, the optimal portfolio weight is bounded

above as γ → 0. This feature is a simple implication of Proposition 1, but serves

to illustrate that the optimal portfolio in the presence of event risk is qualitatively

different from the optimal portfolio when event risk is not present.

This also makes clear that the optimal strategy is not driven purely by the

effects of jumps on return skewness and kurtosis. For example, skewness and kurtosis

effects are also present in models where volatility is stochastic and correlated with

risky asset returns, but jumps do not occur. In these models, however, investors

do not place bounds on their portfolio weights of the type described in Proposition

1. Furthermore, the optimal portfolio in these models does not involve any static

buy-and-hold component. This underscores the point that many of the features of

the optimal portfolio strategy in our framework are uniquely related to the event risk

faced by the investor.

To provide some specific numerical examples, Table I reports the value of φ∗ for

different values of the parameters. In this table, the risk premium for the risky asset is

held fixed at seven percent and the standard deviation of the diffusive portion of risky

asset returns is held fixed at 15 percent. As shown, relative to the benchmark where

µ = 0, the optimal portfolio weight can be significantly less even when the probability

of an event occurring is extremely low. For example, even when a negative 90 percent

jump occurs at a 100-year frequency, the portfolio weight is typically much less than

50 percent of what it would be without jumps. Note that this effect is not symmetric;

a positive 90 percent jump at a 100-year frequency has a much smaller effect on the

portfolio weight. Also observe that the effects of jumps on portfolio weights are much

more pronounced for investors with lower levels of risk aversion. This counterintuitive

effect occurs because less-risk-averse investors would prefer to hold more leveraged
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positions, but cannot because they do not have full control over their portfolio. Thus,

the effects of event risk fall much more heavily on investors with low levels of risk

aversion who would otherwise be more aggressive.

B. Stochastic Volatility and Deterministic Jump Sizes

In the second example, V is also allowed to follow a jump-diffusion process. The

two jump sizes X and Y , however, are assumed to be constants with values µ and κ,

respectively. The jump size µ can be positive or negative. The jump size κ can only

be positive.

In this example, the model dynamics become

dSt = (r + ηVt − µλVt) St dt+
p
Vt St dZ1t + µ St− dNt, (26)

dVt = (α− βVt − κλVt) dt+ σ
p
Vt dZ2t + κ dNt. (27)

Applying the results in Proposition 2 to this model gives the following expression

for the optimal portfolio weight

φ∗ =
η − µλ
γ

+
ρσB

γ
+
λµ

γ
(1+ µφ∗)−γeκB, (28)

which can be solved for φ∗ jointly with the equation for B given in equation (18).

Because of the dependence on B, the optimal portfolio weight is now explicitly a

function of the investor’s investment horizon. Examining equation (28) indicates that

there are several ways in which the investment horizon affects the optimal portfolio

weight. Specifically, B appears in conjunction with the correlation coefficient ρ re-

flecting that there is a dynamic hedging component to the investor’s demand for the

risky asset. Since V is mean reverting, the horizon over which investment decisions

are made is important. However, dynamically hedging shifts in V is not the only

reason why there is time dependence in the optimal portfolio weight. For example,

when ρ = 0, the risky asset cannot be used to hedge against shifts in the investment

opportunity set arising from variation in V . Despite this, the optimal portfolio weight

still depends on the investor’s horizon through the eκB term in equation (28). Thus,
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time dependence enters the problem both through the dynamic hedging component

as well as through the static hedging component.

The top graph in Figure 2 plots the optimal portfolio weight as a function of

the investor’s horizon for various values of the dynamic hedging parameter ρ. In this

case, φ∗ is an increasing function of the horizon for each of the values of ρ plotted.

We note, however, that φ∗ can be a decreasing function of the investor’s horizon when

γ < 1. This graph also illustrates that the optimal portfolio weight converges to a

constant as T →∞. Furthermore, the dependence of the optimal portfolio weight on
ρ indicates that an important part of the demand for the risky asset comes from its

ability to dynamically hedge the continuous portion of changes in V .

An important feature of this event-risk model is that both prices and volatility

are allowed to jump. The previous section illustrated that the presence of price

jumps in either direction induces investors to take smaller positions in the risky

asset. Intuitively, one might suspect that introducing jumps in volatility would have

a similar effect on the optimal portfolio weight. Surprisingly, this is not true in

general. This can be seen from the second graph in Figure 2 which plots the optimal

portfolio weight as a function of the size of the volatility jump κ for different values

of µ. As shown, the optimal portfolio weight can be an increasing function of κ for

some values of µ.

