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ABSTRACT

Mean-variance efficient portfolios constructed using sample moments often involve taking

extreme long and short positions. Hence practitioners often impose portfolio weight constraints when

constructing efficient portfolios. Green and Hollifield (1992) argue that the presence of a single dominant

factor in the covariance matrix of returns is why we observe extreme positive and negative weights. If

this were the case then imposing the weight constraint should hurt whereas the empirical evidence is often

to the contrary. We reconcile this apparent contradiction. We show that constraining portfolio weights

to be nonnegative is equivalent to using the sample covariance matrix after reducing its large elements

and then form the optimal portfolio without any restrictions on portfolio weights. This shrinkage helps

reduce the risk in estimated optimal portfolios even when they have negative weights in the population.

Surprisingly, we also find that once the nonnegativity constraint is imposed, minimum variance

portfolios constructed using the monthly sample covariance matrix perform as well as those constructed

using covariance matrices estimated using factor models, shrinkage estimators, and daily data. When

minimizing tracking error is the criterion, using daily data instead of  monthly data helps.  However, the

sample covariance matrix without any correction  for microstructure effects performs the best.
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I Introduction

Markowitz’s (1952, 1959) portfolio theory is one of the most important the-
oretical developments in finance. Mean-variance efficient portfolios play an
important role in this theory. Such portfolios constructed using sample mo-
ments often involve taking large short positions in a number of assets and
large long positions in some other assets. Since negative portfolio weights
(short positions) are difficult to implement in practice, most investors impose
the constraint that portfolio weights should be nonnegative when construct-
ing mean-variance efficient portfolios.

Green and Hollifield (1992) argue that it is difficult to dismiss the observed
extreme negative and positive weights as entirely due to imprecise estimation
of the inputs used to construct mean-variance efficient portfolios. According
to them the extreme weights in sample efficient portfolios are to a large extent
due to the existence of a single dominance factor in the covariance structure
of stock returns and the small amount of cross-sectional diversity in asset
betas. To understand the Green and Hollifield argument, note that minimum
variance portfolios can be constructed in two steps. First we naively diversify
over the set of high beta stocks and the set of low beta stocks separately.
The resulting two portfolios will have very low residual risk and different
betas. Next we short the high beta portfolio and long the low beta portfolio
to get rid of the systematic risk. Clearly, the second step involves taking
extreme long and short positions when there is little dispersion in the betas of
different assets. This is why minimum variance portfolios take large positive
and negative positions in the underlying assets.

If extreme negative weights in efficient portfolios arise due to the pres-
ence of a single dominant factor then it would appear that imposing the
nonnegativity constraints would lead to a loss in efficiency. However, empir-
ical findings suggest that imposing these constraints improves the efficiency
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of optimal portfolios constructed using sample moments1. Does this mean
that the evidence does not support the Green and Hollifield (1992) view?

In this paper we provide an answer to this question. We show that im-
posing the nonnegativity constraint on portfolio weights can help even when
Green and Hollifield are right – i.e., the true covariance matrix is such that
efficient portfolios involve taking large negative positions in a number of as-
sets. We show that each of the no-shortsales constraints is equivalent to
reducing the sample covariances of the corresponding asset with other assets
by a certain amount. Stocks that have high covariances with other stocks
tend to receive negative portfolio weights. Hence, to the extent that high
estimated covariances are more likely to be caused by upward-biased estima-
tion error, imposing the nonnegativity constraint can reduce the sampling
error. It follows from the theory of shrinkage estimators that imposing the
no-shortsales constraint can help even when the constraints do not hold in
the population.

We also study the impact of upper bounds on portfolio weights since
they are also commonly imposed by practitioners. We show that each up-
per bound constraint is equivalent to increasing the sample covariances of
the corresponding asset with other assets by a certain amount. Since stocks
that have low covariances with other stocks tend to get extreme high port-
folio weights, and these extreme low estimated covariances are more likely
to be caused by downward-biased estimation error, this adjustment in esti-
mated covariances could reduce sampling error and help the out-of-sample
performance of the optimal portfolios. Our empirical evidence suggests that
imposing upperbounds on portfolio weights does not lead to a significant
improvement in the out-of-sample performance of minimum risk portfolios
when no-shortsales restrictions are already in place. Therefore the role of
upperbounds is more to ensure that the minimum risk portfolios that come
out of the optimization exercise can be constructed in practice.

1See Frost and Savarino (1988) for an excellent discussion.
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The most common estimator of a covariance matrix is the correspond-
ing sample covariance matrix of historical returns. It has long been rec-
ognized that mean-variance efficient portfolios constructed using the sample
covariance matrix perform poorly out-of-sample.2 The primary reason is that
the large covariance matrices encountered in practice require estimating too
many parameters. For example, the covariance matrix of the returns of 500
stocks has about 125,000 distinct parameters. However, monthly returns for
all traded stocks are only available for the past 900 months or so. This gives
less than 4 degrees of freedom per estimated parameter. Consequently the
elements of the covariance matrix are estimated imprecisely.

Several solutions to this problem have been suggested. The first is to
impose more structure on the covariance matrix to reduce the number of
parameters that have to be estimated. This includes factor models and con-
stant correlation models. The second approach is to use shrinkage estima-
tors, shrinking the sample covariance matrix toward some target, such as the
single-index model (Ledoit (1996, 1999)). The third approach is to use data
of higher frequency, for example, daily data in place of monthly data. These
three approaches are widely used both by practitioners and academics.

