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1. Introduction

The past two decades have witnessed an unprecedented surge in the number of newly listed

¯rms on the major U.S. stock exchanges. According to Fama and French (2001b), over 550

new ¯rms per year appeared between years 1980 and 2000, on average, compared to less

than 150 ¯rms in the previous two decades. Some of these new ¯rms command valuations

that might seem too high to be justi¯ed by reasonable assumptions about expected future

pro¯tability. For example, more than one in ten of all ¯rms listed between years 1962 and

2000 are worth more than seven times their book value at the end of their year of listing, and

almost one in 50 ¯rms are worth more than 20 times their book value. Naturally, investors

attempting to value the newly listed ¯rms are confronted with substantial uncertainty about

their future pro¯tability. We argue that this uncertainty contributes to the high valuations

of young ¯rms, and that the resolution of this uncertainty over time tends to be accompanied

by a decline in the valuation ratios.

The basic idea is simple. Let B denote a ¯rm's book equity today (at time 0) and g its

constant growth rate, so the value of book equity at time T is B exp(gT ). Assuming that

competition eliminates the ¯rm's expected abnormal earnings by T , the ¯rm's market value

at T equals its book value, and the market value today is the expected book value at T

discounted at some rate r. If g is unknown and assumed to be normally distributed with

mean ¹g and variance ¾2, the market-to-book ratio (M/B) today is

M

B
= E fexp [(g ¡ r)T ]g = exp £(¹g + ¾2=2¡ r)T ¤ : (1)

The M/B ratio is increasing in the uncertainty about book equity growth, ¾2, thanks to the

convex relation between the growth rate and terminal value.1 We argue that uncertainty

declines over a ¯rm's lifetime due to learning. As a result, younger ¯rms have higher ¾2 and

hence also higher M/B ratios, holding other things (such as ¹g and r) constant.

The valuation model developed in the paper is more realistic than the baby model outlined

above, and thus it has a richer set of implications. Firm pro¯tability, measured as the

accounting rate of return on book equity, is assumed to revert to an unknown mean whose

1To further illustrate the convexity, suppose that ¯rms A and B di®er only in the future growth rates of
their book equity, whose current value is $1m. While A is going to grow by 10% per year with certainty, B
will grow either by 5% or by 15% with equal probabilities. Due to the convex nature of compounding, the
di®erence between compounding the 15% and 10% growth rates over time is substantially higher than the
di®erence between compounding the 10% and 5% growth rates. Over 10 years, for example, $1m cumulates
to $4.05m at the 15% rate, to $2.59m at the 10% rate, and to $1.63m at the 5% rate. Hence, ¯rm B has a
higher expected future book value of equity than ¯rm A (because (4:05 + 1:63)=2 = 2:84 > 2:59).
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value investors learn over time. Using techniques of Bayesian updating, we obtain a closed-

form solution for the ¯rm's M/B ratio. M/B is shown to increase with expected pro¯tability

and decrease with expected stock return, consistent with the existing literature. The previous

paragraph shows that M/B increases with uncertainty about the average growth rate of book

equity. Since the growth rate of book is pro¯tability minus the dividend yield, M/B also

increases with uncertainty about average pro¯tability. This uncertainty is shown to have no

e®ect on expected stock returns. Even if ¯rm pro¯tability is correlated with the exogenously

speci¯ed stochastic discount factor, the updates in the estimates of mean pro¯tability are

uncorrelated with it, so any additional return volatility is idiosyncratic. Uncertainty about

mean pro¯tability therefore leads to higher valuations because it increases expected future

payo®s without a®ecting the discount rate.

In the presence of external ¯nancing constraints, which are common for young ¯rms and

assumed in the paper, dividend payouts reduce the growth rate of book equity, thereby

weakening the convexity between the growth rate and the future value of book equity. As a

result, the model implies that the relation between M/B and the uncertainty about average

pro¯tability should be stronger for no-dividend-paying stocks. Calibrating the model to

a typical ¯rm in our sample, we ¯nd that the e®ect of the uncertainty on M/B can be

quantitatively large, especially for stocks that pay no dividends.

Our empirical analysis con¯rms the model's predictions on a large panel of data covering

the years 1963 through 2000. Since uncertainty declines over time due to learning, the model

implies that a younger ¯rm should have a higher M/B ratio than an otherwise identical older

¯rm. Indeed, we ¯nd a signi¯cantly negative cross-sectional relation between ¯rm age and

M/B, even after controlling for other well-known determinants of M/B. We also ¯nd that

this relation is stronger for ¯rms that pay no dividends, con¯rming another prediction of

the model. The results are both statistically and economically signi¯cant. For example, we

¯nd a di®erence of over 5% between the valuations of a typical two-year-old ¯rm and an

otherwise identical one-year-old ¯rm. Among ¯rms that pay no dividends, this valuation

di®erence is over 12%, and the di®erence between the valuations of a typical ¯ve-year-old

dividend non-payer and an otherwise identical one-year-old non-payer is almost 27%. In

addition, age is shown to predict future changes in M/B. The decline of M/B over time is

signi¯cantly steeper for younger ¯rms, consistent with the model.

One alternative explanation for the observed high valuations of young ¯rms is that these

¯rms are expected to be highly pro¯table. However, M/B is related to age even after con-

trolling for current and future pro¯tability. Another possibility is that (irrational) investors
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are on average too optimistic about the future pro¯tability of young ¯rms. Average stock re-

turns for young ¯rms should then be low or even negative, as investors gradually revise their

high expectations downward. In contrast, we provide a rational model of learning in which

young ¯rms can have high valuations without having low returns. The debate on whether

the returns on young ¯rms are too low is still raging.2 Since we ¯nd a relation between M/B

and age even after controlling for future returns, the learning e®ect seems distinct from any

potential over-optimism e®ect. Of course, we do not argue that our model fully explains

the observed valuations. We only argue that valuations that appear excessively high at ¯rst

sight do not necessarily imply that investors are irrational.3

Apart from implications for valuation ratios, our model has consequences for return

volatility as well. Idiosyncratic return volatility increases with uncertainty about the ¯rm's

average pro¯tability as well as with idiosyncratic volatility of pro¯tability. In the data,

volatility indeed tends to be higher for younger ¯rms and for ¯rms with more volatile prof-

itability. Volatility is also higher for ¯rms that pay no dividends, as the model predicts.

While the bulk of asset pricing research related to stock valuation focuses on the discount

rate, our emphasis is on cash °ow. We model cash °ow using accounting information such as

earnings and book equity, similar to several other recent studies. Ang and Liu (2001), build-

ing on Feltham and Ohlson (1999), specify a±ne processes for selected accounting variables

and derive a nonlinear relation between M/B and stochastic interest rates, pro¯tability, and

growth in book value. Bakshi and Chen (2001) develop a stock valuation model in which

the expected earnings growth rate follows a mean-reverting process, and obtain a number

of implications for the price-earnings ratio. Schwartz and Moon (2000) propose a valuation

approach in which the expected sales growth rate follows a mean-reverting process with a

time-varying drift. They argue that high ¯rm valuations can be justi¯ed if the mean and

volatility of the sales growth rate are su±ciently high. In addition, Berk, Green, and Naik

(1999) and Gomes, Kogan, and Zhang (2001) derive the value of an optimally-investing ¯rm

as a sum of assets in place and growth options. In their models, M/B appears in the dy-

namics of conditional expected returns, helping explain various properties of stock returns.

Although all of these papers address various interesting issues related to dynamic stock val-

uation, none of them incorporates uncertainty and learning about company fundamentals

into the valuation framework.

In this paper, learning is done by investors valuing a ¯rm. Related literature explores the

2See Schultz (2002) for a literature review and a recent contribution.
3This argument is broadly consistent with Lewellen and Shanken (2002) who \emphasize that many tests

of market e±ciency cannot distinguish between a market with learning and an irrational market."
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implications of learning by ¯rms about their own e±ciency and resources (e.g. Jovanovich,

1982, Bernardo and Chowdry, 2002). The ¯nance literature on learning also includes Tim-

merman (1993), David (1997), Veronesi (1999, 2001), Brennan and Xia (2001), Lewellen and

Shanken (2002), and others. Among other things, these articles show that learning about a

hidden state variable such as the dividend growth rate has equilibrium implications that are

in line with certain empirical regularities, such as excess volatility and predictability of stock

returns. These articles do not investigate the implications of learning for stock valuation

ratios such as M/B, which is the subject of the present article.

The paper is organized as follows. Section 2 develops our valuation approach. The

¯rst subsection derives the expressions for M/B and stock returns in the benchmark case

when average ¯rm pro¯tability is assumed to be known. The second subsection extends the

analysis to the case of unknown average pro¯tability. Section 3 empirically tests the main

implications of the model, and Section 4 concludes.

2. The Valuation Framework

This section develops a continuous-time framework for valuing stocks of ¯rms whose prof-

itability is mean-reverting. Pro¯tability is de¯ned as the ¯rm's instantaneous accounting

return on equity:

½t =
Yt
Bt
;

where Yt denotes the ¯rm's earnings at time t, and Bt denotes the book value of the ¯rm's

equity at time t. Pro¯tability is assumed to follow a simple mean-reverting process:

d½t = Á(½¡ ½t)dt+ ¾½dWt; (2)

where ½ is mean pro¯tability, sometimes also referred to as average pro¯tability, Á is the

speed of mean reversion, ¾½ = (¾½;1; ¾½;2) is a 1 £ 2 vector of constants, and dWt is a 2 £ 1
vector of independent Brownian motions. To avoid unnecessary complexity, we do not model

the ¯rm's investment policy. Instead, we simply assume that the resulting pro¯tability is

mean-reverting, consistent with the existing empirical literature.4 Note that ½t is not required

to be positive, which is useful in light of our interest in the valuation of young ¯rms, whose

earnings are sometimes negative.

4See, for example, Beaver (1970), Lookabill (1976), Freeman, Ohlson, and Penman (1982), Penman (1991),
Fama and French (2000), and Pako·s (2001).
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The ¯rm is assumed to pay out a constant fraction of its book equity in dividends:

Dt = c Bt; c ¸ 0: (3)

This assumption of constant dividend yield with respect to book value re°ects the common

corporate policy of smoothing dividends over time.5 Since young ¯rms often pay no dividends

and since the fraction of dividend-paying ¯rms has been decreasing steadily (see Fama and

French, 2001a), the special case of c = 0 receives particular attention in our analysis.

We assume that the ¯rm is ¯nanced only by equity and that there are no new equity issues.

External ¯nancing is costly for many reasons, including transaction costs and asymmetric

information problems (see Myers, 1984, and Myers and Majluf, 1984). Both reasons are

likely to be relevant for young ¯rms and ¯rms with uncertain pro¯tability, which are at the

focus of this study.

The process for book equity is governed by the clean surplus relation. This accounting

identity states that, in the absence of external capital contributions or withdrawals, book

equity increases by current earnings and decreases by current dividends:6

dBt = (Yt ¡Dt) dt = (½t ¡ c)Bt dt: (4)

In words, the growth rate of book equity equals pro¯tability minus the dividend yield.

To build a bridge between accounting values and market values, we assume that the

market value of equity will equal the book value at some future time T . To motivate this

assumption, consider the abnormal earnings model of Ohlson (1990, 1995) and Feltham and

Ohlson (1995), which is essentially just another accounting identity. This model equates

market equity with book equity plus the discounted sum of abnormal earnings, de¯ned as

earnings in excess of those earned at the rate equal to the cost of capital. Since ¯rms are

often created to pursue pro¯table ventures based on novel ideas and technologies, which

are often patent-protected, the pro¯tability of a new ¯rm can be abnormal for an extended

period of time. However, it seems reasonable to assume that abnormal earnings are gradually

reduced by competitive market forces. We assume that, at some known future time T , the

¯rm reaches \maturity" in the sense that the present value of expected future abnormal

earnings is zero. At that point, MT = BT .

5Some simple alternative assumptions about dividend policy seem less appealing. For example, assuming a
constant ratio of dividends to earnings gives rise to negative dividends when earnings are negative. Assuming
a constant ratio of dividends to market equity leads to dividend °uctuations that seem unrealistically high.
The possibility of making c a decreasing function of ½t is discussed in Section 2.3.