This result illustrates the important point that in addition to its ability to dy-

namically hedge against continuous changes in V , the risky asset can also be used

as a static hedge against the effects of jumps in V . This second hedging role is one

that does not occur in traditional portfolio choice models where state variables have

continuous sample paths. The fact that the risky asset can be used to hedge in two

different ways, however, makes it evident that the investor faces a dilemma in choos-

ing a portfolio strategy. In particular, the portfolio that hedges against small local

diffusion-induced changes in the state variables is not the same as the portfolio that

hedges against large jumps in the state variables. This problem is inherent in the fact

that when there is event risk, the portfolio problem has features of both a dynamic

portfolio problem and an illiquid buy-and-hold problem.

Finally, if we impose the parameter restrictions ρ = 0 and κ = 0, volatility is
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still stochastic but the optimal portfolio weight becomes the same as in Section III.A.

where volatility is not stochastic. Thus, continuous stochastic variation in V only

affects the optimal portfolio weight if it is hedgable through a nonzero value of ρ.

IV. Implications For Optimal Portfolio Choice

Moving beyond the numerical examples presented in Section III, it is useful to

explore how event risk might affect the optimal portfolio of an investor in a specific

market. To this end, we calibrate the model to be roughly consistent with historical

stock index returns and stock index return volatility in the U.S. To make this process

as straightforward as possible, we focus on the simple stochastic volatility model with

deterministic jump sizes described in section III. Once calibrated to U.S. data, we

explore the key implications of the model for investors.

In parameterizing this model of event risk, it is important to recognize that the

major financial events addressed by our model are infrequent by their nature. Ideally,

we would like to use a calibration approach that minimizes the effects of the inherent

“Peso problem” on the results. Although there are many ways to do this, we use the

following informal (but hopefully intuitive) approach to allow us to estimate the size

and frequency of events from the longest time series available.10

We first obtain the monthly return series for U.S. stocks during the 1802 to 1925

period created and described in Schwert (1990). We then append the CRSP monthly

value-weighted index returns for the 1926 to 2000 period to give a time series of re-

turns spanning nearly 200 years. A review of the data shows that there are eight

observations where the stock index dropped by 20 or more percent. These observa-

tions include the beginning of the Civil War in May 1861, the black Friday crash of

October 1929, and the October 1987 stock market crash. Interestingly, four of the

eight observations are clustered in the high-volatility decade of the 1930s, consistent

with the double-jump model. Since these observations are roughly five standard de-

viations below the mean, it is not unreasonable to view these negative returns as

being due to a jump event. A back-of-the-envelope calculation suggests calibrating

the model to allow a −25 percent jump (the average of the eight observations) at
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an average frequency of about 25 years. To provide a rough estimate of the size of

the volatility jump, we compute the standard deviation of returns for the five-month

window centered at the event month. The average of these standard deviation esti-

mates is just under 50 percent. Given this, we make the simplifying assumption that

when a jump occurs, the volatility of the stock return jumps by an amount equal to

the difference between 50 percent and its mean value.

The remaining parameter estimates are obtained from Table 1 of Pan (2002).

Using S&P 500 stock index returns and stock index option prices, Pan estimates

the parameters of several versions of a jump-diffusion model. For simplicity, we use

the parameter values Pan estimates for her SV0 model, and adjust them slightly

to be consistent with our estimates of jump sizes and frequencies.11 Specifically, we

use Pan’s estimates of β = 5.3 and ρ = −.57. To obtain estimates of α, η, and
σ, we note that in our model, the expected instantaneous equity premium is αη/β,

the expected instantaneous variance of returns is α(1+µ2λ)/β, and the the expected

instantaneous variance of changes in V is α(σ2+κ2λ)/β. Setting these three moments

equal to the corresponding estimates of .1065, .0242, and .3800 from Table 1 of Pan

provides us with three equations which can be solved for the values of α, η, and σ. By

doing this, we guarantee that the calibrated model matches the moments of returns

and volatility estimated by Pan. This approach leads to the following parameter

values for the baseline case where jumps occur with an average frequency of 25 years:

α = .11512, β = 5.3000, σ = .22478, η = 4.90224, ρ = −.57000, µ = −.25000,
κ = .22578, and λ = 1.84156.

To illustrate the effects that event risk has on the optimal portfolio choice for an

investor where the model is calibrated to historical U.S. returns in this manner, Table

II reports the portfolio weights for various levels of investor risk aversion. To facilitate

comparison, we report the portfolio weights for the case where there are no jumps,

where there are only jumps in the stock index, and the baseline case where there

are jumps in both the stock index and volatility. Note that for the nonbenchmark

cases, we recalibrate the model so that we match the expected instantaneous moments

estimated by Pan (2002) using the procedure described in the previous paragraph.