For any covariance matrix estimator, we can impose the usual portfolio
weight constraints. According to Green and Hollifield (1992), these con-
straints are likely to be wrong in population and hence they introduces spec-
ification error. According to our analysis, these constraints can reduce sam-
pling error. Therefore the gain from imposing these constraints depends on
the trade off between the reduction in sampling error and the increase in
specification error. For covariance matrix estimators that have large sam-
pling error, such as the sample covariance matrix, imposing these constraints
is likely to be helpful. However, for the factor models and shrinkage estima-
tors, imposing such constraint is likely to hurt. This is what we find empiri-

2See Jobson and Korkie (1980, 1981), Frost and Savarino (1986, 1988), Jorion (1986),
Michaud (1989), Best and Grauer (1991), and Black and Litterman (1992).
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cally. Sampling errors are likely to be less important when the assets we use
in constructing minimum variance portfolios are themselves large portfolios.
In that case imposing nonnegativity constraints should hurt. Again this is
what we find.

In this paper, we will focus on the effect of portfolio weight constraints
on the global minimum variance portfolios. We do this because it has been
reported in the literature that the global minimum variance portfolio has
as large an out-of-sample Sharpe Ratio as other efficient portfolios.3 We
also examine the effect of portfolio weight constraints on the performance of
tangency portfolios and minimum tracking error portfolios. Our interest in
minimum tracking error portfolios arises from the observation that it may
be necessary in practice to construct portfolios using a subset of all available
stocks that have low transactions costs and high liquidity to track certain
benchmark indices that may contain assets that are not actively traded.

Our main empirical findings are the following:

1. For factor models and shrinkage estimators, imposing the usual portfo-
lio weight constraint reduces the portfolio’s efficiency slightly. On the

3Using monthly stock index return data for G7 countries Jorion (1985) convincingly
argues that “... benefits from diversification are more likely to accrue from a reduction
in risk.” In the data set he examined, the global minimum variance portfolio had the
best out of sample performance. It out performed classical tangent portfolio, the tangent
portfolio construced using the Bayes-Stein estimator for the vector of mean returns, and
the value weighted and equally weighted portfolios. Using simulation methods Jorion
(1986) showed that this conclusion is robust if the sample size is not large. Jorion
(1991) found that the minimum variance portfolio constructed using returns on seven
industry stock index portfolios performed as well as the CRSP equally weighted and value
weighted stock indices during the January 1926 to December 1987 period, in out of sample
tests. The performance was comparable to that of the tangent portfolio constructed
using the Bayes-Stein estimator for the mean. Bloomfield, Leftwich and Long (1977)
found that portfolios constructed using mean-variance optimization did not dominate an
equally weighted portfolio. On the other hand, Chan et al. (1999) documented that the
constrained global minimum variance portfolios outperform the equally weighted portfolio.
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other hand, when the no-shortsales restriction is imposed, minimum
variance and minimum tracking error portfolios constructed using the
sample covariance matrix perform almost as well as those constructed
using factor models, shrinkage estimators, or daily returns.4

2. When shortsales are allowed, minimum variance portfolios and min-
imum tracking error portfolios constructed using daily return sample
covariance matrix perform the best. When covariance matrices are esti-
mated using daily data, corrections for microstructure effects that have
been suggested in the literature do not lead to superior performance.
So far, this has not been recognized in the literature.

3. Tangency portfolios, whether constrained or not, do not perform as well
as the global minimum variance portfolios in terms of out-of-sample
Sharpe Ratio. This means that the estimates of the mean returns are
so noisy that simply imposing the portfolio weight constraint is not
enough, even though the constraints still have a shrinkage effect.

4. Monte Carlo simulations indicate that when nonnegativity constraints
are in place, global minimum variance portfolios constructed using the
sample covariance matrix can perform just as well as the covariance
matrix estimators constructed by imposing the factor structure even
when returns do have a dominant factor structure in the population.

5. In the simulations, imposing the nonnegativity constraint typically
worsens the performance when a single factor model is used to esti-
mate the covariance matrix. On the other hand, in the data, imposing
nonnegativity constraints does not hurt much when using factor mod-
els. This suggests that stock returns probably do not have a stable
time invariant factor structure.

4It is well recognized in the literature that imposing portfolio weight constraints leads
to superior out-of-sample performance of mean-variance efficient portfolios. However to
our knowledge no one has noticed that the performance improvement is so large that it is
comparable to that attained using the other alternatives.
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The rest of the paper is organized as follows. In Section II, we provide a
theoretical analysis of the shrinkage-like effect of imposing the no-shortsales
restriction and upper bounds on portfolio weights when constructing global
minimum risk portfolios. In Section III, we use simulation to evaluate the
tradeoff between specification error and sampling error. This tradeoff clearly
depends on the true covariance structure of the assets, which is not observed.
We therefore calibrate the covariance structure in the simulation to that of
the U.S. stocks. Using the simulation we provide some guidance as to when
the nonnegativity constraint will start to hurt. In Section IV, we empirically
examine the effects of portfolio weight constraints using the out of sample
performances of the constrained and unconstrained optimal portfolios. In
Section V, we discuss the role of portfolio weight constraints in constructing
tangency portfolios. We conclude the paper in Section VI. Proofs and details
about the construction of various covariance matrix estimates using daily
returns are collected in the Appendices.

II The Effect of Portfolio Weight Constraints

A Some Theoretical Results

Given an estimated covariance matrix S, the global portfolio variance min-
imization problem when portfolio weights are constrained to satisfy both a
lower bound of zero and an an upper bound of ω̄ is given by:

minω ω′Sω (1)

s.t.
∑
i

ωi = 1 (2)

ωi ≥ 0, i = 1, 2, · · · , N. (3)

ωi ≤ ω̄, i = 1, 2, · · · , N. (4)
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The Kuhn-Tucker conditions (necessary and sufficient) are∑
j

Si,jωj − λi + δi = λ0 ≥ 0, i = 1, 2, · · · , N. (5)

λi ≥ 0, and λi = 0 if ωi > 0, i = 1, 2, · · · , N. (6)

δi ≥ 0, and δi = 0 if ωi < ω̄, i = 1, 2, · · · , N. (7)

Here λ = (λ1, · · · , λN)′ are the Lagrange multipliers for the nonnegativity
constraints (3), δ = (δ1, · · · , δN)′ the multipliers for the constraints (4), and
λ0 the multiplier for (2).