6Some violations of clean surplus accounting exist. They include accounting for unrealized gains and losses
on ¯nancial items, foreign currency translation gains and losses, and tax bene¯ts on preferred dividends.
Brennan and Schwartz (1982) rely on equation (4) to study the e®ects of regulatory policy on ¯rm value.
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Some readers may ¯nd it unnatural to relate market value to book value, as many ac-

counting features seem irrelevant for valuation. Such readers may ¯nd it useful to replace

earnings by net cash °ows and to view book value as the cumulative net cash °ow that is

reinvested in the ¯rm. The assumption that MT = BT then means that average net future

cash °ow is zero at maturity, and all of our theoretical results can be interpreted from the

cash °ow perspective. Our choice of accounting-based exposition is motivated mainly by

practical concerns { the concepts of earnings, book value, and pro¯tability are well-known

and commonly reported, making the model easier to test and to use in practice.

The market value of the ¯rm's equity at any point in time is given by the sum of the

discounted value of all future dividends and the terminal value MT = BT :

Mt = Et

·Z T

t

¼s
¼t
Dsds

¸
+ Et

·
¼T
¼t
BT

¸
: (5)

The stochastic discount factor ¼t is assumed to follow the log-normal process

d¼t
¼t
= ¡rdt¡ ¾¼dWt; (6)

where r denotes a constant risk-free interest rate and ¾¼ = (¾¼;1; 0) is a 1 £ 2 vector. We
assume that changes in ¼t are driven only by the ¯rst element of dWt (i.e. ¾¼;2 = 0), so that

we can interpret dW1;t as a systematic shock and dW2;t as an idiosyncratic shock.

The valuation framework presented above can be generalized in numerous ways. Many

assumptions can be relaxed or modi¯ed without a®ecting any conclusions, as discussed in

Section 2.3. Our aim is to present a parsimonious yet reasonably realistic model that high-

lights the importance of learning about mean pro¯tability in stock valuation.

2.1. No Uncertainty about Mean Pro¯tability

This subsection assumes perfect knowledge of all model parameters, including mean prof-

itability ½. The results developed here are useful for comparison with the next subsection,

in which ½ is treated as unknown. The following function is used repeatedly:

Z (½; ½t; s) = exp

½
¡ (r + c¡ ½) s+ 1

Á

¡
1¡ e¡Ás¢ (½t ¡ ½) +Q (s)¾ ; (7)

where

Q (s) =
¾½¾

0
½

2Á3

·
1¡ e¡2Ás

2
+ Ás¡ 2 ¡1¡ e¡Ás¢¸+ ¾¼¾0½

Á2
¡
1¡ e¡Ás ¡ Ás¢ : (8)
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As shown in the appendix, the function Z has a simple economic interpretation as expected

discounted growth in book equity:

Z (½; ½t; s) = Et

·
¼t+sBt+s
¼tBt

¸
: (9)

The following proposition, proved in the appendix, obtains closed-form solutions for the

¯rm's M/B ratio and for the ¯rst two moments of stock returns. Throughout, ¿ = T ¡ t.

Proposition 1. Assume ½ is known with certainty. Then

(a) The ¯rm's ratio of market value of equity to book value of equity is given by

Mt

Bt
= G (½; ½t; ¿) ´ c

Z ¿

0

Z (½; ½t; s) ds+ Z (½; ½t; ¿ ) : (10)

(b) The process for excess stock returns, dRt = (dMt +Dtdt) =Mt ¡ rdt, is given by

dRt = ¹R;tdt+ ¾R;tdWt;

where

¹R;t = F (½t; ¿; c)
¾½¾

0
¼

Á
; (11)

¾R;t = F (½t; ¿; c)
1

Á
¾½; (12)

and F (½t; ¿; c) is given in equation (33) in the appendix. In the special case when the

¯rm pays no dividends (c = 0), we have

¹R;t =
¡
1¡ e¡Á¿¢ ¾½¾0¼

Á
; (13)

¾R;t =
¡
1¡ e¡Á¿¢ 1

Á
¾½: (14)

Note that the expressions for M/B and the moments of stock returns are fully explicit

for c = 0. In the presence of dividends, c > 0, the integral in equation (10) as well as its

counterpart in the expression for F (½t; ¿; c) in the appendix can be computed in a split-second

using standard numerical techniques. Moreover, the solution is su±ciently explicit to allow

full characterization of the properties of the M/B ratio. These properties are summarized in

the following corollaries, obtained immediately from equations (7) and (10) with the help of

the fact that sÁ > 1¡ e¡Ás > 0 for all s > 0.

Corollary 1. The M/B ratio increases if
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(i) average pro¯tability ½ increases;

(ii) current pro¯tability ½t increases;

(iii) ¾½¾
0
¼, the key determinant of expected excess stock return ¹R;t, decreases;

(iv) the interest rate r decreases;

(v) ¾½¾
0
½, the instantaneous variance of the pro¯tability process, increases.

Corollary 2. The M/B ratio is convex in ½.

The results in Corollary 1 are intuitive. Increases in ½ or ½t push M/B up because

they raise expectations of future pro¯tability.7 Decreases in ¹R;t or r lift M/B as they

reduce expected stock returns. In other words, M/B increases with expected accounting

returns (pro¯tability) and decreases with expected stock returns, as discussed for example in

Vuolteenaho (2000). More volatile pro¯tability increases M/B because it increases expected

future payo®s due to the convex relation between future payo®s and their growth rate. This

relation is discussed later in the paper in more detail.

The M/B ratio also depends on the speed of mean reversion Á and the dividend yield

c, but the dependence is slightly more complex. The e®ect of Á on M/B is ambiguous as a

result of two e®ects working in the opposite directions. Increasing Á ensures that ½t varies

less around its mean ½. Since future payo®s become more certain, both systematic and

nonsystematic components of return volatility decline, together with the required rate of

return, and M/B increases. On the other hand, the lower dispersion of ½t decreases expected

future payo®s, again due to the convex relation between future payo®s and their growth rate,

and M/B decreases. The e®ect of c on M/B is ambiguous as well. A higher dividend yield

increases M/B since the payo®s are received earlier on average, but it also decreases M/B

since it reduces the growth rate of book equity. One would expect that when pro¯tability is

su±ciently high, paying dividends reduces M/B, and vice versa. This intuition is con¯rmed

in Figure 1, which plots M/B against ½ for three values of c: 0, 0.04, and 0.10. For su±ciently

large values of ½, increasing c reduces M/B, and vice versa.

Figure 1 is constructed using parameter values that correspond to typical values observed

in the data (described in the next section). The value of ½t is set equal to 0.11, which is the

grand median, across stocks and years, of all valid annual returns on equity (ROE) in our

sample. To estimate Á and ¾½, we estimate an AR(1) model for each stock's ROE, using

the longest continuous series of the stock's valid annual ROEs. That series is required to

be at least 10 years long (using 15 or 20 years leads to almost identical results). The slope

7It is easy to show from equation (2) that Et(½t+s) = (1¡ e¡Ás)½+ e¡Ás½t.
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coe±cients are adjusted for small-sample bias following the approach of Marriott and Pope

(1954) and Kendall (1954). The value of Á = 0:3968 used in the calibration is the median

of the estimated coe±cients across all 4,571 stocks.8 In addition, we choose ¿ = 15 years,

r = 0:03, ¾¼;1 = 0:6, ¾½1 = 0:0584, and ¾½2 = 0:0596. The latter three values were chosen

to imply ¹R;t = 0:0883, a reasonable value for expected annual excess return in light of the

data, as well as
p
¾½¾0½ = 0:0834, which is equal to the median of the residual volatility of

pro¯tability across all 4,571 stocks. Finally, the grand median of the ratios of common stock

dividends to last year's book equity (c) is 0.0105. (Interestingly, the cross-sectional median

is zero in each year since 1985. Most ¯rms do not pay dividends nowadays.) The grand

median of c calculated only across ¯rms that pay dividends is 0.0434. These numbers have

guided our choices for c in Figure 1 as well as in the subsequent ¯gures.

Figure 1 shows that the relation between M/B and ½ is convex. This relation is stated

formally in Corollary 2, and the proof of the convexity of G (½; ½t; ¿) in equation (10) is

provided in the appendix. The intuition is explained in the introduction. Also note that the

convexity is higher at higher growth rates. Since dividends reduce the growth rate of book

equity, the convexity of M/B in ½ should be less pronounced for higher values of c. This

observation is also con¯rmed in Figure 1.

Finally, the stock return process displayed in Proposition 1 exhibits a mechanical property

worth commenting on. As ¿ ! 0, F (½t; ¿; c)! 0 and hence also ¾R;t ! 0 and ¹R;t ! 0. In

words, as maturity approaches, stock returns become less risky, and at maturity they become

riskless. This property is an artifact of the ¯nite horizon assumption, since at time T , the

stockholder receives a locally riskless payo® BT . We are not overly concerned about the

return behavior close to maturity, as we are interested in valuing young ¯rms whose horizons

are relatively long. If the horizon ¿ is long enough, expected returns and return volatility

are essentially constant over time. For example, using the parameter values from Figure 1,

we have ¹R;t = 7:1% for ¿ = 5 years, ¹R;t = 8:0% for ¿ = 10 years, and ¹R;t = 8:1% for

¿ = 15 years. Moreover, these ¯nite horizon e®ects disappear in frameworks with random

or in¯nite horizon (see Section 2.3.), which have very similar qualitative implications.

2.2. Learning about Mean Pro¯tability

This subsection investigates the e®ects of uncertainty and learning about mean pro¯tability

on valuation and stock returns. Throughout, mean pro¯tability ½ is treated as unknown.

8Fama and French (2000) estimate the average rate of mean reversion in the return on assets as 0.38.
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At any time t, investors' beliefs about ½ are summarized by a probability density function

pt (½), and investors rationally update their beliefs about ½ over time.

Equations (5), (10), and the law of iterated expectations immediately imply

Mt

Bt
=

Z
R

G (½; ½t; ¿ ) pt (½) d½: (15)

Loosely speaking, the ¯rm's M/B ratio under uncertainty is the average of the M/B ratios

for all possible values of ½, weighted by the current probabilities assigned to each ½.

One of our key results is that higher uncertainty about ½ increases M/B. Recall from

Corollary 2 that G (½t; ½; ¿ ) is a convex function of ½. Hence, greater dispersion in pt (½)

increases the expected value of G (½t; ½; ¿). (Greater dispersion is interpreted as a mean-

preserving-spread, de¯ned in Rothschild and Stiglitz, 1970.) Higher uncertainty about ½

increases the probability that future growth rate of book equity will be persistently high or

persistently low. Due to the convex nature of compounding, a persistently high growth rate

has a bigger impact on the future book value than a persistently low growth rate and the

expected future book value increases, together with M/B.

To obtain closed-form solutions for prices and returns, we assume that the prior distri-

bution p0 (½) at time t = 0 is normally distributed, and that investors update their beliefs

using the Bayes rule. The resulting posterior distribution pt (½) is also normal, as shown by

the following lemma, proved in the appendix.

Lemma 1. Suppose the prior distribution of ½ at time t = 0 is normal, ½ » N (b½0,b¾20): Then
the posterior distribution of ½ at time t > 0 conditional on Ft = f(¼¿ ; ½¿) : 0 · ¿ · tg is also
normal, ½jFt » N (b½t,b¾2t ), where
(a) The conditional mean b½t = E[½jFt] evolves according to the process

db½t = b¾2t Á¾½;2dfW2;t; (16)

where fW2;t is the idiosyncratic component of the Wiener process capturing investors'

perceived expectation errors (see equation 35 in the appendix).

(b) The mean squared error b¾2t = E[(½¡ b½t)2jFt] is non-stochastic and given by
b¾2t = 1

1b¾20 + Á2

¾2½;2
t
: (17)
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Note that the variance b¾2t of the posterior distribution declines over time due to learning,
and the speed of this decline increases with the ratio Á=¾½;2. A higher value of Á means

that ½t will be close to the mean ½ more often, making it easier to learn the value of the

latter. A smaller value of ¾½;2 also leads to quicker learning because it implies a less noisy

pro¯tability process. Figure 2 plots the evolution of b¾t using the same parameter values as in
Figure 1, except that Á assumes three di®erent values, 0.2, 0.4, and 0.6. Note that learning is

rather slow. With the prior standard deviation of b¾0 = 0:10, or 10% per year, the posterior

standard deviation b¾t after 10 years is still large, over 4%. This number corresponds to
Á = 0:4, obtained for the median ¯rm in our sample. Even when mean reversion is faster,

Á = 0:6, the uncertainty after 10 years remains substantial, about 3%.

It is useful to de¯ne the following function:

ZU
¡b½t; b¾2t ; ½t; s¢ = Z (b½t; ½t; s) exp½ 1

2Á2
b¾2t ¡Ás¡ 1 + e¡Ás¢2¾ ; (18)

where Z (b½t; ½t; s) is de¯ned in equation (7). Proposition 2, proved in the appendix, is a
counterpart of Proposition 1 in the case of unknown mean pro¯tability. As before, ¿ = T ¡t.