In each case, the investor has a five-year investment horizon.
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Table II shows that the possibility of a 25 percent downward jump in stock prices

has an important effect on the investor’s optimal portfolio, even though this type of

event happens only every 25 years on average. For example, the optimal portfolio

weight for an investor with a risk aversion parameter of two is 2.305 if no jumps

can occur, is 1.929 if only jumps in the stock price can occur, and is 2.010 if both

jumps in stock prices and volatility can occur. Observe that from Proposition 1, the

investor never takes a position in the risky asset greater than four since jumps of −25
percent can occur. Table II shows that the risk of a downward jump always induces

the investor to take a smaller position in the stock market than he would otherwise.

Table II also makes clear that while jumps in volatility do not have as much

of an effect as jumps in the stock price, they do have an important influence on

the optimal portfolio. Interestingly, jumps in volatility decrease the optimal portfolio

weight when γ < 1, and increase the optimal portfolio weight when γ > 1. Intuitively,

the reason for this is related to the effect of a volatility jump on the distribution of

the investor’s returns. Recall that in this model, the instantaneous Sharpe ratio of

returns is increasing in the volatility V because of the form of the risk premium. Thus,

when an event occurs, the investor suffers an immediate loss because of the downward

jump in the stock price, but then faces an improved risk-return tradeoff because the

jump in volatility increases the Sharpe ratio. This pattern induces a type of negative

serial correlation or smoothness into the time series of the investor’s returns which

can be shown to reduce both the first and second moments of the distribution of the

investor’s terminal wealth. As shown by Samuelson (1991), however, investors who

are less risk averse than logarithmic (γ < 1), will reduce their portfolio weight as this

smoothing increases while the opposite is true for investors who are more risk averse

than logarithmic. Thus, an increase in the volatility jump size parameter κ leads

to a decrease in the portfolio weight for γ < 1, and to an increase in the portfolio

weight for γ > 1. Another way of seeing this is to note that for γ > 1, the investor’s

utility is unbounded from below as his wealth approaches zero. Thus, the investor is

particularly averse to a run of successive negative returns. Since a jump in V reduces

the likelihood of a run of negative returns, the investor with γ > 1 is more confident

and takes a larger stock position. In contrast, for γ < 1, the investor’s utility is

bounded from below but unbounded from above. Thus, the investor benefits less
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from the reduction in variance of the distribution of terminal wealth and reduces his

portfolio weight because of the reduction in the first moment.12

Another interesting issue to consider is the loss suffered by an investor who does

not consider the effects of price and volatility jumps in making portfolio decisions.13

To examine this, we do the following. Assume that there is an investor who believes

that there are no jumps, implying that λ = µ = κ = 0. This investor calibrates

his model to match the moments using the procedure described earlier. Given this

calibration, the investor then follows the portfolio strategy that would be optimal if

λ = µ = κ = 0. Let us denote this strategy φ̂. Now assume that there are actually

jumps in prices and volatility. In this situation, the optimal portfolio weight φ∗

differs from φ̂, and the investor suffers a loss by following this strategy. Following a

procedure similar to that used to solve for J(W,V, t), we can solve for the investor’s

utility of wealth function when he follows strategy φ̂. Denote this utility of wealth

function K(W,V, t). Because φ̂ is suboptimal, it is clear that K(W,V, t) < J(W,V, t).

To quantify the loss, we assume that this investor following the suboptimal strategy

starts with W = 1, and solve for the Ŵ such that an investor with W = Ŵ who

followed the optimal strategy would attain the same level of utility. Specifically,

this utility equivalent wealth Ŵ is obtained by solving numerically the equation

J(Ŵ , V, t) = K(1, V, t). Note that the utility equivalent wealth Ŵ is less than or

equal to one since following the suboptimal strategy φ̂ reduces the utility of the

investor’s wealth. Finally, we calculate the loss using this wealth-based metric by

taking the difference 1 − Ŵ and converting it into percentage terms by multiplying

by 100. We designate this metric the wealth equivalent loss.

Table II reports the wealth equivalent losses for an investor who does not consider

the effects of jumps. There are several key features shown in Table II. First, when

the suboptimal strategy φ̂ exceeds the bound in Proposition 1, then a jump to ruin

is possible and clearly, K(W,V, t) = −∞. In these cases, it is clear that the wealth
equivalent loss of following the suboptimal strategy is 100 percent; the investor obtains

the same expected utility that he would if he had no wealth at all. Second, Table II

shows that the wealth equivalent loss can be nontrivial for other ranges of the risk

aversion parameter. Specifically, when γ = 2.00, the wealth equivalent loss is 3.2
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percent when only price jumps can occur, and is 2.0 percent when both price and

volatility jumps can occur. Table II also shows that the wealth equivalent loss is a

decreasing function of γ.