Denote a solution to the constrained portfolio variance minimization prob-
lem (1)-(4) as ω++(S). Let 1 denote the column vector of ones. Then we have
the following proposition.

Proposition 1 Let

S̃ = S + (δ1′ + 1δ′)− (λ1′ + 1λ′). (8)

Then S̃ is symmetric and positive semi-definite, and ω++(S) is one of its
global minimum variance portfolios.

All proofs are given in Appendix B.

This result shows that constructing a constrained global minimum vari-
ance portfolio from S is equivalent to constructing a (unconstrained) min-
imum variance portfolio from S̃ = S + (δ1′ + 1δ′) − (λ1′ + 1λ′). Later we
will interpret S̃ as a shrunk version of S, and argue that this shrinkage can
reduce sampling error.

In general, given a constrained optimal portfolio ω++(S), there are many
covariance matrix estimates that have ω++(S) as their (unconstrained) min-
imum variance portfolio. Is there anything special about S̃? We do have an
answer to this question when returns are jointly normal and S is the MLE
of the population covariance matrix.
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Let the N×1 return vector ht = (r1t,, r2t, · · · , rNt)′ be iid normal N(µ, Ω).
Then the MLE of Ω is S =

∑T
t=1(ht− h̄)(ht− h̄)′/T. It is well known that for

any estimate of the covariance matrix, the MLE of the mean is always the
sample mean. (Morrison (1990), p.98.) With this estimate of the mean, the
log-likelihood (as a function of the covariance matrix alone) becomes

l(Ω) = CONST− T

2
ln |Ω| − T

2
tr(SΩ−1). (9)

This can also be considered as the likelihood function of Ω−1, and is defined
for nonsingular Ω.

Now consider the constrained MLE of Ω, subject to the constraint that
the global minimum variance portfolio constructed from Ω satisfy the weight
constraints (3)-(4). Let Ωi,j denote the (i, j)-th element of Ω and Ωi,j denote
the (i, j)-th element of Ω−1, then the constraints are

∑
j

Ωi,j ≥ 0, i = 1, 2, · · · , N. (10)

∑
j

Ωi,j ≤ ω̄
∑
k

∑
j

Ωk,j. (11)

So the constrained maximum likelihood (ML) problem is maximizing (9)
subject to constraints (10)-(11). We have the following proposition.

Proposition 2 Assume that returns are jointly iid normal N(µ, Ω). Let S
be the unconstrained MLE of Ω.

1. Given S, let {λi, δi, ωi}Ni=1 be a solution to the constrained portfolio
variance minimization problem (1) - (4), and construct S̃ according to
(8). Assume S̃ is nonsingular. Then S̃ and {λi, (1 − ω̄) δi}Ni=1 jointly
satisfy the first order conditions for the constrained ML problem.

2. Let S̃ and {λi, δi}Ni=1 jointly satisfy the first order conditions for the con-
strained ML problem. For i = 1, · · · , N, define ωi =

∑
j S̃

i,j/
∑
k

∑
l S̃

k,l,

8



the normalized row sums of S̃−1. Then {λi, δi/(1 − ω̄), ωi}Ni=1 is a so-
lution to the constrained portfolio variance minimization problem (1) -
(4), given S.

Roughly speaking, this proposition says that the S̃ constructed from the
solution to the constrained global variance minimization problem is the ML
estimator of the covariance matrix subject to the condition that the global
minimum variance portfolio weights satisfy the nonnegativity and upper
bound constraints. So we could impose the constraints in the estimation
stage instead of the optimization stage and the result would be the same.

When only the nonnegativity constraint is imposed, the vector of La-
grange multipliers for the upper bound will be zero. So S̃ = S − (λ1′+ 1λ′),
and we can simplify the statements in Proposition 2 in a straightforward way.

B A Shrinkage Interpretation of the Effects of Portfo-

lio Weight Constraints

Let’s first examine the effect of the nonnegativity constraint. Consider the
unconstrained global portfolio variance minimization. The first order condi-
tion is

N∑
j=1

ωjSi,j = λ0 ≥ 0, i = 1, 2, · · · , N. (12)

The above condition says that at the optimum, stock i’s marginal contribu-
tion to the portfolio variance is the same as stock j’s, for any i and j.

Suppose stock i tends to have higher covariances with other stocks, i.e.,
the ith row of S tends to have larger elements than other rows. Then stock
i’s marginal contribution to the portfolio variance, 2

∑N
j=1 ωjSi,j, will tend to

be bigger than other stocks’ marginal contributions. Therefore, to achieve
optimality, we need to reduce stock i’s portfolio weight. Stock i may even
have negative weight if its covariances with other stocks are sufficiently high.
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Therefore, a stock tends to receive a negative portfolio weight in the global
minimum variance portfolio if it has higher variance and higher covariances
with other stocks. In a one-factor structure, these are the high-beta stocks.