Proposition 2. Assume that investors rationally learn about the unknown value of ½, and

that the assumptions stated in Lemma 1 are satis¯ed. Then

(a) The ¯rm's ratio of market value of equity to book value of equity is given by

Mt

Bt
= c

Z ¿

0

ZU
¡b½t; b¾2t ; ½t; s¢ ds + ZU ¡b½t; b¾2t ; ½t; ¿¢ : (19)

(b) The process for excess stock returns, dRt = (dMt +Dtdt) =Mt ¡ rdt, is given by

dRt = ¹R;tdt+ ¾R;tdfWt;

where

¹R;t = F
¡
½t; b½t; b¾2t ; ¿; c¢ 1Á¾½¾0¼ (20)

¾R;t = F
¡
½t; b½t; b¾2t ; ¿; c¢ 1Á¾½ + F1 ¡½t; b½t; b¾2t ; ¿; c¢ 1Áb¾½;t (21)

b¾½;t =

µ
0; b¾2t Á¾½;2

¶
: (22)

The functions F (½t; b½t; b¾2t ; ¿; c) and F1 (½t; b½t; b¾2t ; ¿; c) are strictly positive and given in
equations (41) and (42) in the appendix. In the special case when the ¯rm pays no
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dividends (c = 0), we have

¹R;t =
¡
1¡ e¡Á¿¢ ¾½¾0¼

Á
(23)

¾R;t =
¡
1¡ e¡Á¿¢ 1

Á
¾½ +

¡
Á¿ ¡ 1 + e¡Á¿¢ 1

Á
b¾½;t: (24)

2.2.1. Implications for market-to-book

The expression for M/B in Proposition 2 (where ½ is unknown) has the same form as in

Proposition 1 (where ½ is known), except that the function Z in equation (10) is replaced by

ZU in equation (19). There are two di®erences. First, the known value of ½ is replaced by its

current estimate b½t, which varies over time. Second, ZU is equal to Z multiplied by a term
related to the uncertainty about mean pro¯tability (see equation 18). Since this additional

term involves only b¾2t , Á, and s, Corollary 1 applies here as well, with ½ replaced by b½t. The
additional term increases with b¾2t , which implies that higher b¾2t increases M/B as well. This
fact is highlighted in the following corollary, which follows immediately from equation (18).

Corollary 3. The M/B ratio increases with uncertainty about mean pro¯tability, b¾2t .
The intuition behind this e®ect is provided earlier. As one would expect, the e®ect

strengthens with horizon, since the term multiplying b¾2t in equation (18) increases with ¿ .
Based on Figure 1, one might also expect this e®ect to be stronger for ¯rms that pay no

dividends. This insight is formalized in the following corollary, proved in the appendix.

Corollary 4. The e®ect of b¾2t on log(M/B) is stronger for ¯rms that pay no dividends.
Corollaries 3 and 4 are investigated in the empirical analysis. Note that it is also

possible to prove a related claim that there exists a time horizon T ¤ such that for every

T > T ¤, the e®ect of b¾2t on M/B becomes stronger as the dividend yield c decreases (i.e.,
@2 (Mt=Bt) =@b¾2t @c < 0). The numerical analysis of that case reveals that T ¤ = 0 for most
reasonable parameter values, including those used in Figures 1{4.

To assess the strength of the e®ect of b¾t on M/B for a typical ¯rm, the top panel of
Figure 3 plots M/B against b¾t for various levels of the dividend yield c. All other parameters
are as in Figure 1. The e®ect of b¾t on M/B is substantial. For a ¯rm that pays no dividends,
M/B equals 1.41 under perfect certainty (b¾t = 0). This M/B rises to 1.72 when the standard
deviation around the current estimate of mean pro¯tability is 5% per year (b¾t = 0:05), and
to 3.08 when b¾t = 0:10. The e®ect is the strongest for c = 0, supporting Corollary 4.
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As time passes, b¾t declines as investors learn about ½. This resolution of uncertainty leads
to a gradual decline in M/B (Corollary 3). The top panels of Figure 4 plot the evolution of

M/B over time, using the parameter values from Figure 1. The ¯gure assumes ½t = b½t for all
t, to highlight the e®ect of the resolution of uncertainty and to remove the e®ect of learning

that ½ is higher or lower than expected. Prior uncertainty about ½ is chosen based on the

cross-sectional dispersion of average annual ROE. When at least 10 (20) valid ROEs are

required to compute the average, the dispersion is 0.1368 (0.0728). Our choice of ¾̂0 = 0:10

per year is a round-number compromise between these two values.

The top-left panel of Figure 4 shows a rapid decline in M/B over the ¯rst few years of

the ¯rm's life. If the ¯rm pays no dividends, its M/B declines almost by half, from just over

3.0 to about 1.6, over the ¯rst ¯ve years. With a 4% dividend yield, the M/B ratio falls from

about 2.4 at birth to about 1.4 after ¯ve years. The top-right panel shows that M/B declines

slightly over time even when ½ is known. This is an artifact of our ¯nite horizon assumption,

which implies that M/B must converge to 1 as maturity approaches. However, if the horizon

is su±ciently long, M/B under certainty is virtually constant over time. Comparing the top

two panels of Figure 4 reveals strong e®ects of uncertainty and learning on the time path

of M/B of a young ¯rm. M/B of a new ¯rm is high due to uncertainty about its future

pro¯tability, but it declines quickly as investors learn about ½.

To conclude the description of the various properties of M/B, consider a ¯rm that pays

no dividends (c = 0). It follows from equations (18) and (19) that

log

µ
Mt

Bt

¶
= ®0 (¿ ) + ®1 (¿) b½t + ®2 (¿) ½t + ®3 (¿)¹R;t + ®4 (¿) ¾½¾0½ + ®5 (¿ ) b¾2t ; (25)

where the coe±cients ®1 (¿) through ®5 (¿) depend only on horizon. As shown in the ap-

pendix, ®1 (¿ ) > 0, ®2 (¿) > 0, ®3 (¿ ) < 0, ®4 (¿) > 0, and ®5 (¿ ) > 0. In words, log

M/B increases with the estimate of average pro¯tability as well as with current pro¯tability,

decreases with expected stock return, increases with the volatility of pro¯tability, and, last

but not least, increases with the uncertainty about average pro¯tability. While deriving an

analogous expression for dividend-paying stocks appears infeasible, we view equation (25) as

motivation for the log-linear functional form speci¯ed in the empirical analysis in Section 3.

2.2.2. Implications for stock returns

The ¯rst obvious implication for stock returns is that return volatility increases with the

volatility of pro¯tability, which is apparent from equation (21). This relation is present even
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when ½ is known, as can be seen from equation (12). Another intuitive implication is that

uncertainty about ½ ampli¯es the volatility of stock returns:

Corollary 5. Idiosyncratic return volatility increases with b¾2t .
This result follows immediately from equation (21). Similar results for aggregate market

volatility have been obtained in the existing literature on learning, as cited in the introduc-

tion. The intuition here is simple. Market value of equity is quite sensitive to ½, as illustrated

in Figure 1. When the true value of ½ is unknown, the perception of ½ changes over time

due to learning, and the market value °uctuates by more than it would if ½ were known.

Corollary 6. Firms that pay no dividends have higher return volatility than dividend payers.

The intuition behind this corollary, proved in the appendix, is as follows. If the ¯rm pays

dividends, market value of equity depends not only on the terminal value BT but also on

near-term dividends, which are less sensitive to ½. (At the extreme, the dividend received in

the next instant is riskless.) As a result, the sensitivity of the market value to ½ is higher for

dividend non-payers. This higher sensitivity to ½ then translates into higher return volatility,

using the intuition behind Corollary 5.

The bottom panel of Figure 3 plots return volatility against b¾t. Following Corollaries 5
and 6, volatility increases with b¾t and is higher when no dividends are paid. For example,
an increase of b¾t from zero to 5% raises the volatility from 20% to 35% for a stock with 4%

dividend payout, and to about 40% for a non-dividend-paying stock. The bottom panels of

Figure 4 plot the evolution of volatility over time with and without learning, assuming as

before that ½t = b½t for every t. Volatility declines substantially in the presence of learning,
but it remains essentially constant when there is no learning. (It declines to zero close to

maturity only as an artifact of the ¯nite-horizon model.) Also note that with no uncer-

tainty/learning, there is almost no di®erence between the volatilities of dividend payers and

non-payers. Volatility is slightly lower for the payers simply because dividends are instanta-

neously riskless, but the intuition behind Corollary 6 is missing and the e®ect of dividends

on volatility is negligible compared to the uncertainty case.

Finally, consider the e®ect of learning on expected stock returns. Comparing Propositions

1 and 2, expected returns in equations (13) and (23) are identical in the absence of dividends.

In other words, uncertainty and its resolution have no e®ect on expected returns. Although

return volatility is higher in the presence of uncertainty about ½, all additional volatility is

idiosyncratic, as it has no loading on the systematic shock dfW1 (see equation 22). There is no
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reason why learning about a ¯rm-speci¯c parameter ½ should be related to the exogenously

speci¯ed stochastic discount factor. As is apparent from equation (16), innovations in the

posterior mean of ½ are uncorrelated with dfW1 and hence also with the stochastic discount

factor. In the absence of dividends, this zero correlation implies that the covariance between

stock returns and the stochastic discount factor is una®ected by uncertainty about ½, so that

expected returns under certainty and uncertainty are equal. The same intuition applies in

the presence of dividends, but their perfect local predictability induces a slight dependence

of expected returns on b¾t. (This dependence is very weak numerically.) With this minor
caveat, we conclude that the learning process in our framework is idiosyncratic and does not

a®ect expected returns. It does a®ect expected cash °ows, as discussed earlier, and therefore

plays an important role in stock valuation.

2.3. Robustness and Extensions

The results presented earlier are remarkably robust to various modi¯cations and general-

izations of our simple framework. To start with, while we assume that the ¯rm is ¯nanced

entirely by equity, there is a weaker assumption that delivers identical theoretical results.

Debt ¯nancing can be allowed under the condition that its dynamics do not a®ect the prof-

itability process in equation (2). That is likely to be the case when the ¯rm maintains an

approximately constant ratio of debt to equity, for example. On a related point, our results

do not hinge on the assumption of no new equity issues (which can be viewed as negative

dividends). It can be shown by continuity that, for any given domain of ½t, there exists a

c¤ < 0 such that all results go through for each c > c¤. Hence, all we need is some upper

bound on external ¯nancing. Intuitively, our results follow as long as reinvested earnings are

the primary source of growth in the ¯rm's book equity.

Our basic framework uses constant c for simplicity and to be broadly consistent with

empirical evidence. However, the ¯rm's optimal dividend policy is likely to be time-varying.

When expected pro¯tability is low relative to the cost of capital, the ¯rm raises dividends

and perhaps even shuts down (i.e. pays out a dividend equal to the ¯rm's liquidation

value), thereby increasing its market value compared to the constant-dividend-policy sce-

nario. When expected pro¯tability is high, the ¯rm reduces dividends and perhaps even

raises more capital, again increasing the market value. Only when expected pro¯tability is

typical, there is little adjustment to dividend policy and to market value. While incorporat-

ing such dividend timing in our model appears too di±cult, it would strengthen our results,

because it ampli¯es the convexity between the market value and average pro¯tability.
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Assuming a stochastic process for the interest rate in equation (6) would present no

complications. With the interest rate dynamics µa la Vasicek (1977), our speci¯cation of the

stochastic discount factor is the same as in Berk, Green, and Naik (1999) and all results

go through. Allowing ¾½ to vary over time would not a®ect the qualitative results either.

Also, the results do not hinge on the assumption that time to maturity is known. We have

examined a framework in which T is unknown and maturity can take place any time with

certain probability. Although that framework is less tractable, the basic convexity relation

remains and the qualitative implications are very similar to those presented here.

We do not model the ¯rm's development after time T , but we have also explored a more

complex framework that does and found the same results. In that alternative framework,

the assumption that MT = BT is replaced with the assumption that ½ jumps to the cost of

capital at time T and remains there forever. The market value in the absence of dividends

is calculated as the limit of the discounted book value at in¯nity. The M/B ratio at T is

no longer certain to be equal to one, because ½t continues to evolve randomly after T . As a

result, the return volatility no longer goes to zero at T , but the results are otherwise very

similar to those reported here, with both M/B and return volatility positively related to

uncertainty about ½. We chose to present the model with MT = BT mainly because it is

easier to explain and the e®ect of uncertainty is more transparent.