Although we have calibrated the model to historical U.S. returns, it is impor-

tant to recognize that U.S. returns may not fully reflect the size of potential jump

events. The reason for this is the possibility of a survivorship bias since the U.S.

has experienced historically high returns. This point is also consistent with Jorion

and Goetzmann (1999) who show that many countries have experienced huge market

declines during relatively short periods of time during the past century. In many

cases, major events such as wars or political crises have actually led to stock markets

being closed for years (or even decades). These closures have often resulted in catas-

trophic losses for investors. To reflect this downside risk to financial markets, we also

consider a scenario where stock market jumps of −50 percent and volatility jumps
to 70 percent occur at an average frequency of 100 years. Following the same cali-

bration approach as before implies parameter values for this scenario of α = .11512,

β = 5.3000, σ = .21099, η = 4.90224, ρ = −.57000, µ = −.50000, κ = .46578, and

λ = .46039.

Table III reports the optimal portfolio weights for this alternative scenario. Even

though the frequency of an event is much less, it has an even larger effect on the

optimal portfolio weight than in Table II. For example, the optimal portfolio weight

for an investor with a risk aversion parameter of two is still 2.305 if no jumps can

occur. If only jumps in the stock price can occur, then the portfolio weight is now

1.395 rather than 1.929. If both jumps in the stock price and volatility can occur, the

optimal portfolio weight is now 1.481 rather than the value of 2.010 given in Table

II. As before, jumps in volatility decrease the optimal portfolio weight for γ < 1, and

vice versa.

Table III also reports the corresponding wealth equivalent losses. As in Table II,

the wealth equivalent loss can be 100.0 percent when the bound given in Proposition

1 is violated. It is interesting to note, however, that there is a case shown in Table III

where an investor following the suboptimal strategy attains K(W,V, t) = −∞ even

when φ̂ does not violate the bound given Proposition 1. Specifically, when γ = 3.00,
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an investor who does not consider the effects of volatility jumps has a portfolio weight

of 1.564 (which does not violate the bound) but still has a wealth equivalent loss of

100.0 percent when both price and volatility jumps can occur. Intuitively, this occurs

because the finiteness of the expected utility function can only be guaranteed when

the optimal strategy φ∗ is followed.14 Specifically, when the suboptimal portfolio

weight φ̂ is sufficiently high (but still less than the bound given in Proposition 1),

the return distribution for the investor’s wealth may be such that the expectation

of his terminal utility equals −∞. For example, consider the case where γ = 2, and
expected utility equals −E[ 1

WT
]. Even though all positive moments of the distribution

ofWT are finite when φ̂ is followed, the expectation E[
1
WT
] may fail to exist, implying

K(W,V, t) = −∞. Thus, even when a jump to complete ruin cannot occur, a strategy
may be so suboptimal that the investor has a wealth equivalent loss of 100 percent.15

Another way of seeing this is by considering the case where the stock price jump is

−50 percent. By following a strategy where φ is less than two, ruin can be avoided.
However, imagine that φ̂ is close to two, say 1.99. If a jump occurs, the investor will

clearly lose virtually all of his wealth. After the jump, however, the investor would

rebalance his portfolio to attain φ̂ = 1.99 again. Thus, if another jump occurs, the

investor’s remaining wealth will again be virtually eliminated. The key point is that

even though total ruin does not occur, the resulting distribution of WT has enough

mass in the neighborhood of zero that the expected utility function need not be finite.

When φ is more distant from the bound in Proposition 1, as is the case for φ∗, this

situation does not arise and expected utility is finite.

Finally, Table III shows the wealth equivalent losses can be significant for other

parameter values. For example, when only price jumps can occur, an investor with

γ = 3.00 who ignores the effects of jumps has a wealth equivalent loss of 30.5 per-

cent. For larger values of γ, the wealth equivalent losses are smaller, but are still

economically significant.

The results in Tables II and III are based on two simple calibrations of the model.