With only the nonnegativity constraint, Proposition 1 implies that con-
structing the constrained global minimum variance portfolio from S is equiv-
alent to constructing the (unconstrained) global minimum variance portfolio
from S̃ = S− (1λ′+λ1′). Notice that the effect of imposing the constraint is
that, whenever the nonnegativity constraint is binding for stock i, its covari-
ances with other stocks, Sij, j 6= i, are reduced by λi+λj, a positive quantity,
and its variance is reduced by 2λi. We saw before that a stock will receive
a negative portfolio weight in the minimum variance portfolio if its covari-
ances are relatively too high. Therefore, the new covariance matrix estimate,
S̃, is constructed by shrinking the large covariances toward the average co-
variances. Since the largest covariance estimates are more likely caused by
upward-biased estimation error, this shrinking may reduce the estimation
error.

We can interpret the effect of the upper bounds on portfolio weights
similarly. In the unconstrained portfolio variance minimization, those stocks
with low covariances with other stocks tend to receive high portfolio weights.
So when the upper bound is imposed, it tends to be binding for these stocks.
Proposition 1 says that constructing the upper-bound constrained minimum
variance portfolio using S is the same as constructing the unconstrained
minimum variance portfolio from S̃ = S+(1δ′+δ1′). So the effect of imposing
the constraint is that, whenever the upper bound is binding for stock i, its
variance is raised by 2δi and its covariances with another stock j is increased
by (δi + δj). Since the upper bound tends to be binding for those stocks with
low covariances with other stocks, and low estimated covariances are more
likely to be plagued by downward-biased estimation error, this adjustment
may reduce sampling error and achieve better estimates of the covariance
matrix in certain sense. This adjustment has a shrinkage-like effect.
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We now illustrate this shrinkage-like effect of portfolio weight constraints
through an example. The covariance matrix estimate S is the sample covari-
ance matrix of a random sample of 30 stocks among all domestic common
stocks that have all monthly returns from 1988 to 1997 (120 months). We
consider the effect of imposing nonnegativity and an upper bound of 10%
in the global portfolio variance minimization problem. Panel A of Table 1
reports summary statistics for the row sums of S, the portfolio weights of the
unconstraind global minimum variance portfolio, and the Lagrangian multi-
pliers for the nonnegativity constraint and the upper bound. We can see that
both the row sums and the weights of the unconstrained optimal portfolio
vary over a wide range: the lowest row sum is 0.0106, the highest is 0.0695;
the lowest portfolio weight is -0.125, and the highest is 0.357.

Panel B of Table 1 reports the correlations among the row sums of S,
the weights of the unconstrained portfolio, the Lagrange multipliers of the
nonnegativity constraint, and the multipliers of the upper bound. We see that
the correlation between the row sums and the unconstrained portfolio weights
is -0.496; between the row sums and the multiplier of the nonnegativity
constraint is 0.713, and between the row sums and the multiplier of the upper
bound is -0.425. All of these correlations are significant at 2% level. Recall
that the effect of the nonnegativity constraint is to revise S into S − (λ1′ +
1λ′), and the additional upper bound is to further revise S into S − (λ1′ +
1λ′) + (δ1′ + 1δ′), these correlations match well with our intuition discussed
before. Specifically, those rows of S that have low (or high) row sums tend to
receive high (or low) weights in the unconstrained global minimum variance
portfolio; the effect of the nonnegativity constraint tends to lower those rows
with high row sums; and the effect of the upper bound tends to raise those
rows with low row sums.

Table 1, Panel C and D report the effect of the weight constraints on
the distinct individual covariances (i.e., {Si,j, j ≥ i}). Panel C gives the
summary statistics of the distinct elements of S, the effect the nonnegativity
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constraint (λi + λj) for j ≥ i; and the effect of the upper bound constraint
(δi + δj) for j ≥ i; Panel D reports the correlations among them.

Panel C shows that the individual covariances vary over a wide range:
the lowest is -0.00186 and the highest is 0.0190, while the mean covariance
is 0.00139. Panel D shows that the correlation between {Si,j, j ≥ i} and
{(λi + λj), j ≥ i, } is 0.296; and the correlation between {Si,j, j ≥ i} and
{(δi + δj), j ≥ i} is -0.184, and both are significant at 1% level. Again
these correlations match our shrinkage-like interpretation of the effect of the
portfolio weight constraint: the nonnegativity constraint tends to reduce the
high covariances; and the upper bound tends to raise the low covariances.

Panel E shows the regression of {Si,j, j ≥ i} on the adjustment due to the
portfolio weight constraints, {λi+λj, j ≥ i} and {δi+δj, j ≥ i}, respectively.
We see that the coeffcient estimates have the expected sign and are signifi-
cant. Of course this is no surprise given the significant correlations reported
in Panel D.

III A Simulation Study of the Tradeoff Be-

tween Specification Error and Sampling

Error

In the last section, we argued that imposing the nonnegativity constraint
in global portfolio variance minimization has a shrinkage-like effect. This
shrinkage-like effect can reduce sampling error. On the other hand, the con-
straint is wrong in population when asset returns have a single dominant
factor, as argued by Green and Hollifield (1992), because in that case the pop-
ulation global minimum variance portfolio takes extreme negative weights.
Whether the nonnegativity constraint can help depends on the trade-off be-
tween these two effects: the reduction in sampling error on the one hand
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and the increase in the specification error on the other hand. That trade-off
would depend on, among other things, the true covariance structure. Since
we do not know the true covariance structure, we can not give a simple quan-
titative answer that holds true for all underlying covariance structures in the
population. We therefore rely on using Monte Carlo simulation analysis in
this section to further examine the trade-off between the two effects. By com-
paring the simulation results with the results using the real data, which are
reported in the next section, we are also able to provide additional insights
regarding the true covariance structure of the U.S. stock returns.