The practical use of our valuation model must consider the convention of conservative

accounting (that pro¯ts are recognized when earned but losses when anticipated), which

implies that M/B could exceed one even after pro¯ts are competed away. In addition, the

absence of intangible assets from the ¯rm's books could lead to di®erences in the long-

run M/B ratios across industries, as the steady-state reliance on intangibles varies across

industries. These issues present no problem for us { all results go through when MT =

(1 + ´)BT , where ´ is a constant. Even the speci¯cations with random ´ modeled as a

function of pro¯tability are tractable and yield equivalent implications.

It seems worth remarking that our framework with uncertainty about a constant ½ has

the same pricing implications as an alternative framework in which known ½ varies over

time following the law of motion from Lemma 1. These two frameworks are observationally

equivalent, but the learning framework strikes us as more plausible. While the convergence

of ¾̂t to zero in equation (17) appears easy to justify through learning, a similar simple

justi¯cation seems elusive in the alternative framework with certainty. On a related note,

the framework in which known ½ follows a more general stochastic mean-reverting process

is also tractable and delivers similar pricing implications.
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To summarize, the simple framework presented here can be extended in various ways,

adding complexity but not a®ecting the main conclusions. The parsimony of the basic

speci¯cation re°ects our desire to present the simplest possible model that illustrates the

e®ects of uncertainty about mean pro¯tability on stock valuation and returns.

3. Empirical Analysis

This section empirically investigates some implications of the learning model presented in

the previous section. One important implication is that ¯rms with high uncertainty about

future pro¯tability should have high M/B ratios (Corollary 3). In the model, uncertainty

about mean pro¯tability ¹½ declines over time due to learning. Hence, other things equal,

the M/B ratio of a typical young ¯rm should be high and it should fall as investors learn

about the ¯rm's prospects. Of course, M/B for any given ¯rm can rise if investors learn that

pro¯tability is higher than expected. However, assuming that investors' expectations about

the pro¯tability of young ¯rms are right on average, we expect to ¯nd a negative cross-

sectional relation between M/B and ¯rm age, after controlling for other known determinants

of M/B. This section provides corroborating evidence on this point. Our model also implies

that the e®ect of age on M/B should be stronger for ¯rms that pay no dividends (Corollary

4). Besides, M/B is predicted to increase with both the level and the volatility of pro¯tability,

and to decrease with expected future returns (Corollary 1). All of these implications are also

con¯rmed in the empirical analysis.

In addition to the predictions about M/B, the model has implications for stock return

volatility. Idiosyncratic volatility should be high for ¯rms with higher uncertainty about

average pro¯tability (Corollary 5), ¯rms that pay no dividends (Corollary 6), and ¯rms with

more volatile pro¯tability. Ample support for these predictions is found in the data.

We use annual data for the years 1962 through 2000 extracted from the CRSP/Compustat

database. (The appendix describes the data in detail.) A crucial variable in our empirical

investigation is ¯rm age. Similar to Fama and French (2001b), we consider each ¯rm as

\born" in the year of its ¯rst appearance in the CRSP database.9 Speci¯cally, we look for

the ¯rst occurence of a valid stock price on CRSP, as well as the ¯rst occurrence of the valid

market value in the CRSP/Compustat database, and take the earlier of the two. The ¯rm's

age is assigned the value of one in the year in which the ¯rm is born and increases by one

9Fama and French note that a vast majority of their new lists are IPOs, especially after 1972. About
80% of the ¯rms in our sample are born after 1972.
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in each subsequent year. The maximum age in our sample is 76 years (the age in 2000 of a

¯rm born in 1925), and the grand median (across stocks and years) is 11 years.

Table 1 reports some summary statistics of various characteristics computed across ¯rms

of the same age (regardless of the calendar year in which that age was reached). Median M/B

declines monotonically with age, from 2.25 for the newly-listed ¯rms to 1.25 for ¯rms that

are 10 years old. The grand median of M/B is 1.41. Return volatility, expressed in monthly

percentage terms, also declines with age. Pro¯tability (ROE) is the highest in year 1, 12.93%

per year, but °at around 11% thereafter. Stock returns, which are not risk-adjusted in any

way, are negative in the ¯rst three years. Finally, as ¯rms grow older, they tend to grow in

size and become more levered and more likely to pay dividends. The cross-sectional standard

deviation of ROE is rather °at across di®erent ages.

3.1. Results for Market-to-Book

Figure 5 shows that ageing in the life of a ¯rm tends to be accompanied by a decrease in the

M/B ratio. For each age, the solid line in the top panel plots the median M/B across all ¯rms

of that age. At 2.25, the median is the highest for the newly-listed ¯rms, and it declines for

about 10 years after listing. The decline in M/B during a typical ¯rm's childhood, as well as

the convex pattern of this decline, are consistent with the learning model presented in the

previous section. As investors learn about a young ¯rm's mean pro¯tability, uncertainty is

resolved and M/B falls.10 The top panel also plots the median M/B separately for dividend

payers and non-payers. Each year, a ¯rm is classi¯ed as a payer or non-payer depending

on whether it paid any dividends in that year. The dashed line reveals a pronounced age

pattern in the M/B ratios of the non-payers. The median M/B, equal to 2.73 for the newly-

listed non-payers, drops almost monotonically for at least 20 years after listing. A typical

10-year-old non-payer has M/B of 1.37, only half of M/B of a newborn non-payer. The

dotted line shows a much weaker relation between age and M/B for the payers. The median

M/B ratio declines shortly after listing, from 1.55 in year one to 1.20 in year three, but the

pattern is °at beyond year three. The observation that the age pattern in M/B is stronger

for non-payers than for payers is again consistent with the learning model.

The top panel of Figure 5, obtained from the data, can be compared to the top-left

panel of Figure 4, obtained by calibrating the model with reasonable parameter values. The

similarity between the shapes of the M/B paths in the model-based and data-based ¯gures

10Related results on M/B are reported by Fama and French (2001b) and Jain and Kini (1994).
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is striking. This comparison provides some encouragement for the idea that learning e®ects

might be relevant for valuation, but it provides no substitute for the more careful analysis

provided in the rest of this section.

Figure 6 plots the evolution of M/B in calendar time. Each year, ¯rms are categorized as

young or old depending on whether their age exceeds the midpoint between the minimum and

maximum age in the cross-section. Firms are also separately sorted into dividend payers and

non-payers. Four groups of stocks are formed each year by intersecting the two independent

sorts, and their median M/B ratios are plotted in the top panel. Consistent with Figure 5,

young ¯rms and dividend non-payers have higher M/B than old ¯rms and dividend payers in

almost every year. The plot also shows that while there is a substantial di®erence between

the median M/B of the young and old dividend non-payers, that di®erence is much smaller

for the payers. All of these observations also emerge later in this section in the regression

analysis of the relation between M/B, age, and dividend payouts.

Of course, the relation between M/B and age observed in Figures 5 and 6 could be to some

extent due to e®ects distinct from learning. For example, younger ¯rms should have higher

M/B if they have higher pro¯tability or lower returns than older ¯rms (see Table 1). Cohen,

Polk, and Vuolteenaho (2001) report that about 80% of the cross-sectional dispersion in M/B

is due to the cross-sectional dispersion in expected future pro¯tability, and the remaining

20% is due to the dispersion in expected future returns. The key question is whether the

negative relation between M/B and age remains after controlling for the known determinants

of M/B ratios. This issue is investigated next in a regression framework.

Each year between 1963 and 2000, we regress M/B cross-sectionally on a function of ¯rm

age and other potential determinants of M/B:

log (M=B)i = a+ b AGEi + c DDi + d LEVi + e SIZEi + f V OLPi + g0 ROE(0)i : : :

+ g1 ROE(1)i + : : :+ gq ROE(q)i : : :

+ h1 RET (1)i + : : :+ hq RET (q)i; i = 1; : : : ; N; (26)

where N denotes the number of ¯rms with valid data in the current year, and the right-hand-

side variables are described below. Taking the model seriously, we use the natural logarithm

of M/B, motivated by the theoretical prediction in equation (25).

We also turn to the model to de¯ne the AGE variable as minus the reciprocal of one plus

the ¯rm age. This choice is based on equation (17), which prescribes a particular functional

form for the relation between uncertainty and age. Uncertainty has a linear function of age

in the denominator, with di®erent coe±cients across ¯rms. To keep the same de¯nition of
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AGE for all ¯rms, we plug in the median values of Á and ¾½;2 and ¾̂0 = 0:15, which makes

uncertainty proportional to 1=(1+age). In an earlier version of the paper, the AGE variable

was de¯ned as the natural logarithm of age, which also captures the idea that one year of

age should matter more for young ¯rms than for old ¯rms. The results for log(age) are very

similar to those reported here. Note that the results are slightly weaker but still signi¯cant

even when AGE is de¯ned as plain age.

The choice of the other right-hand-side variables is based on equation (25) as well as

on the existing literature on the determinants of M/B. Recall that the model implies that

M/B increases with the current as well as estimated average future pro¯tability, decreases

with expected stock return, increases with the volatility of pro¯tability, and increases with

the uncertainty about average pro¯tability. Moreover, these relations are all linear, at least

for ¯rms that pay no dividends. Future stock returns (RET) and pro¯tability (ROE) are

included on the right-hand side as proxies for expected returns and expected pro¯tability, up

to 25 years into the future (q = 0; : : : ; 25). When expectations are rational, they should be

captured reasonably well by the ex post realized values.11 These future values are included

in the same linear fashion as in Vuolteenaho (2000), who derives an approximate linear

identity that equates the log M/B ratio with an in¯nite discounted sum of future ROE and

RET. Conditioning on the presence of future accounting and investment returns obviously

leads to a sample populated only by ¯rms that survived throughout the period. While such

conditioning leads to survivorship biases in some applications, it is not clear why any bias

at all should be present in the slope coe±cients that are at the focus of our analysis.

In addition to AGE and future ROE and RET, we also include other regressors that

could be related to M/B. Equation (25) asks for current pro¯tability, ROE(0), and for the

volatility of pro¯tability, VOLP, which is estimated for a given stock as the residual variance

from an AR(1) model, as described in Section 2.1. Motivated by Figure 1, we also add the

dividend dummy, DD, which is equal to one if the ¯rm paid any dividends in the current year

and zero otherwise. The natural logarithm of total assets (SIZE) and the ratio of long-term

debt to total assets (LEV) are included as measures of ¯rm size and leverage.

Table 2 reports the estimated coe±cients from regression (26), together with their t-

statistics. The inference is conducted in the style of Fama and MacBeth (1973). The reported

slope coe±cients are time-series averages of the estimated cross-sectional slope coe±cients.

11We also considered regression speci¯cations that include only the averages of the future values of ROE
and RET in place of those values per se. All M/B results (Tables 2 and 3) are very similar in terms of
magnitude as well as signi¯cance to the results reported here, only the R2s are lower. Including the future
values enables us to assess how many future values need to be considered, as explained below.
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The corresponding standard errors are also computed from the time series, and therefore

include estimation error due to the residual correlation in the cross-sectional regressions. In

those speci¯cations in which there is any signi¯cant serial correlation in the time series, the

standard errors are adjusted accordingly.12 The results are reported for the speci¯cations

with q = 0; 1; 5; 10; 15; 20; and 25 future values (i.e. \leads") of ROE and RET, as well as

for a simple regression of M/B on AGE only.

Table 2 con¯rms the prediction of Corollary 3 that younger ¯rms have higher M/B ratios,

other things equal. The coe±cient on AGE is signi¯cantly negative in all speci¯cations.

When AGE is the only variable included, the AGE coe±cient is -1.15 (t = ¡9:36), con¯rming
the pattern observed in Figure 5. The magnitude of the coe±cient decreases to -0.94 (t =

¡6:19) when the current values of DD, LEV, SIZE, VOLP, and ROE are added, and it
continues to decline as the leads of ROE and RET are included. However, the magnitude

of the coe±cient never falls below -0.32 (t = ¡4:71) observed for q = 20. Taking this

conservative value, log (M=B) of a ¯rm whose 1=(1 + age) is lower by one is likely to be

higher by 0.32. To interpret this magnitude, consider a typical two-year-old ¯rm, whose

M/B equal to 1.80 (Table 1). The regression estimate predicts that an otherwise identical

one-year-old ¯rm will have a M/B ratio of 1.90. A one-year di®erence in age thus translates

into a valuation di®erence of more than 5.5%. Although the e®ect is weaker for older ¯rms,

it is safe to conclude that the e®ect of AGE on M/B is not only statistically but also

economically signi¯cant, even after accounting for other known determinants of M/B.