Given than there is always uncertainty about the precise values of estimated parame-

ters, however, it is useful to provide some additional information about the sensitivity

of the optimal portfolio weights to the key jump size and frequency parameters. To
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this end, Table IV reports the optimal portfolio weights for various combinations of

jump frequencies and price jump sizes, while Table V reports the optimal portfolio

weights for various combinations of jump frequencies and volatility jump sizes. For

each set of jump size and frequency parameters in these two tables, the α, η, and

σ parameters are chosen to match the three moments from Table 1 of Pan (2002)

using the same procedure as before. We note that in a few cases involving large but

infrequent jumps, these moments cannot be matched since they imply negative values

for σ; these cases are designated by a dash in Tables IV and V.

Tables IV and V indicate that the optimal portfolio weight is clearly affected by

both the jump size and frequency parameters. The size of the price jump appears

to have the largest effect on the optimal portfolio weight. The size of the volatility

jump as well as the level of the frequency parameter can also have important effects.

Despite this dependence on the parameter values, however, Table IV and V indicate

that the optimal portfolio weight is generally fairly robust to small perturbations in

the parameter values. This is important since it implies that even if the jump size

and frequency parameters are estimated with some error (provided it is not overly

large) from historical data, the general implications for optimal portfolio choice may

still be qualitatively valid.

Admittedly, we have focused only on simple calibrations of one of the simplest

versions of the model. Despite this, however, we believe that several important gen-

eral insights about the role that event risk could play in real-world portfolio decisions

emerge from this analysis. Foremost among these is that investors have strong in-

centives to significantly reduce their exposure to the stock market when they believe

that there is event risk. This is true even when the probability of a major downward

jump in stock prices is very small, as in the scenario of a −50 percent jump occurring
every 100 years on average. Certainly, jumps of this magnitude and frequency can-

not be ruled out; it is all too easy to think of extreme situations where a downward

jump of this magnitude could occur during the next century even in the U.S., partic-

ularly in the wake of September 11th, 2001. Our analysis suggests a possible reason

why historical levels of participation in the stock market have been much lower than

standard portfolio choice models would view as optimal.16
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V. Conclusion

In this paper, we study the effects of event-related jumps in prices and volatility

on investment strategies. Using the double-jump framework of Duffie, Pan, and

Singleton (2000), we take advantage of the affine structure of the model to provide

analytical solutions to the optimal portfolio problem.

The presence of event risk changes the standard portfolio problem in several

important ways. First, since the investor no longer has complete control over his

wealth, the investor acts as if some part of his portfolio consists of illiquid assets and he

is much less willing to take leveraged or short positions. The optimal portfolio strategy

blends elements of both a standard dynamic hedging strategy and a buy-and-hold or

“illiquidity” hedging strategy. Furthermore, event risk affects investors with low levels

of risk aversion more than it does highly risk-averse investors. These results illustrate

that the implications of event risk for the optimal portfolio strategy are both subtle

and complex. Our analysis suggests that jumps in both prices and volatility have

important effects on optimal portfolios, although our calibrated exercise indicates

that price jumps tend to have a larger effect than do volatility jumps. Finally, our

results suggest that if market participants believe that there is even a remote chance

of a sudden market collapse, their portfolio behavior could be very different from that

implied by classical portfolio choice models which abstract from event risk.

This paper is only a first attempt to systematically study the effect of event risk

on optimal portfolio choice. Along with other studies in the field of asset allocation,

we use a partial equilibrium approach by taking prices as given. Clearly, however,

an equilibrium study would be necessary to provide a complete understanding of the

interaction between price dynamics and investor’s portfolio choices. Nevertheless, we

hope that this partial equilibrium study provides some understanding of the complete

picture.
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Appendix: Proofs

Proof of Proposition 1: Let {W ∗t , 0 ≤ t ≤ T} be the wealth process attained
by an investor who follows the optimal portfolio process φ∗. We first remark that

W ∗T must be positive almost surely. Otherwise, a nonzero probability of W
∗
T ≤ 0 will

result in E[U(W ∗T )] = −∞, which is inferior to investing all of the positive initial
wealth in the riskless asset.

We next show that for W ∗T to be positive almost surely, W
∗
t must be positive

almost surely for any t < T . To see this, we first condition on the event that there is

no jump between t and T . This implies

WT =Wt exp

ÃZ T

t

µ
r + φτ (η − µλ)Vτ − φ2τVτ

2

¶
dτ + φτ

p
Vτ dZ1

!
, (A1)

for any portfolio policy φ. Such an event of no jump between t and T has a positive

probability given the assumption that

0 < Et

"
exp

Ã
−
Z T

t

λVτ dτ

!#
< 1. (A2)

So W ∗T > 0 almost surely implies W
∗
t > 0 almost surely for any t.