We assume a two-factor return structure in the simulation.5 We consider
a two-factor structure because the literature often finds more than one factor
in the return structure of the U.S. stocks. Without loss of generality, we
set the factor variances to unity and the covariance between them to zero.
We draw the betas for the first factor for each stock from an i.i.d Normal
distribution with mean 1 and standard deviation σβ, which varies from 0 to
0.4 across different sets of simulations. The stocks’ betas with respect to the
second factor are drawn from an i.i.d. Normal distribution with mean zero
and standard deviation 0.2. The residual variances are set to be constant over
time, but cross-sectionally, they are drawn from an i.i.d. Lognormal(0.8, 0.7)
distribution. When σβ = 0.4, the distribution of the betas with respect to
the two factors roughly matches the empirical distribution of the first two
betas for the NYSE stocks with the two factors being the first two of the five
Connor-Korajczyk factors. Furthermore, the average fraction of variances
that are residual variances also roughly matches the same fraction in the
NYSE stocks.

We allow the number of stocks, N , to range from 30 to 300. For each
specification of N and σβ, we draw the betas and the residual variances
for the stocks according to the afore mentioned distributional assumptions.

5We also performed a simulation with a one-factor structure. The results are qualita-
tively similar. These results are available upon request.
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These betas and residual variances are fixed for this specification even as we
change the sample size T.

Given the sampled betas and residual variances, we then draw returns of
different sample sizes. We first set T = 60 and then vary it from N + 30 to
N + 210 by increment of 60. We allow T = 60 because that is the sample
size used in the simulation with real data in the next section, and having the
same sample size allows us to compare the results.

Given the simulated returns data, we estimate the return covariance ma-
trix, and form the nonnegativity constrained and unconstrained global min-
imum variance portfolios. We then calculate the ex post variances of these
portfolios using the assumed true covariance matrix. This procedure is re-
peated ten times and the averages of ex post variances are reported.

We consider two covariance matrix estimators. The first is the sample
covariance matrix. The second is the one-factor model. When the covariance
matrix is estimated with the one-factor model, we assume the factor return
is known, and is the return of the first factor used in the simulation.

Table 2 presents a subset of our simulation results.6 It examines the ef-
fects on imposing the nonnegativity constraint and/or the single-factor con-
straint. The table reports the percentage reductions in the ex post standard
deviations of the global minimum variance portfolios constructed by impos-
ing these constraints relative to that of the unconstrained global minimum
variance portfolios constructed from the sample covariance matrix, and rela-
tive to the equal-weighted portfolio. The three panels, σβ = 0, σβ = 0.2, and
σβ = 0.4, represents the cases where the nonnegativity constraint is correct,
is severely wrong, and is moderately wrong, respectively. We report the cases
where the number of stocks is either 30 or 300, and the sample size is either
60 or 360.

6To save space, we do not report the full result of the simulations, which is available
upon request.
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Panel A shows that when the nonnegativity constraint is correct, im-
posing the nonnegativity constraint always helps. The gain from imposing
the nonnegativity constraint is comparable to that obtained by imposing the
one-factor structure. In fact, this is true for all the cases in our simulation,
not only those cases reported in the table.

Across all three panels, the numbers in the last two columns are compa-
rable. This means that if for some reason the nonnegativity constraint has
to be imposed, then whether we use the sample covariance matrix or the
one-factor model to estimate the covariance matrix makes little difference.
Again this is true not only for the cases in Table 2 but for all the cases in
our simulation.

When σβ > 0, so that the true global minimum variance portfolio has
negative weights, the nonnegativity constraint always hurts if we use the
one-factor model to estimate the covariance matrix, and the deteriation in
performance is dramatic if the number of stocks is large. However, imposing
the nonnegativity constraint helps when the sample covariance matrix is
used and there are too many stocks relative to the length of the time series
of observations used to estimate the covariance matrix. Again this is true in
general and not only for the cases reported in the table.

Comparing the numbers on the last two columns in all three panels, we see
that, paradoxically, the nonnegativity-constrained portfolios do worse than
the equal-weighted index when the nonnegativity constraint is correct, and
do better than the equal-weighted index when the nonnegativity constraint
is wrong. This is because when there is dispersion in the betas (so the
nonnegativity constraint is wrong in population), even if shortsales are not
allowed, we can still reduce the exposure to systematic risk by investing
only in the low-beta stocks. Thus we can achieve lower risk than the equal-
weighted index. On the other hand, when there is no dispersion in the
betas (i.e., the nonnegativity constraint is correct in population), we can not
reduce systematic risk at all, hence there is not much potential gain from
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optimal diversification. And the fact that we are using the estimated, not
the true, covariance matrix can actually make things worse than a naive
divsersification. In fact, throughout the simulation, we find that when σβ >
0, – i.e., when there is potential gain from optimal diversification, constrained
optimal portfolios always do better than the equal-weighted index.

Based on the results from the full set of simulation, we also find a mean-
ingful tradeoff between specification error and sampling error when σβ > 0
and the covariance matrix estimate is the sample covariance matrix. First,
when σβ = 0.1, the nonnegativity constraint always helps. On the other
hand, as σβ goes from 0.2 to 0.4, we always find cutoff points for the sam-
ple size T, where when we have less observations than the cutoff points, the
nonnegativity constraint helps, and when we have more observations than
the cutoff points, the nonnegativity constraint hurts. These cutoff points
increases as we increase the number of asset (as expected), but are not sen-
sitive to changes in σβ. These cutoff points are presented in Table 3. Recall
that σβ = 0.4 roughly corresponds to the covariance structure of the NYSE
stocks, and σβ = 0.2 or 0.3 represent cases where the nonnegativity constraint
is more severely violated than when σβ = 0.4. Since these cutoff points are
not sensitive to changes in σβ in this range, we can treat them as a rough
guidline for practitioners who use U.S. stocks.