Firms whose pro¯tability is more volatile tend to have higher M/B, con¯rming another

prediction of the model. The coe±cient on VOLP is signi¯cantly positive throughout, rang-

ing from 2.01 (t = 6:01) for q = 0 to 1.11 (t = 4:82) for q = 25.13 Also, M/B ratios tend to

be higher for smaller ¯rms, ¯rms that are less levered, and ¯rms that pay no dividends.

All coe±cients on ROE, current and future, are positive, consistent with the model. The

coe±cients generally decline as we go further into the future. In the most comprehensive

speci¯cation (q = 25), all coe±cients are positive, but none of the coe±cients more than 19

years ahead is signi¯cant. Similarly, all RET coe±cients are negative, consistent with the

12Di®erent ways of adjusting the standard errors for potential serial correlation in the time series lead
to exactly the same conclusions. For example, not adjusting at all or adjusting for any (even insigni¯cant)
serial correlation produce very similar results and do not a®ect any inferences.
13This result is somewhat sensitive to the exclusion of outliers. We exclude the values of VOLP above

the 99th percentile of the cross-sectional distribution, thereby excluding stocks whose residual standard
deviations of pro¯tability exceed 100% per year. When the outliers in VOLP are included, two of the seven
coe±cients on VOLP lose their signi¯cance due to the extra noise. However, including these outliers has
only a negligible e®ect on the coe±cients on all other variables and their t-statistics.
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model, and the magnitude of the coe±cients also drops as we go further into the future. The

most distant signi¯cantly negative coe±cient is again 19 years ahead, and the values turn

insigni¯cantly positive at lead 24. This analysis reveals that the accounting and investment

returns more than 20 years ahead have little if any e®ect on the current M/B, helping justify

our choice of speci¯cations with up to 25 leads of ROE and RET in Tables 2 and 3.

It is important to distinguish the age e®ects from the e®ects due to the variation in

M/B over time (time e®ects) and the e®ects due to the di®erences between ¯rms born

in di®erent years (cohort e®ects). The time e®ects are controlled for, since we run cross-

sectional regressions year by year. Whether the M/B ratios are generally high or low across

stocks in a given year, the cross-sectional results are una®ected. As for the cohort e®ects,

we can show that our results are not driven by ¯rms born late or early in the sample. The

AGE coe±cients tend to be negative for all years, with only occasional exceptions (typically

around 1980, if any). Since the coe±cients are negative throughout the 1960s, ¯rms born

after the 1960s are not crucial for our results. Moreover, since the AGE coe±cients are

negative even when ¯rms born before 1963 are excluded from the regressions (numbers not

reported to save space), those ¯rms are not crucial for the results either. The data appear

to reveal true age e®ects on M/B.

Table 3 tests another implication of the model, namely that the e®ect of AGE on M/B

should be stronger for ¯rms that pay no dividends (Corollary 4). This test is conducted by

including an additional term, the cross-product of AGE and the dividend dummy DD, on

the right-hand side of regression (26). The table reports the AGE coe±cients for dividend

payers and non-payers, together with their di®erences and t-statistics. The AGE coe±cient

is signi¯cantly more negative for non-payers than for payers, as the model predicts. The

e®ect of AGE on M/B for payers is negative and signi¯cant with q > 15, but this e®ect is

much stronger for non-payers { the AGE coe±cients for non-payers are all highly signi¯cant,

ranging from -2.14 (t = ¡6:92) for q = 0 to -0.71 (t = ¡3:46) for q = 25. To interpret

the magnitudes, note that a typical non-payer of age two has M/B of 2.23. Taking the

conservative value of -0.71 for the AGE coe±cient, an otherwise identical ¯rm that is just

one year younger is estimated to have M/B of 2.51. A one-year di®erence in age thus leads

to a valuation di®erence of over 12.5%. An analogous exercise for a typical ¯ve-year-old ¯rm

shows that the valuation of an otherwise identical one-year-old ¯rm is higher by almost 27%.

The relation between ¯rm valuation and uncertainty about future pro¯tability, proxied by

age, is remarkably strong.

Share repurchases have become an increasingly important alternative to dividends over
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the past few decades. As a robustness check, we redid the analysis de¯ning dividend payers

more broadly as ¯rms that paid any dividends or repurchased any common shares in the

given year. The results are very similar to those reported in Table 3, despite the shorter

sample period (repurchase data can be constructed only back to 1971, as described in the

appendix). The AGE coe±cients for the non-payers as well as the di®erences between the

coe±cients for the payers and non-payers remain signi¯cant in all speci¯cations.

We also analyze the changes in M/B over time for a given stock. Calculating the grand

mean of such changes across ¯rms and years, we ¯nd that M/B of a typical ¯rm declines

substantially, by 0.095 per year on average. In addition, our model predicts that the decline

in M/B should be steeper for younger ¯rms. This prediction is strongly endorsed by the

regression of changes in log(M/B) on the same regressors as in (26): AGE, DD, LEV, SIZE,

VOLP, ROE, and future values of ROE and RET. (Those future values that are mechanically

correlated with future changes in M/B are excluded.) Changes over one and three years are

both considered. The AGE coe±cients in those regressions are signi¯cantly positive, which

means that changes in M/B are more negative for younger ¯rms, as the model predicts. A

second-order prediction is that the learning e®ects are stronger for dividend non-payers with

less volatile pro¯tability. While the coe±cients on DD and VOLP are insigni¯cant, both

generally go in the right direction. Overall, this additional analysis, whose results are not

reported to save space, provides further support for the model.

3.2. Results for Return Volatility

For each stock, idiosyncratic return volatility in any given year is estimated from the market

model regression of (at least ten) monthly stock returns on the returns of the value-weighted

portfolio of all NYSE, AMEX, and NASDAQ-traded stocks. All results in this subsection

seem quite robust to the de¯nition of idiosyncratic volatility as they hold even when this

volatility is replaced by total volatility of stock returns.

The bottom panel of Figure 5 plots the median idiosyncratic return volatility for ¯rms

of di®erent ages. Younger ¯rms tend to have higher volatility: the median declines almost

monotonically from over 11% per month for the newly-listed ¯rms to about 8% for ¯rms

that are 20 years old. The bottom panel of Figure 6 plots the median volatility in every year

between 1963 and 2000. Without exception, young ¯rms again have higher median volatility

than old ¯rms. In addition, dividend non-payers have substantially higher volatility than

payers in both ¯gures. Both facts are consistent with the model.
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The same observations come to light in the regression analysis that controls for other

potential determinants of volatility. Each year between 1963 and 2000, idiosyncratic variance

of stock returns is regressed cross-sectionally on various stock characteristics: AGE, the log

of M/B, DD, LEV, SIZE, VOLP, and ROE. The inference is conducted as in Table 2, and the

results are summarized in Table 4. Regardless of which subset of variables is included in the

regression, the AGE coe±cient is signi¯cantly negative, suggesting that younger ¯rms have

higher return volatility. While AGE is our favorite proxy for uncertainty about pro¯tability,

M/B could act as a proxy as well, since it increases with that uncertainty. Therefore,

the result that ¯rms with higher M/B ratios tend to have higher return volatility nicely

complements the evidence based on AGE. We also ¯nd that ¯rms that pay no dividends have

more volatile returns, with t-statistics of around -13. (This relation remains highly signi¯cant

when DD is rede¯ned to re°ect also share repurchases.) More volatile pro¯tability translates

into more volatile returns, as the coe±cient on VOLP is signi¯cantly positive (t = 5:91 or

higher). All of these results provide a strong endorsement to our learning model.

Naturally, some ¯rms depart from our dataset. A negative relation between return volatil-

ity and AGE can be expected if ¯rms with high volatility depart more often. To investigate

whether ¯rms with certain characteristics are more likely to depart than others, we imple-

ment a simple linear probability model and run a pooled time-series cross-sectional regression

of a dummy variable for a ¯rm's departure from the dataset on a number of characteristics.

Departure is de¯ned here as the beginning of the last sequence of the ¯rm's missing volatility

values, if any. The characteristics include M/B, DD, LEV, SIZE, VOLP, and stock return

volatility. The results (not reported to save space) reveal that ¯rms with higher return

volatility are signi¯cantly more likely to disappear. Of course, this result does not invalidate

our model. The disappearing ¯rms are likely to have high volatility precisely because their

future pro¯tability is highly uncertain, whether due to their relatively young age or due to

reasons speci¯c to their disappearance. Firms with high M/B ratios are in fact less likely to

disappear, and the other characteristics enter insigni¯cantly.

Similar to M/B, we also analyze the changes in volatility for a given stock. The grand

mean of such changes across ¯rms and years is positive (at 0.0180 per year), not negative as

the model predicts. This result can be traced to a surprising fact, discussed in the conclusion,

that ¯rm pro¯tability has become substantially more volatile over the last few decades. As

pro¯tability grows more volatile, return volatility grows despite the learning e®ect in the

opposite direction. We also regress changes in volatility three years ahead on the same

characteristics as in Table 4. The model predicts that volatility changes should be lower

(more negative) when there is more uncertainty about average pro¯tability or when learning
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is faster. Volatility changes indeed tend to be signi¯cantly lower for ¯rms with higher M/B,

which are likely to face bigger uncertainty. The changes are also signi¯cantly lower for ¯rms

with lower volatility of pro¯tability and for dividend non-payers, for which learning should

be faster, as discussed in Section 2. At least to this extent, the results on volatility changes,

not reported to save space, support the model.

4. Conclusions

This paper develops a framework for valuing stocks whose average future pro¯tability is

unknown. We show that uncertainty about a ¯rm's average pro¯tability increases the ¯rm's

M/B ratio as well as its idiosyncratic return volatility. This uncertainty is especially large

for the newly listed ¯rms, but it declines over time due to learning. Our model therefore

predicts that both M/B and the return volatility of a typical young ¯rm should decline as

the ¯rm ages. We ¯nd that younger ¯rms indeed tend to have higher M/B ratios than

older ¯rms, after controlling for the known determinants of M/B such as future pro¯tability

and returns. Moreover, this e®ect is stronger for ¯rms that pay no dividends, con¯rming

another prediction of the model. The model is also endorsed by the observation that M/B

declines faster for younger ¯rms. Finally, we show that return volatility tends to be higher for

younger ¯rms, for ¯rms with more volatile pro¯tability, and for ¯rms that pay no dividends,

consistent with the model.

Due to the idiosyncratic nature of learning in our model, expected stock returns are

una®ected by uncertainty about average pro¯tability. As a result, the model cannot explain

any cross-sectional relation between M/B and expected stock returns. For the same reason,

we make no contribution to the literature on the potential long-run underperformance of

initial public o®erings.

This paper does not explore the equilibrium implications of learning about ¯rm pro¯tabil-

ity. An exogenous speci¯cation of the stochastic discount factor seems reasonable given our

focus on the valuation of young ¯rms, which typically do not account for a sizable fraction

of the total market capitalization. Nonetheless, endogenizing the stochastic discount factor

in a general equilibrium framework with learning would be a useful and ambitious direction

for future research.

Future work can also model the ¯rm creation process. Since uncertainty increases valu-

ations, entrepreneurs have an incentive to start a new ¯rm with uncertain pro¯tability even
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when expected pro¯tability ½ is low. In addition, private owners are tempted to take their

¯rms public when current pro¯tability is unusually high. Investors should recognize this

and adjust their priors accordingly. One might therefore expect some new ¯rms with high

prior uncertainty to have low prior means of ½, and the overall e®ect on valuation is unclear.

What is clear is that uncertainty about ½ increases valuations holding ½ constant, as well as

that investors learn about ½ over time regardless of the prior. The model's main predictions

therefore easily survive the above arguments. Moreover, the empirical challenge is to explain

why the valuations of young ¯rms tend to be high, not low. If ½'s of young ¯rms are indeed

low as argued above, then the high valuations of young ¯rms are even more puzzling and

the uncertainty e®ect must be even stronger to justify them.

The empirical analysis uses age as a proxy for uncertainty about average pro¯tability. In

our model, uncertainty declines over time due to learning, making age a natural choice. One

alternative proxy could be the dispersion of security analysts' pro¯tability forecasts, con-

structed from the earnings forecasts contained in the IBES database of Thomson Financial.

However, we are concerned that using the IBES sample would likely introduce an important

selection bias, as that sample is heavily tilted toward big and well-established stocks.14 Since

stocks for which future pro¯tability is likely to be the most uncertain are largely absent from

the IBES database, we would not necessarily expect to ¯nd strong learning e®ects there.