Finally, we show that for W ∗t > 0 almost surely, the optimal portfolio weight

φ∗ must satisfy equation (7). Suppose equation (7) is not satisfied for some t. Then

there is a positive probability of a jump event between t and t+∆t for some ∆t > 0.

Conditioning on such a jump event, the time-t wealth is Wt = Wt−(1+ φX), where

Wt− is the wealth before the jump event, and where X is the jump size. By the

definition of XInf and XSup, we have for an arbitrary ² > 0, a positive probability

of X ∈ (XInf ,XInf + ²) and a positive probability of X ∈ (XSup − ²,XSup). Thus, if
(7) is not satisfied, there is a positive probability of W ∗t ≤ 0, which contradicts the
assumption that W ∗t is the wealth process generated by the optimal portfolio weight

φ∗.
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Proof of Proposition 2: Suppose that the indirect utility function J is of the

conjectured form in equation (11) with state-independent time-varying coefficients

A(t) and B(t) to be determined shortly. Then the first-order condition of the HJB

equation (10) implies

φ∗t = −
JW

WJWW

µ
(η − µλ) + ρσ

JWV

JW
+ λM1

J

WJW

¶
=
η − µλ
γ

+
ρσB

γ
+
λM1

γ
,

(A3)

which is the optimal portfolio weight given in (17). It should be noted that φ∗ is

state independent and a nonlinear function of B.

We now proceed to derive the ordinary differential equations for the time-varying

coefficients A(t) and B(t), under which the conjectured form (11) for the indirect

utility function J indeed satisfies the HJB equation (10). For this, we substitute (11)

and (12) into the HJB equation and obtain,

−γφ
∗2V
2

+ φ∗ρσBV +
σ2B2V

2(1− γ) + (r + φ∗(η − µλ)V )

+(α− βV − κV ) B

1− γ +
λV

1− γM2 − λV

1− γ +
1

1− γ (A
0 +B0V ) = 0. (A4)

The left-hand-side of this expression is an affine function in V . For this expression to

hold for all V , the constant term and the linear coefficient of V on the left-hand-side

must be set equal to zero separately, which leads to the ordinary differential equation

for B(t) given in (18) and the following ordinary differential equation for A(t)

A0 + αB + (1− γ)r = 0. (A5)
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FOOTNOTES

1For example, the VIX index of S&P 500 stock index option implied volatilities

increased 313 percent on October 19, 1987, 53 percent on October 27, 1997, and 28

percent on August 27, 1998.

2For example, see the extensive recent study by Eraker, Johannes, and Polson

(2000) of the double-jump model.

3Wu (2000) studies the portfolio choice problem in a model where there are

jumps in stock prices but not volatility, but does not provide a verifiable analytical

solution for the optimal portfolio strategy.

4Although the risk premium could be separated into the two types of risk premia,

the portfolio allocation between the riskless asset and the risky asset in our model

is independent of this breakdown. If options were introduced into the market as a

second risky asset, however, this would no longer be true (see Pan (2002)).

5See Chacko and Viceira (2000) and Longstaff (2001) for solutions to the dynamic

portfolio problem for alternative stochastic volatility models.

6Similar evidence is also presented in Bates (2000), Pan (2002), and others.

7See also Bakshi, Cao, and Chen (1997) and Bates (2000) for empirical evidence

about the importance of jumps in option pricing.

8Imposing buy-and-hold constraints on an otherwise dynamic trading strategy

parallels our jump-induced constraint. Haugh and Lo (2001) show that options can

alleviate some of the cost associated with the buy-and-hold constraint.

9We thank the referee for pointing out the role that options might play in miti-

gating the effects of event risk.

10We note that although it is beyond the scope of this paper, the general double-

jump model could be formally estimated using either the efficient method of moments

(EMM) approach applied by Andersen, Benzoni, and Lund (2001) or the Monte Carlo

Markov chain (MCMC) technique used by Eraker, Johannes, and Polson (2000).

11The advantage of using the parameter estimates for Pan’s SV0 model is that
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they represent parameter estimates for the stochastic volatility model in the absence

of jumps. This then allows us to calibrate the model for different jump sizes using a

particularly simple algorithm. As pointed out by Pan, allowing for jumps significantly

enhances the ability of the stochastic volatility model to capture the properties of the

data.

12Consistent with this intuition, when both stock price and volatility jumps are

positive, the effect of an increase in the volatility jump size parameter κ is reversed.

In particular, the portfolio weight is then an increasing function of κ for γ < 1, and

vice versa.

13We are grateful to the referee for raising this issue.

14Note that in this case, γ = 3, which means that utility is unbounded from

below.