Table 4 gives the short interest in the unconstrained global miminum vari-
ance portfolios constructed from the true covariance matrix. This table gives
us another metric about the extent to which the nonnegativity constraint is
violated.
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IV The Effect of Portfolio Weight Constraints:

An Empirical Examination

A Data and Methodology

In this section we examine empirically the effect of portfolio weight con-
straints. As we have said before, whether these weight constraints help or
hurt is an empirical issue and will depend on the specific covariance ma-
trix estimator. For the estimators that have large sampling errors such as
the sample covariance matrix, the portfolio weight constraints are likely to
be helpful, as documented by Frost and Savarino (1988) and demonstrated
again in the simulation study in the last section. However, for the factor
models and shrinkage estimators, the portfolio weight constraints are likely
to be harmful.

We examine the effect of the portfolio weight constraints on the out-
of-sample performance of minimum variance and minimum tracking error
portfolios formed using a number of covariance matrix estimators. This is
done following the methodology in Chan, Karcesky, and Lakonishok (1999).
At the end of each April from 1968 to 1998, we randomly choose 500 stocks
from all common domestic stocks traded on the NYSE and the AMXE, with
stock price greater than $5, market capitalization more than the 80th per-
centile of the size distribution of NYSE firms, and with monthly return data
for all the immediately preceding 60 months. We use return data for the
preceding 60 months to estimate the covariance matrix of the returns of the
500 stocks. For estimators that use daily data, the daily returns during the
previous 60 months of the same 500 stocks are used. When a daily return is
missing, the equally-weighted market return of that day is used instead.

When variance minimization is the objective, we form three global mini-
mum variance portfolios using each covariance matrix estimator – only two if
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the covariance matrix estimate is singular. The first portfolio is constructed
without imposing any restrictions on portfolio weights, the second is subject
to the constraint that portfolio weights should be nonnegative, and the third,
in addition, faces the restriction that no more than 2 percent of the invest-
ment can be in any one stock. Each of these portfolios are held for one year,
their monthly returns are recorded, and at the end of April of the next year,
the same process is repeated. This gives at most three minimum variance
portfolios that have post-formation monthly returns from May 1968 to April
1999 for each covariance matrix estimator. We use the standard deviation of
the monthly returns on these portfolios to compare the different covariance
matrix estimators.

For tracking error minimization, following Chan et al (1999) we assume
the investor is trying to track the return of the S&P 500 index. As in the
case of portfolio variance minimization, we construct three tracking error
minimizing portfolios for each covariance estimator. Notice that constructing
the minimum tracking error variance portfolio is the same as constructing the
minimum variance portfolio using returns in excess of the benchmark subject
to the restriction that the portfolio weights sum to one.

B Covariance Matrix Estimators

The first estimator is the sample covariance matrix:

SN =
1

T − 1

T∑
t=1

(ht − h̄)(ht − h̄)′,

where T is the sample size, ht is a N × 1 vector of stock returns in period t,
and h̄ is the average of these return vectors.

The second estimator assumes that returns are generated according to
Sharpe’s (1963) one-factor model given by:

rit = αi + βirmt + εit,
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where rmt is the period t return on the value-weighted portfolio of stocks
traded on the NYSE, AMEX and NASDAQ. Then the covariance estimator
is,

S1 = s2
mBB

′ +D. (13)

Here B is the N×1 vector of β’s, s2
m is the sample variance of rmt, and D has

the sample variances of the residuals along the diagonal and zeros elsewhere.

The third estimator is the optimal shrinkage estimator of Ledoit (1999).
It is a weighted average of the sample covariance matrix and the one-factor
model-based estimator:

SL =
α

T
S1 + (1− α

T
)SN ,

where α is a parameter that determines the shrinkage intensity that is esti-
mated from the data. Ledoit (1999) shows this estimator outperforms the
constant correlation model (Elton and Gruber (1973), Schwert and Seguin
(1990)), the single-factor model, the industry factor model, and the principal
component model with five principal components.7 For the fourth set of
estimators we consider the Fama and French (1993) three-factor model, and
the Connor and Korajczyk (1986, 1988) five-factor model and a three-factor
version of it which includes only the first three of the five factors. This gives
three additional covariance matrix estimators each corresponding to one of
these multifactor models8.

Finally we consider several covariance matrix estimators that use daily
return data. These include the daily return sample covariance matrix, daily
one-factor model, daily Fama-French three-factor model, and daily Connor-
Korajczyk five-factor and three-factor models. These models are similar to
the corresponding monthly models. However, we incorporate the corrections

7For tracking error variance minimization, we also considered Ledoit’s (1996) estimator
that shrinks the sample covariance matrix toward the identity matrix. The results are
similar and we do not report them.

8For tracking error variance minimization, the loadings on the first factor in these
multifactor models are set to zero for every stock.
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for microstructure effects suggested by Scholes and Williams (1977), Dimson
(1979) and Cohen et al. (1983). We also develop a new estimator for the
covariance matrix of returns using daily return data that nests these three
estimators. Details on the estimation of the monthly return covariance ma-
trix using daily return data that allow for microstructure effects are provided
in Appendix A.

C Empirical Results

Table 5 gives the characteristics of minimum variance portfolios constructed
using various covariance matrix estimates.9 Judging by the ex post standard
deviations of the optimal portfolios, the shrinkage estimator proposed by
Ledoit (1999) and the sample covariance matrix of daily return are the best
performers. Since the Ledoit estimator is a particular weighted average of the
one-factor model and the sample covariance matrix, we examined whether a
simple average of the two estimators would do equally well. The random
average of the one-factor model and the sample covariance matrix has an
annualized out-of-sample standard deviation of 10.34 percentage points (not
reported in Table 5) which is not much different from the 10.76 percentage
points for the Ledoit estimator. We thus suspect that the sampling errors
associated with the estimated optimal shrinkage intensity in the Ledoit es-
timator is rather large. Notice that even for these two best estimators, the
unconstrained global minimum variance portfolios involing taking short po-
sitions that are over 80% of the portfolio value.