Nevertheless, some alternative proxies should be investigated in future work.

Campbell, Malkiel, Lettau, and Xu (2001) show that average idiosyncratic volatility of

individual stock returns has increased since the 1960s. Indeed, the top panel of Figure 7 shows

that average idiosyncratic volatility in our sample rises from 6.7% per month in 1963 to 17.5%

in 2000. In our model, idiosyncratic volatility of returns has two parts, idiosyncratic volatility

of pro¯tability and uncertainty about pro¯tability (equation 24). Both parts seem to have

contributed to the increase in average idiosyncratic return volatility. Average uncertainty

about pro¯tability has risen due to the recent explosion in the number of newly listed ¯rms,

depicted in the third panel of Figure 7 (Fama and French, 2001b). Interestingly, average

volatility of ¯rm pro¯tability has risen as well, from 10% per year in 1963 to over 40% in

2000, as shown in the second panel.15 This striking increase might perhaps be due to falling

14Diether, Malloy, and Scherbina (2002) show that over 95% of stocks in the ¯rst size decile (using NYSE
breakpoints) are not covered by the IBES database in January 1983, while this fraction is below 8% for
stocks in deciles 9 and 10. Similarly, Hong, Lim, and Stein (2000) show that 82% of stocks in the bottom
size quintile (using NYSE/AMEX breakpoints) are not covered by the IBES database in 1988, while this
fraction is below 6% for stocks in the top quintile.
15The ¯gure plots the cross-sectional standard deviation of ROE. Using variance decomposition, the cross-

sectional variance of ROE is the sum of the cross-sectional average of the variances of ROE and the cross-
sectional variance of expected ROE. Since the latter component is relatively small, we take the cross-sectional
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barriers to entry throughout the economy { when new ¯rms can enter the marketplace easily,

the pro¯ts of the incumbent ¯rms are likely to become more volatile. Finally, the fraction

of ¯rms that pay no dividends has increased dramatically (Fama and French, 2001a). The

bottom panel of Figure 7 shows that while only 27% of all ¯rms paid no dividends in 1963,

this fraction rises to 68% in 2000. Similarly, the fraction of ¯rms that neither pay dividends

nor repurchase shares grows from 31% in 1971 (when repurchase data becomes available)

to 52% in 2000. According to Corollary 6, this rise should also raise return volatility. The

common increase in the four series plotted in Figure 7 hardly seems coincidental, given

the link between them within our model. This evidence has the potential to explain the

ba²ing result of Campbell et al. (2001). We hope that future research will provide more

conclusive evidence by carefully decomposing the rise in average return volatility into the

e®ects described here.

variance of ROE as an estimate of the average variance of ROE. Also note that we discard outliers, de¯ned
as ROE smaller than -200% and bigger than 1000% per year. The rise in volatility observed in Figure 7 is
robust to di®erent cuto®s that identify the outliers, and a similar (albeit more jagged) ¯gure obtains even
when the outliers are included.
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Table 1
Summary Statistics

The table summarizes various statistics for groups of ¯rms of the same age, where age measures the number

of years since the ¯rm's listing. Panel A reports the medians across ¯rms of the annual characteristics listed

in the row label. Residual return volatility is calculated with respect to the market model. Return volatility,

return on equity, stock return, and leverage are all expressed in percentage terms. Assets are in millions of

dollars. Panel B shows the number of ¯rms with valid M/B ratios, the fraction of ¯rms that pay dividends,

and the standard deviation of ROE across ¯rms. The latter two values are expressed in percent.

Age 1 2 3 4 5 6 7 8 9 10

Panel A. Medians across ¯rms.

M/B 2.25 1.80 1.57 1.49 1.39 1.38 1.35 1.33 1.27 1.25

Total return volatility 13.96 13.35 13.09 13.05 12.72 12.38 12.23 11.80 11.77 11.19

Resid return volatility 11.11 11.16 11.00 10.94 10.64 10.31 10.02 9.61 9.69 9.26

ROE 12.93 11.06 10.37 10.31 10.73 10.95 11.66 11.53 11.51 11.56

Stock return -2.70 -7.19 -1.09 4.86 2.82 7.04 7.91 6.56 4.33 9.22

Assets 29.12 37.21 43.16 48.33 53.85 58.62 65.11 71.46 77.07 83.00

Leverage 7.14 9.43 11.62 12.46 13.17 13.96 13.95 13.96 13.63 13.98

Panel B. Other statistics.

Number of ¯rms 14522 14543 12806 11319 9942 8699 7746 6985 6218 5606

Dividend payers 27.87 31.16 34.16 36.59 39.69 41.82 44.14 46.60 48.47 50.69

Std deviation of ROE 29.38 41.72 33.56 38.83 30.99 82.68 32.82 35.74 27.20 32.74
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Table 2
Determinants of Market-to-Book Ratios

Each year between 1963 and 2000, the log of the market-to-book ratio (M/B) is regressed cross-sectionally

on minus the reciprocal of one plus ¯rm age (AGE), dividend dummy (DD), leverage (LEV), the log of total

assets (SIZE), the volatility of pro¯tability (VOLP), current return on equity (ROE), and future values of

ROE and stock returns (RET), up to the number of leads listed in the column headings. The reported slope

coe±cients and their standard errors are computed from the time-series of the estimated cross-sectional

slope coe±cients. The t-statistics, adjusted for any signi¯cant serial correlation in the time series, are in

parentheses. The numbers of years across which the averages of the coe±cients are computed are given in

the last row. Also given are averages across these years of the R2's and of the numbers of ¯rms from the

cross-sectional regressions. The values in the ¯rst column are obtained from the regression of log M/B on

AGE only.

Number of future ROE and RET included
Regressor 0 1 5 10 15 20 25

Intercept 0.21 -0.04 -0.04 0.05 0.13 0.17 0.12 0.19
(2.35) (-0.45) (-0.44) (0.48) (1.21) (1.68) (1.37) (1.36)

AGE -1.15 -0.94 -0.93 -0.63 -0.44 -0.37 -0.32 -0.33
(-9.36) (-6.19) (-6.04) (-5.63) (-6.10) (-4.07) (-4.71) (-4.71)

DD -0.01 -0.04 -0.08 -0.13 -0.16 -0.17 -0.18
(-0.29) (-1.14) (-3.47) (-5.30) (-7.43) (-4.97) (-4.14)

LEV -0.38 -0.36 -0.34 -0.32 -0.33 -0.28 -0.23
(-5.14) (-6.24) (-6.23) (-4.78) (-3.17) (-2.65) (-2.06)

SIZE 0.02 0.01 -0.01 -0.03 -0.03 -0.02 -0.02
(1.51) (1.03) (-1.53) (-3.78) (-4.76) (-3.21) (-1.60)

VOLP 2.01 1.96 1.72 1.42 1.53 1.74 1.11
(6.01) (5.78) (5.61) (5.51) (4.29) (5.93) (4.82)

ROE 1.59 0.99 0.82 0.81 0.76 0.98 1.28
(5.80) (6.24) (6.79) (7.23) (7.99) (6.66) (8.38)

ROE(1) 1.32 0.97 0.97 0.98 1.05 1.35
(9.10) (9.14) (8.79) (7.81) (8.24) (5.88)

ROE(2) 0.68 0.60 0.60 0.56 0.62
(7.85) (5.69) (4.99) (5.58) (4.14)

ROE(3) 0.48 0.47 0.57 0.50 0.48
(6.92) (5.84) (5.44) (3.63) (2.42)

RET(1) -0.22 -0.35 -0.39 -0.48 -0.50 -0.55
(-7.48) (-10.79) (-11.49) (-10.20) (-9.03) (-7.36)

RET(2) -0.27 -0.32 -0.41 -0.43 -0.43
(-9.80) (-10.91) (-10.54) (-8.89) (-7.04)

RET(3) -0.21 -0.29 -0.38 -0.40 -0.42
(-7.29) (-8.61) (-8.99) (-7.83) (-6.37)

Average R2 0.05 0.21 0.30 0.42 0.51 0.61 0.69 0.78

Average N 4234 2318 2145 1840 1393 956 662 437

Years 38 38 37 33 28 23 18 13
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Table 3
The AGE coe±cients for Dividend Payers vs. Non-Payers

Each year between 1963 and 2000, the log of the market-to-book ratio (M/B) is regressed cross-sectionally

on minus the reciprocal of one plus ¯rm age (AGE), dividend dummy (DD), the interaction term AGE*DD,

leverage (LEV), the log of total assets (SIZE), the volatility of pro¯tability (VOLP), current return on equity

(ROE), and future values of ROE and stock returns (RET), up to the number of leads listed in the column

headings. The reported AGE coe±cients and their standard errors are computed from the time-series of the

estimated cross-sectional slope coe±cients. The t-statistics, adjusted for any signi¯cant serial correlation in

the time series, are in parentheses. The numbers of years across which the averages of the coe±cients are

computed are given in the last row. Also given are the averages across these years of the R2's from the

cross-sectional regressions, as well as of the numbers of dividend payers and non-payers in each year. The

values in the ¯rst column are obtained from the regression of log M/B on AGE and AGE*DD only. To

obtain the t-statistics on the coe±cients for dividend payers, the regression is rerun with DD rede¯ned as

its own complement.

Number of future ROE and RET included
Regressor 0 1 5 10 15 20 25

Non-payers -1.39 -2.14 -1.95 -1.50 -1.13 -0.99 -0.89 -0.71
(-8.88) (-6.92) (-7.58) (-8.02) (-10.76) (-5.54) (-4.77) (-3.46)

Payers -0.58 -0.19 -0.19 -0.05 -0.04 -0.11 -0.17 -0.26
(-6.42) (-1.51) (-1.87) (-0.54) (-0.51) (-1.66) (-2.42) (-2.95)

Di®erence 0.81 1.95 1.76 1.46 1.09 0.88 0.71 0.45
(5.32) (6.32) (6.58) (7.49) (9.94) (4.93) (3.82) (1.90)

Average R2 0.06 0.22 0.30 0.43 0.51 0.61 0.69 0.78

Avg N: Non-payers 1967 750 702 562 369 190 112 72

Avg N: Payers 2181 1567 1444 1278 1024 767 550 365

Years 38 38 37 33 28 23 18 13
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Table 4
Determinants of Return Volatility

Each year between 1963 and 2000, residual return variance from the market model is regressed cross-
sectionally on various subsets of the following set of variables: minus the reciprocal of one plus ¯rm age
(AGE), the log of M/B (M/B), dividend dummy (DD), leverage (LEV), the log of total assets (SIZE), the
volatility of pro¯tability (VOLP), and current return on equity (ROE). The reported slope coe±cients and
their standard errors are computed from the time-series of the estimated cross-sectional slope coe±cients.
The t-statistics, adjusted for any signi¯cant serial correlation in the time series, are in parentheses. Also given
are averages across these years of the R2's and of the numbers of ¯rms from the cross-sectional regressions.
All reported coe±cients are multiplied by 100 for convenience.

Intercept 1.29 1.43 0.94 0.61 0.50 1.68 2.65 2.75 2.61
(5.77) (8.17) (7.43) (9.33) (9.77) (15.37) (12.47) (11.57) (11.62)

AGE -3.65 -3.56 -5.35 -6.43 -3.30 -1.56 -1.23
(-5.87) (-6.73) (-2.24) (-2.65) (-2.49) (-2.19) (-2.64)

M/B 0.45 0.34 -0.00 0.05 0.18 0.17
(3.59) (2.94) (-0.10) (1.22) (2.64) (2.55)

DD -1.22 -0.85 -0.83 -0.82
(-12.56) (-13.03) (-13.25) (-12.90)

LEV -0.43 -0.17 -0.07 -0.05
(-2.69) (-0.95) (-0.77) (-0.61)

SIZE -0.19 -0.20 -0.20
(-13.23) (-10.08) (-9.59)

VOLP 15.19 12.54 7.47 6.23 5.96 5.96
(5.91) (7.22) (6.51) (6.35) (6.66) (6.66)

ROE -0.75 -0.91 -0.93
(-3.55) (-4.79) (-4.92)

Average R2 0.02 0.01 0.04 0.06 0.08 0.15 0.18 0.18 0.18

Average N 4842 4073 4073 2533 2423 2392 2341 2311 2311
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Figure 1. M/B versus mean pro¯tability.