15This feature appears in many other continuous time portfolio choice models

and is not unique to jump diffusion models. For other examples, see Liu (1999).

16For example, see Mankiw and Zeldes (1991), Heaton and Lucas (1997), and

Basak and Cuoco (1998).
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Table I

Portfolio Weights with Constant Volatility and Deterministic Price Jump Sizes

This table reports the portfolio weights for the risky asset in the case where the volatility of the asset’s
returns is constant and the percentage size of the jump in the asset’s price is also constant. The risk
premium for the risky asset is held fixed at seven percent and the volatility of diffusive returns is held fixed
at 15 percent throughout the table. The frequency of jumps is expressed in years and equals the reciprocal
of the jump intensity.

Risk Percentage Jump Size
Aversion Frequency
Parameter of Jumps −90 −20 0 20 90

.50 1 .151 1.795 6.222 2.736 .189
2 .269 2.511 6.222 3.970 .411
5 .508 3.431 6.222 5.161 1.234
10 .721 4.008 6.222 5.662 2.600
100 1.091 4.927 6.222 6.163 5.744

1.00 1 .078 .970 3.111 1.289 .091
2 .144 1.394 3.111 1.891 .190
5 .290 1.963 3.111 2.516 .529
10 .444 2.333 3.111 2.793 1.111
100 .938 2.980 3.111 3.077 2.824

2.00 1 .040 .504 1.556 .624 .045
2 .074 .730 1.556 .919 .092
5 .155 1.033 1.556 1.238 .244
10 .247 1.222 1.556 1.384 .503
100 .641 1.509 1.556 1.537 1.395

5.00 1 .016 .206 .622 .245 .018
2 .030 .300 .622 .361 .036
5 .065 .424 .622 .490 .093
10 .105 .499 .622 .550 .188
100 .305 .606 .622 .614 .553



Table II

Portfolio Weight and Wealth Equivalent Loss Comparisons for the Calibrated Model
Where Jumps Occur Every 25 Years on Average

This table reports portfolio weights for the stochastic volatility model with deterministic jumps in prices
and volatility. Also reported are the percentage wealth equivalent losses for an investor who ignores
the possibility of event-related jumps. This loss reflects the cost (as a percentage of his wealth) to an
investor who assumes that jumps cannot occur, calibrates the model to match historical moments, and
follows the portfolio strategy he believes is optimal, but is actually suboptimal in cases where jumps can
occur. The average frequency of an event is 25 years. The first column reports the portfolio weights
when the jump sizes are both zero (no jumps). The second column reports the portfolio weights and
wealth equivalent losses when the stock price jump is −25 percent and the volatility jump is zero (stock
jumps only). The third column reports the portfolio weights and wealth equivalent losses for the baseline
case where the stock price jump is −25 percent and the volatility jumps to 50 percent. Each scenario is
calibrated to match the parameter estimates in Table 1 of Pan (2002).

Both Stock and
No Jumps Stock Jumps Only Volatility Jumps

Risk Wealth Wealth
Aversion Portfolio Portfolio Equivalent Portfolio Equivalent
Parameter Weight Weight Loss Weight Loss

.50 8.106 3.914 100.0 3.865 100.0

1.00 4.396 3.163 100.0 3.163 100.0

2.00 2.305 1.929 3.2 2.010 2.0

3.00 1.564 1.356 1.3 1.432 .5

4.00 1.183 1.042 .7 1.107 .2

5.00 .952 .845 .5 .901 .1



Table III

Portfolio Weight and Wealth Equivalent Loss Comparisions for the Calibrated Model
Where Jumps Occur Every 100 Years on Average

This table reports portfolio weights for the stochastic volatility model with deterministic jumps in prices
and volatility. Also reported are the percentage wealth equivalent losses for an investor who ignores
the possibility of event-related jumps. This loss reflects the cost (as a percentage of his wealth) to an
investor who assumes that jumps cannot occur, calibrates the model to match historical moments, and
follows the portfolio strategy he believes is optimal, but is actually suboptimal in cases where jumps can
occur. The average frequency of an event is 100 years. The first column reports the portfolio weights
when the jump sizes are both zero (no jumps). The second column reports the portfolio weights and
wealth equivalent losses when the stock price jump is −50 percent and the volatility jump is zero (stock
jumps only). The third column reports the portfolio weights and wealth equivalent losses for the baseline
case where the stock price jump is −50 percent and the volatility jumps to 70 percent. Each scenario is
calibrated to match the parameter estimates in Table 1 of Pan (2002).