Next, we turn to the case when the no-shortsales restriction is imposed.
9To save space, we only report a subset of the simulation results in Tables 5-7. The

results of using Connor-Korajczyk 3- and 5-factor models are very similar to those using
the Fama-French 3-factor model. This is true when daily returns are used as well. So these
results are not reported. Several versions of the daily one-factor model are dominated by
the daily return sample covariance matrix. So these results are not reported either.
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There is a unique solution to the portfolio variance minimization problem
using the sample covariance matrix although it is singular. Surprisingly
the minimum variance portfolio constructed using the monthly sample co-
variance matrix compares favorably with all the other covariance matrix es-
timators. The out-of-sample annualized standard deviation is about 12
percentage points per year for all of the estimators, including the shrinkage
estimator of Ledoit and the daily sample covariance matrix. Imposing the
no-shortsales restriction leads to a small increase – between 8 and 14 percent
– in the standard deviation of the minimum variance portfolios constructed
using factor models. This decline in the performance is consistent with the
observation by Green and Hollifield (1992) that shortsales restrictions prob-
ably do not hold in the population. The number of assets in the portfolio
varies from a low of 24 for the sample covariance matrix estimator to a high
of 65 for the daily sample covariance matrix. In comparison, the equally
weighted portfolio of the 500 stocks has an annualized standard deviation of
17 percentage points, the value weighted portfolio of the 500 stocks has a
standard deviation of 16 percentage points. A portfolio of randomly picked
25 stocks has a standard deviation of 18 percentage points which is 40 per-
cent more than that of the optimal minimum variance portfolio constructed
using the sample covariance matrix subject to the no-shortsales restrictions.

This clearly indicates that portfolio optimization can achieve a lower risk
than naive diversification. Imposing an upper bound of two percentage
points on portfolio weights in addition to a lower bound of zero does not affect
the out-of-sample variance of the resulting minimum variance portfolios in
any significant way.

When daily returns are used, the sample covariance matrix estimator
performs the best when there are no portfolio weight constraints. The
corrections for microstructure effects suggested in the literature do not lead
to superior performance. When portfolio weights are constrained to be
nonnegative all the models perform about equally well.
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Table 6 gives the corresponding numbers for the minimum tracking er-
ror portfolios. Several patterns emerge. Among the estimators that use
monthly data, the monthly covariance matrix estimator and the one pro-
posed by Ledoit (1996) perform the best. The former has only about 200
stocks whereas the latter has about 300 stocks.

The tracking error of the one factor model with non-negativity constraints
is 5.04% which is rather large compared to the 3.36% for the sample covari-
ance matrix estimator. This should not be surprising since the first dominant
factor becomes less important for tracking error minimization. The portfolio
weight constraints are not binding with the one factor model. This is strong
support for the Green and Hollifield conjecture that large negative (and pos-
itive) weights are due to the presence of a single dominant factor which is
effectively removed when we consider tracking error minimization.

The multifactor models of Connor and Korajczyk (not reported) as well
as Fama and French perform better than the single factor model. This is
consistent with the observations in Chan et al (1999). As is to be expected,
portfolio weight constraints are not important when using multifactor mod-
els. However, the tracking error for the factor models is about one percentage
point more than that for the sample covariance matrix and the Ledoit esti-
mators.

With daily data we expect the precision of all the estimators to improve.
If our conjecture that portfolio weight constriants lead to better performance
due to the shrinkage effect then such constraints should become less impor-
tant when daily data is used. This is what we find. When shortsales are
allowed, the short interest is 36.6%, a substantial amount. Imposing the
nonnegativitiy constraint on portfolio weights reduces the number of stocks
to 231. However, the performance is hardly affected. The tracking error goes
down from 2.94% to 2.78%.

With daily data, the sample covariance matrix estimator dominates all
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factor models, with the latter all perform equally well. Again corrections
for microstructure effects make little difference in the ex post tracking error
performance.

The value-weighted portfolio of the 500 stocks performs the best. This is
to be expected since the benchmark is the S&P500 portfolio, which is value
weighted.

Table 7 reports the t-tests for the difference between the mean returns
and mean squared returns of the portfolios compared with the nonnegativity-
constrained portfolio from the monthly return sample covariance matrix.
Since the differences in mean returns are all insignificant, the t-test for the
difference in squared returns serve as a test for the difference in return vari-
ances, which is the focus of our study. We can see that for both portfolio
variance minimization and tracking error minimization, once the nonnegativ-
ity constraint is imposed, the more sophisticated estimators do not in general
give better out-of-sample performance than the monthly return sample co-
variance matrix. However, there is evidence that using daily returns can
achieve smaller out-of-sample tracking error. Why using daily returns can
help for the tracking error minimization case but not the total risk minimiza-
tion case is an issue of future investigation.

V The Role of Constraints in Constructing

Mean-Variance Efficient Portfolios

In the previous sections, we mainly focused on the role of constraints on
the global minimum variance portfolios. In this section, we will examine
the same issue in the context of mean-variance efficient portfolios. For that
purpose we will assume that there is a riskless asset. Then the mean variance
efficient frontier is spanned by two assets: the riskless asset and the portfolio
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where the tangent from the risk free rate touches the mean variance frontier
of asset returns. The global minimum variance portfolio will not be on the
mean variance efficient frontier.