The ¯gure plots the model-implied M/B ratio against the known value of mean pro¯tability ½ for
various levels of the dividend yield c. The model parameters are speci¯ed as follows: Á = 0:3963,
½t = 0:11, ¾½;1 = 0:0584, ¾½;2 = 0:0596, ¾¼;1 = 0:6, r = 0:03, and ¿ = 15.
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Figure 2. Uncertainty about mean pro¯tability over time.

The ¯gure plots the evolution over time of b¾t, standard deviation of the posterior distribution of
mean pro¯tability ½. Three values are considered for the parameter Á, which governs the speed of
mean reversion in pro¯tability. The prior standard deviation is b¾0 = 0:10, c = 0:0434, and all other
parameter values are as in Figure 1.

33



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1

1.5

2

2.5

3

3.5

M
/B

Market−to−Book Ratio

c = 0   
c = 0.04
c = 0.1 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

V
ol

at
ili

ty

Return Volatility

Uncertainty about mean profitability

c = 0   
c = 0.04
c = 0.1 

Figure 3. M/B and stock return volatility versus uncertainty about mean pro¯tability.

In the top panel, the ¯gure plots the model-implied M/B ratio against b¾t, standard deviation of
the posterior distribution of mean pro¯tability ½. In the bottom panel, the ¯gure plots the model-
implied return volatility against b¾t. Three values are considered for the dividend yield c. All other
parameter values are as in Figure 1.
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Figure 4. M/B and stock return volatility over time.

The ¯gure plots the evolution over time of the model-implied M/B ratio (top two panels) and the
model-implied return volatility (bottom two panels). In the left-hand panels, mean pro¯tability ½
is treated as unknown. In the right-hand panels, ½ is treated as known. Three values are considered
for the dividend yield c. The prior standard deviation is b¾0 = 0:10, and all other parameter values
are as in Figure 1.
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Figure 5. M/B ratio and return volatility in the years after listing.

For each age, the ¯gure plots the median M/B ratio (top panel) and the median idiosyncratic return
volatility (bottom panel) across ¯rms of that age, regardless of the calendar year in which that age
was reached. The solid line plots the medians across all ¯rms, the dashed line plots the median
across dividend non-payers, and the dotted line across dividend payers. Idiosyncratic volatility is
estimated from the market model regression.
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Figure 6. M/B ratios and return volatility in calendar time.

The ¯gure plots the evolution of M/B and idiosyncratic return volatility in calendar time. Each
year, all ¯rms are categorized as young or old depending on whether their age exceeds the midpoint
between the minimum and maximum age in the cross-section. Firms are also separately sorted into
dividend payers and non-payers, depending on whether they paid any common stock dividends in
the sorting year. Four groups of stocks are formed each year by intersecting the independent sorts
on age and dividends. The top panel plots the median M/B ratios for these four groups, and the
bottom panel plots the median return volatilities. Idiosyncratic volatility is estimated from the
market model regression.
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Figure 7. Return volatility, volatility of pro¯tability, the number of new lists, and the
fraction of dividend non-payers.

In the top panel, the ¯gure plots the evolution of average idiosyncratic return volatility in calendar
time. The evolution of the cross-sectional standard deviation of ROE is plotted in the second panel.
The third panel plots the number of new lists. The bottom panel plots the fraction of all ¯rms that
pay no dividends (solid line) and the fraction of ¯rms that neither pay dividends nor repurchase
any shares in the current year.
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Appendix A: Data Construction

We use annual data for the years 1962 through 2000 extracted from the CRSP/Compustat database.
Following Fama and French (1993), book equity is constructed as stockholders' equity plus balance
sheet deferred taxes and investment tax credit (Compustat item 35) minus the book value of
preferred stock. Depending on availability, stockholder's equity is computed as Compustat item
216, or 60+130, or 6-181, in that order, and preferred stock is computed as item 56, or 10, or
130, in that order. Market equity is computed by multiplying the common stock price at ¯scal
year-end (item 199) by common shares outstanding (item 25). Earnings are calculated as income
before extraordinary items, available to common stockholders (item 237), plus deferred taxes from
the income statement (item 50), plus investment tax credit (item 51). Debt is total long-term
debt (item 9), assets are total assets (item 6), and dividends are dividends available to common
stockholders (item 21). M/B ratio is computed as market equity divided by book equity, return on
equity is earnings divided by last year's book equity, and leverage is debt divided by total assets.
We eliminate the values of market equity, book equity, and total assets smaller than $1 million, as
well as M/B ratios smaller than 0.01 and larger than 100. Common stock repurchases are calculated
(back to 1971) as purchases of common and preferred stock (item 115) minus purchases of preferred
stock (item 56 last year minus this year), following Grullon and Michaely (2000).

Appendix B: Proofs

Proof of Proposition 1: Part (a). Assume t = 0 without loss of generality. Since Ds = cBs
and c is a constant, the value of the stock in equation (5) can be rewritten as

M0 =
c

¼0

Z T

0
E0 [¼sBs] ds+

1

¼0
E0 [¼TBT ] ; (27)

where the inversion of the integral with the expectation is justi¯ed by the Fubini theorem. We now
compute E0 [¼TBT ]. Let pt = log (¼tBt). Using Ito's Lemma, we obtain

dpt =

µ
½t ¡ c¡ r ¡ 1

2
¾¼¾

0
¼

¶
dt¡ ¾¼dWt:

Let Zt = (pt; ½t)
0, so that we can compactly write the joint process for pt and ½t as

dZt = (A+BZt) dt+§dWt; (28)

where

A =

µ ¡r ¡ c¡ 1
2¾¼¾

0
¼

Á½

¶
; B =

µ
0 1
0 ¡Á

¶
; and § =

µ ¡¾¼
¾½

¶
:

This is a standard multi-dimensional linear process whose solution is known in closed form (see for
example Du±e, 1996, page 293) as

ZT jZ0 » N (¹ (Z0;T ) ;§Z (T )) ; (29)

where

¹ (Z0; T ) = ª (T )Z0 +

Z T

0
ª (T ¡ t)Adt

§Z (T ) =

Z T

0
ª (T ¡ t)§§0ª (T ¡ t)0 dt:
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Above, ª (T ) = U exp (¤ ¢ T )U¡1; where ¤ is a diagonal matrix with the eigenvalues of the
matrix B in (28) along the principal diagonal, U is the matrix of the associated eigenvectors, and
exp (¤ ¢ T ) denotes the diagonal matrix with e¸iT in its ii¡th position. In our setup,

ª (T ) =

µ
1 1

Á ¡ 1
Áe
¡ÁT

0 e¡ÁT

¶
: (30)

The normality of ZT implies that pT = e1ZT , with e1 = (1; 0), is also normally distributed:

pT jZ0 » N
¡
e1¹ (Z0; T ) ; e1§Z (T ) e

0
1

¢
: (31)

Using the properties of the lognormal distribution, we obtain

E0 [¼TBT ] = E0 [e
pT ] = E0 [exp (e1ZT )] = exp

µ
e1¹ (Z0; T ) +

1

2
e1§Z (T ) e

0
1

¶
: (32)

Using (30) in the formulas for ¹ (Z0; T ) and §Z (T ), tedious algebra leads to

E0 [¼TBT ] = B0¼0Z (½; ½0; T ) ;

where Z (½; ½0; T ) is de¯ned in (7). (Detailed steps are available from the authors upon request.)
Finally, since the above holds for any T , we obtain

M0 =
c

¼0

Z T

0
E0 [¼sBs] ds+

1

¼0
E0 [¼TBT ] = B0

·
c

Z T

0
Z (½; ½0; s) ds+ Z (½; ½0; T )

¸
:

Part (b). For convenience, rewrite the pricing function as Mt = BtG(½t; t), where G(½t; t) =
G (½; ½t; ¿) is de¯ned in equation (10) and ¿ = T ¡ t. Then we have

@G

@½t
= c

Z T

t

@Z (½; ½t; s)

@½t
ds+

@Z (½; ½t; ¿ )

@½t

= c

Z T

t

1

Á

³
1¡ e¡Ás

´
Z (½; ½t; s) ds+

1

Á

³
1¡ e¡Á¿

´
Z (½; ½t; ¿ ) ;

using the de¯nition of Z (½; ½0; s) in equation (7). From Ito's Lemma, we obtain dMt = Mt¹tdt+
Mt¾MdWt; where the volatility vector is given by

¾M =
1

G (½t; t)

@G (½t; t)

@½t
¾½ =

1

Á
F (½t; ¿; c)¾½;

where

F (½t; ¿; c) =
c
R ¿
0

¡
1¡ e¡Ás¢Z (½; ½t; s) ds+ ¡1¡ e¡Á¿¢Z (½; ½t; ¿)

c
R ¿
0 Z (½; ½t; s) ds+ Z (½; ½t; ¿)

: (33)

Finally, to obtain the process for excess stock returns, dRt = (dMt +Dtdt) =Mt ¡ rdt; recall the
basic pricing condition (e.g. Du±e, 1996, page 106)

Et [dRt] = ¡Cov
µ
dRt;

d¼t
¼t

¶
dt = ¾R¾

0
¼dt:

Since the volatility of returns is the same as that of dM=M , ¾R;t = ¾M , we immediately see that
dRt = ¹R;tdt+ ¾R;tdWt with ¹R;t =

1
ÁF (½t; ¿; c)¾½¾

0
¼ and ¾R;t = ¾M = 1

ÁF (½t; ¿; c)¾½: ¥
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Proof of Lemma 1: This lemma is a simple application of the Kalman-Bucy ¯lter (e.g. Liptser
and Shiryayev, 1977). Speci¯cally, the process Zt = (pt; ½t)

0 in (28) can be rewritten as

dZt = [A0 +A1½+BZt] dt+§dWt; (34)

whereA0 = (¡r¡c¡ 1
2¾¼¾

0
¼; 0)

0 andA1 = (0; Á)0. This is a signal process for ½: Let b½t = Et [½] be the
expectation of ½ conditional on the information set Ft= fZ¿ : 0 · ¿ · tg. De¯ne the orthogonalized
expectation error,

dfWt = §
¡1 [dZt¡Et (dZt)] = §¡1 [dZt¡ (A0 +A1b½t +BZt) dt] : (35)

Theorem 10.3 in Liptser and Shiryayev (1977) then implies that fWt is a standard Wiener process
with respect to fFtg. Given a prior distribution at time t = 0 of ½ » N

¡b½0; b¾20¢, the conditional
expectation b½t satis¯es the stochastic di®erential equation

db½t = b¾2tA01 ¡§0¢¡1 dfWt = b¾2t Á

¾½;2
dfW2;t:

Above, b¾2t = Et h(½t ¡ ½)2i satis¯es the Riccati di®erential equation
d
¡b¾2t ¢
dt

= ¡ ¡b¾2t ¢2A01 ¡§§0¢¡1A1 = ¡ ¡b¾2t ¢2µ Á

¾½;2

¶2
;

whose solution is b¾2t = 1

1b¾20 +
³

Á
¾½;2

´2
t
:

Note that the information ¯ltration generated by Zt = (log (¼tBt) ; ½t)
0 is the same as that generated

by Z¤t = (log (¼t) ; ½t)
0, because log(Bt) is an Ft-predictable process. Formally,

dfW¤
t = §¡1 [dZ¤t¡Et (dZ¤t )] = §¡1

£¡
dZ¤t + (½t ¡ c; 0)0 dt

¢¡ ¡Et (dZ¤t ) + (½t ¡ c; 0)0 dt¢¤
= §¡1 [dZt¡Et (dZt)] = dfWt;

so that dfW¤
t is (almost surely) the same as d

fWt. This concludes the proof of Lemma 1. ¥

For later reference, it is convenient to rewrite the original process in dZt in (28) in terms of the

new Brownian motion dfWt:

dZt = [A0 +A1b½t +BZt] dt+§dfWt: (36)

Proof of convexity of G (½; ½t; ¿) in ½ . Let Q½ (s) =
¡
1¡ e¡Ás¢ =Á. First note that

@Z (½; ½t; s)

@½
= (s¡Q½ (s))Z (½; ½t; s) and

@2Z (½; ½t; s)

@½2
= (s¡Q½ (s))2 Z (½; ½t; s) :

From the de¯nition of G (½; ½t; ¿) in equation (10), we have

@G (½; ½t; ¿)

@½
= c

Z ¿

0

@Z (½; ½t; s)

@½
ds+

@Z (½; ½t; ¿)

@½

= c

Z ¿

0
(s¡Q½ (s))Z (½; ½t; s) ds+ (¿ ¡Q½ (¿))Z (½; ½t; ¿)

@2G (½; ½t; ¿)