Both Stock and
No Jumps Stock Jumps Only Volatility Jumps

Risk Wealth Wealth
Aversion Portfolio Portfolio Equivalent Portfolio Equivalent
Parameter Weight Weight Loss Weight Loss

.50 8.106 1.993 100.0 1.987 100.0

1.00 4.396 1.859 100.0 1.859 100.0

2.00 2.305 1.395 100.0 1.481 100.0

3.00 1.564 1.059 30.5 1.174 100.0

4.00 1.183 .844 11.2 .956 5.3

5.00 .952 .698 6.3 .801 2.2



Table IV

Portfolio Weights for the Calibrated Model for Varying Percentage
Price Jumps and Jump Frequencies

This table reports portfolio weights for the stochastic volatility model with deterministic jump sizes in prices
and volatility. Each combination of parameters is calibrated to match the parameter estimates in Table 1
of Pan (2002). The frequency of jumps is expressed in years and equals the reciprocal of the jump intensity.
Sets of parameters for which the moments cannot be matched are denoted by a dash.

Risk Percentage Price Jump Size
Aversion Volatility Frequency
Parameter Jumps to of Jumps −10 −20 −30 −40 −50

.50 25 20 7.772 4.825 3.219 2.398 1.900
30 7.871 4.903 3.272 2.444 1.945
40 7.924 4.938 3.295 2.465 1.965
50 7.958 4.957 3.307 2.476 1.976
100 8.029 4.987 3.326 2.493 1.993

.50 50 20 7.757 4.752 3.175 - -
30 7.838 4.855 3.246 2.423 1.925
40 7.892 4.906 3.278 2.452 1.953
50 7.929 4.934 3.295 2.467 1.968
100 8.011 4.979 3.322 2.490 1.991

2.00 25 20 2.287 2.091 1.687 1.325 1.066
30 2.293 2.149 1.790 1.426 1.153
40 2.296 2.182 1.858 1.496 1.216
50 2.298 2.204 1.908 1.549 1.264
100 2.302 2.251 2.040 1.702 1.403

2.00 50 20 2.262 2.130 1.764 - -
30 2.281 2.184 1.859 1.494 1.217
40 2.288 2.211 1.920 1.557 1.270
50 2.292 2.228 1.964 1.605 1.312
100 2.299 2.265 2.081 1.746 1.440

5.00 25 20 .948 .897 .776 .639 .528
30 .949 .913 .814 .686 .572
40 .950 .922 .839 .719 .605
50 .950 .928 .855 .743 .631
100 .951 .939 .896 .811 .708

5.00 50 20 .928 .917 .839 - -
30 .939 .931 .870 .762 .655
40 .943 .937 .885 .784 .674
50 .945 .940 .895 .801 .693
100 .949 .946 .920 .852 .755



Table V

Portfolio Weights for the Calibrated Model for Varying
Volatility Jump Sizes and Jump Frequencies

This table reports portfolio weights for the stochastic volatility model with deterministic jump sizes in prices
and volatility. Each combination of parameters is calibrated to match the parameter estimates in Table 1
of Pan (2002). The frequency of jumps is expressed in years and equals the reciprocal of the jump intensity.
Set of parameters for which moments cannot be matched are denoted by a dash.

Risk Volatility Jumps to
Aversion Percentage Frequency
Parameter Price Jump of Jumps 20 30 40 50

.50 -25 20 3.876 3.861 3.841 3.816
30 3.932 3.924 3.912 3.896
40 3.958 3.953 3.945 3.934
50 3.971 3.967 3.962 3.954
100 3.992 3.991 3.989 3.986

.50 -50 20 1.905 1.894 1.877 -
30 1.947 1.942 1.935 1.925
40 1.966 1.964 1.959 1.953
50 1.977 1.975 1.972 1.968
100 1.993 1.993 1.992 1.991

2.00 -25 20 1.885 1.911 1.942 1.963
30 1.976 1.996 2.022 2.044
40 2.033 2.050 2.071 2.091
50 2.072 2.087 2.105 2.123
100 2.167 2.177 2.188 2.199

2.00 -50 20 1.054 1.080 1.117 -
30 1.146 1.163 1.188 1.217
40 1.209 1.224 1.245 1.270
50 1.258 1.271 1.289 1.312
100 1.399 1.409 1.423 1.440

5.00 -25 20 .833 .854 .878 .887
30 .864 .880 .897 .090
40 .882 .894 .908 .918
50 .894 .904 .916 .924
100 .920 .926 .932 .937

5.00 -50 20 .515 .546 .596 -
30 .562 .584 .616 .655
40 .597 .615 .641 .674
50 .623 .640 .663 .693
100 .702 .715 .733 .754
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