@½2
= c

Z ¿

0
(s¡Q½ (s))2Z (½; ½t; s) ds+ (¿ ¡Q½ (¿))2Z (½; ½t; ¿) > 0: ¥
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Proof of Proposition 2. Part (a). The pricing equation is

Mt = Et

·Z T

t

¼¿
¼t
D¿d¿ +

¼T
¼t
BT

¸
= Et

·
Et

·Z T

t

¼¿
¼t
D¿d¿ +

¼T
¼t
BT j½

¸¸
= BtEt [G (½; ½t; ¿)] ;

with G (½; ½t; ¿ ) given in (10). The function Z (½; ½t; ¿) can be rewritten as

Z (½; ½t; ¿) = Z1 (½t; ¿)Z2 (½; ¿) ;

where Z1 (½t; ¿) = exp [¡ (r + c) ¿ +Q (¿) +Q½ (¿) ½t] and Z2 (½; ¿) = exp [½ (¿ ¡Q½ (¿))] : Hence

Et [G (½; ½t; ¿)] = c

Z ¿

0
Et [Z (½; ½t; s)] ds+ Et [Z (½; ½t; ¿)]

= c

Z ¿

0
Z1 (½t; s)Et [Z2 (½; s)] ds+ Z1 (½t; ¿)Et [Z2 (½; ¿)] :

Since ½ is normally distributed (Lemma 1), ½ (¿ ¡Q½ (¿)) is normally distributed with meanb½t (¿ ¡Q½ (¿)) and variance b¾2t (¿ ¡Q½ (¿))2. Using the properties of the lognormal distribution,
Z2
¡b½t; b¾2t ; ¿¢ ´ Et [Z2 (½; ¿)] = expµb½t (¿ ¡Q½ (¿)) + 12b¾2t (¿ ¡Q½ (¿))2

¶
:

Finally, de¯ning

ZU
¡b½t; b¾2t ; ½t; ¿¢ = Z1 (½t; ¿)Z2

¡b½t; b¾2t ; ¿¢ (37)

= exp

½
¡ (r + c¡ b½t) ¿ +Q (¿) +Q½ (¿) (½t ¡ b½t) + 1

2
b¾2t (¿ ¡Q½ (¿))2¾ ; (38)

we obtain
Mt = BtG

U
¡b½t; b¾2t ; ½t; ¿¢ ; (39)

where

GU
¡b½t; b¾2t ; ½t; ¿¢ = c Z ¿

0
ZU

¡b½t; b¾2t ; ½t; s¢ ds+ ZU ¡b½t; b¾2t ; ½t; ¿¢ : (40)

Part (b). For simplicity, denote GU (t) = GU
¡b½t; b¾2t ; ½t; ¿¢. Then (39) and (36) imply

dMt = GU (t) dBt +BtdG
U (t)

=

8<: GU (t) (½t ¡ c)Bt +Bt @GU@½t
Á (b½t ¡ ½t) +Bt @GU (t)@t ¡Bt @G

U (t)
@b¾2t

³b¾2t Á½
¾½;2

´2
+1
2Bt

³
@2GU (t)
@½2t

¾½¾
0
½ +

@2GU (t)
@b½2t b¾½;tb¾0½;t + 2@2GU (t)@b½t@½t ¾½b¾0½;t´

9=; dt
+Bt

µ
@GU (t)

@½t
¾½ +

@GU (t)

@b½t b¾½;t¶ dfWt;

where b¾½;t is given in equation (22). From the de¯nition of GU (t) in equation (40), we have

@GU (t)

@½t
= c

Z ¿

0

@ZU
¡b½t; b¾2t ; ½t; s¢
@½t

ds+
@ZU

¡b½t; b¾2t ; ½t; ¿¢
@½t

=
1

Á

µ
c

Z ¿

0

³
1¡ e¡Ás

´
ZU

¡b½t; b¾2t ; ½t; s¢ ds+ ³1¡ e¡Á¿´ZU ¡b½t; b¾2t ; ½t; ¿¢¶ ;
@GU (t)

@b½t = c

Z ¿

0

@ZU
¡b½t; b¾2t ; ½t; s¢
@b½t ds+

@ZU
¡b½t; b¾2t ; ½t; ¿¢
@b½t

=
1

Á

µ
c

Z T

t

³
Ás¡ 1 + e¡Ás

´
ZU

¡b½t; b¾2t ; ½t; s¢ ds+ ³Á¿ ¡ 1 + e¡Á¿´ZU ¡b½t; b¾2t ; ½t; ¿¢¶ :
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It is useful to de¯ne the functions

F
¡
½t; b½t; b¾2t ; ¿; c¢ =

c
R ¿
0

¡
1¡ e¡Ás¢ZU ¡b½t; b¾2t ; ½t; s¢ ds+ ¡1¡ e¡Á¿¢ZU ¡b½t; b¾2t ; ½t; ¿¢

c
R ¿
0 Z

U
¡b½t; b¾2t ; ½t; s¢ ds+ ZU ¡b½t; b¾2t ; ½t; ¿¢ (41)

F1
¡
½t; b½t; b¾2t ; ¿; c¢ =

c
R ¿
0

¡
Ás¡ 1 + e¡Ás¢ZU ¡b½t; b¾2t ; ½t; s¢ ds+ ¡Á¿ ¡ 1 + e¡Á¿¢ZU ¡b½t; b¾2t ; ½t; ¿¢

c
R ¿
0 Z

U
¡b½t; b¾2t ; ½t; s¢ ds+ ZU ¡b½t; b¾2t ; ½t; ¿¢ (42)

Then

¾R;t =
1

GU (t)

µ
@GU (t)

@½t
¾½ +

@GU (t)

@b½t b¾½;t¶
= F

¡
½t; b½t; b¾2t ; ¿; c¢ 1Á¾½ + F1 ¡½t; b½t; b¾2t ; ¿; c¢ 1Áb¾½;t:

Hence, using the same argument as in the proof of Proposition 1, expected return is given by

¹R = ¾R¾
0
¼ = F

¡
½t; b½t; b¾2t ; ¿; c¢ 1Á¾½¾0¼ + F1 ¡½t; b½t; b¾2t ; ¿; c¢ 1Áb¾½;t¾0¼

= F
¡
½t; b½t; b¾2t ; ¿; c¢ 1Á¾½¾0¼;

since ¾¼ = (¾¼;1; 0). ¥

Proofs of Corollaries 3 and 4: From the de¯nition of ZU
¡
½t; b½t; b¾2t ; ¿¢ in (37) , we have

@ZU
¡
½t; b½t; b¾2t ; ¿¢
@b¾2t =

1

2
(¿ ¡Q½ (¿))2 ZU

¡
½t; b½t; b¾2t ; ¿¢ :

Using the de¯nition of GU
¡b½t; b¾2t ; ½t; ¿¢ in (40),

@ log
¡
GU

¡b½t; b¾2t ; ½t; ¿¢¢
@b¾2t =

1

GU
¡b½t; b¾2t ; ½t; ¿¢ @G

U
¡b½t; b¾2t ; ½t; ¿¢
@b¾2t

=
c
R ¿
0
1
2 (s¡Q½ (s))2ZU

¡b½t; b¾2t ; ½t; s; c¢ ds+ 1
2 (¿ ¡Q½ (¿))2 ZU

¡b½t; b¾2t ; ½t; ¿ ; c¢
c
R ¿
0 Z

U
¡b½t; b¾2t ; ½t; s¢ ds+ ZU ¡b½t; b¾2t ; ½t; ¿¢ : > 0;

proving Corollary 3. Turning to Corollary 4, note that by setting c = 0 we have

@ log
¡
GU

¡b½t; b¾2t ; ½t; ¿¢¢
@b¾2t jc=0 = 1

2
(¿ ¡Q½ (¿))2 :

Simple algebra then shows

@ log
¡
GU

¡b½t; b¾2t ; ½t; ¿¢¢
@b¾2t jc=0 ¡ @ log

¡
GU

¡b½t; b¾2t ; ½t; ¿¢¢
@b¾2t jc>0 =

c
R ¿
0
1
2

h
(¿ ¡Q½ (¿))2 ¡ (s¡Q½ (s))2

i
ZU

¡b½t; b¾2t ; ½t; s¢ ds
c
R ¿
0 Z

U
¡b½t; b¾2t ; ½t; s¢ ds+ ZU ¡b½t; b¾2t ; ½t; ¿¢ > 0:

The inequality stems from the fact that f (s) = (s¡Q½ (s))2 is strictly increasing, and hence
(¿ ¡Q½ (¿))2¡ (s¡Q½ (s))2 > 0 for every ¿ > s. (Note that f 0 (s) = 2 (s¡Q½ (s))

¡
1¡ e¡Ás¢ > 0,

because (s¡Q½ (s)) > 0 for all s.) ¥
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Derivation of expression (25). Since c = 0, the pricing equation from (19) is Mt=Bt =
ZU

¡
½t; b½t; b¾2t ; ¿¢ : Taking logs and substituting for ZU ¡½t; b½t; b¾2t ; ¿¢ from equation (37), we ¯nd

log

µ
Mt

Bt

¶
= ¡ (r ¡ b½t) ¿ + 1

Á

³
1¡ e¡Á¿

´
(½t ¡ b½t) + µ 1

2Á2
b¾2t ³Á¿ ¡ 1 + e¡Á¿´2¶

+
¾½¾

0
½

2Á3

µ
1¡ e¡2Á¿

2
+ Á¿ ¡ 2

³
1¡ e¡Á¿

´¶
+
¾¼¾

0
½

Á2

³
1¡ e¡Á¿ ¡ Á¿

´
:

From Proposition 2, we have ¹R;t =
¡
1¡ e¡Á¿¢ ¾½¾0¼Á , so we can substitute for ¾¼¾

0
½ to obtain

log

µ
Mt

Bt

¶
= ®0 (¿) + ®1 (¿) b½t + ®2 (¿) ½t + ®3 (¿)¹R;t + ®4 (¿)¾½¾0½ + ®5 (¿) b¾2t ;

where, since ¿Á > 1¡ e¡Á¿ > 0 for all ¿ > 0,

®0 (¿) = ¡r¿ < 0 ; ®1 (¿) =

µ
¿ ¡ 1

Á

³
1¡ e¡Á¿

´¶
> 0 ; ®2 (¿) =

1

Á

³
1¡ e¡Á¿

´
> 0;

®3 (¿) =

³¡
1¡ e¡Á¿¢ 1Á ¡ ¿´
(1¡ e¡Á¿ ) < 0 ; ®4 (¿) =

1

2Á3

µ
1¡ e¡2Á¿

2
+ Á¿ ¡ 2

³
1¡ e¡Á¿

´¶
> 0;

®5 (¿) =
1

2

µ
¿ ¡ 1

Á

³
1¡ e¡Á¿

´¶2
> 0: ¥

Proof of Corollary 6: For notational convenience, denote ZU
¡b½t; b¾2t ; ½t; s¢ by ZU (t; s) and

F
¡
½t; b½t; b¾2t ; ¿; c¢ by F (t; ¿; c). From equation (21), the return volatility vector is given by

¾R;t = F (t; ¿; c)
1

Á
¾½ + F1 (t; ¿; c)

1

Á
b¾½;

where F (t; ¿; c) and F1 (t; ¿; c) are given in equations (41) and (42), respectively. Setting c = 0, we
obtain F (t; ¿; 0) =

¡
1¡ e¡Á¿¢ and F1 (t; ¿; 0) = ¡Á¿ ¡ 1 + e¡Á¿¢. Since F (:) and F1 (:) are strictly

positive functions, the claim of the corollary is proved if we show

F (t; ¿; 0)¡ F (t; ¿; c) > 0 and F1 (t; ¿; 0)¡ F1 (t; ¿; c) > 0:

Note that

F (t; ¿; 0)¡ F (t; ¿; c) = c
R ¿
0

¡
e¡Ás ¡ e¡Á¿¢ZU (t; s) ds

c
R ¿
0 Z

U (t; s) ds+ ZU (t; ¿)
> 0;

as Á > 0 implies e¡Ás ¡ e¡Á¿ > 0 for s < ¿ . Similarly,

F1 (t; ¿; 0)¡ F1 (t; ¿; c) =
c
R ¿
0

¡¡
Á¿ + e¡Á¿

¢¡ ¡Ás+ e¡Ás¢¢ZU (t; s) ds
c
R ¿
0 Z

U (t; s) ds+ ZU (t; ¿)
> 0;

because f (s) =
¡
Ás+ e¡Ás

¢
is strictly increasing in s, and hence f (¿)¡ f (s) > 0 for all s < ¿ . ¥
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