We will see that in this case, when the estimated covariance matrix is non-
singular, we can still give a shrinkage interpretation of the portfolio weight
constraints, where the shrinkage is applied to the mean returns, not the
covariance matrix. But we also point out that the sampling error in the esti-
mated mean returns is too large for this shrinkage to be useful. Specifically,
the constrained mean variance efficient portfolios perform worse out of sam-
ple than the global minimum variance portfolios, as have been reported by
earlier studies. We will first present the theoretical analysis. Then we report
some simulation results.

A An Analysis of the Role of Portfolio Constraints on

Mean-Variance Efficient Portfolios

We use w to denote the N vector of portfolio weights on the risky assets; S
the covariance matrix of the excess returns (over the risk free rate); and µ

the vector of excess returns.

Suppose we want to find the minimum variance portfolio with expected
excess return k. Let’s first consider the case where there is no constraints on
individual portfolio weights. The Lagrangian is

L =
1
2
w′Sw − θ(w′µ− k),

where θ is the scalar Lagrange multiplier. The first order conditions are given
by

Sw − θµ = 0, (14)

w′µ = k.
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From this we can find the optimal portfolio weights. These are standard
results.

Now let’s consider the constrained efficient portfolio problem, where the
portfolio weights are subject to known lower and upper bounds:10

0 ≤ wi ≤ w̄i.

The Lagrangian is

L =
1
2
w′Sw − θ(w′µ− k)− λ′w + δ′(w − w̄),

where λ and δ are vectors of nonnegative Lagrange multipliers.

The first order conditions are

Sw − θµ− λ+ δ = 0, (15)

λiwi = 0, (16)

δi(wi − w̄i) = 0, (17)

w′µ− k = 0. (18)

Suppose for a given k, the solution to the constrained minimum variance
portfolio problem is (w∗(k), θ(k), λ(k)). Assume that in a neighborhood of
k, the set of binding lower and upper bounds stays the same. We know
that the set of binding lower and upper bounds only changes at a finite
number of points as k varies. Since in practice S and µ are estimated and
hence are random, so with probability one, the above assumption is true.
Now in this neighborhood of k, we can re-write the binding lower and upper
bounds as equality constraints. So locally we are dealing with a constrained

10Liu (2001) examined the same problem, though our approach here is different from
his. He works with the utility maximization problem of a mean-variance utility investor.
We work on the variance minimization for a given target return. We also point out that
the shrinkage interpretation is only valid when S is nonsingular.
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optimization with only equality constraints. Further, both the solution to
this constrained optimization problem and the mimimum portfolio variance
change smoothly with respect to k. Applying the envelope theorem, we have

∂(1
2w
∗′Sw∗)
∂k

= −θ∂(w′µ− k)
∂k

= θ.

The envelope theorem simplifies here because neither the objective function
nor the equality constraints depend on k directly. Since on the efficient fron-
tier there will be a positive trade-off between portfolio variance and portfolio
expected return, the LHS of the above equation, and hence θ, is positive.

Since θ is positive, we can re-write the first order condition (15) as

Sw − θ(µ+
1
θ
λ− 1

θ
δ) = 0.

Notice this is in the same form of the first order condition for the uncon-
strained portfolio variance minimization problem (14). Therefore, construct-
ing the constrained portfolio variance minimizaition from (S, µ) with target
expected excess return k is the same as constructing the unconstrained one
from (S, µ+ 1

θ
λ− 1

θ
δ) with target expected excess return (k− 1

θ
δ′w̄), because

the constraint on the portfolio mean return is now:

w′(µ+
1
θ
λ− 1

θ
δ) = k − 1

θ
δ′w̄

due to (16) - (18). (Notice that if only the nonnegativity constraint is present,
then the target return stays the same since δ is the zero vector.)

We point out that the above equivalence is true only when S is nonsin-
gular. When S is singular, such as the monthly return sample covariance
matrix estimator in our empirical work in the earlier section, the uncon-
strained mean-variance optimization has no solution, but the constrained
one still has a solution since the domain of the objective function is now
compact. So we don’t have the equivalence result anymore. The fact that
the constrained minimum variance portfolio can be constructed even though
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S is singular implies that the constraint implies some adjustment to S. Liu
(2001) ignored this point.

Assume S is nonsingular, then if the nonnegativity constraint is binding
for stock i, its mean return is adjusted upward by the amount 1

θ
λi. If the

upper bound is binding for stock j, its mean return is adjusted downward
by the amount 1

θ
δj. In the unconstrained minimum variance portfolio, stocks

with low expected returns tends to get negative weights, so the nonnegativity
constraint will be binding. Imposing the nonnegativity constraint is as if
we adjust their expected returns upwards. The upper bounds have similar
effects. So imposing the weight constraints is equivalent to shrinking the
mean estimates.

B Some Empirical Results

In this subsection, we empirically examine the shrinkage effect of imposing
portfolio weight constraints in the mean-variance optimization problem. We
will compare the out-of-sample performances of the constrained tangency
portfolios with that of the unconstrained ones, and with that of the global
minimum variance portfolios. We use the historical average return on an
asset as the measure of expected return on that asset. This would be a more
reasonable assumption for large stock portfolios than for individual stocks.
We therefore work with assets that are themselves portfolios of many stocks.
In particular, we construct these optimal portfolios using the Fama-French
25 size/book-to-market sorted stock portfolios.

At the end of April each year from 1968 to 1998, we use monthly returns
of the past 5 years to estimate the mean returns and return covariance matrix
of the 25 assets. We use several covariance matrix estimators, including the
sample covariance matrix, the one-factor model (where the factor return is
the value-weighted market index), the Fama-French three factor model, and
the Ledoit estimator. Using the estimates of mean returns and return co-
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variance matrices, we form the unconstrained and nonnegativity constrained
tangency portfolios and the global minimum variance portfolios. We hold
these portfolios for one year, and then repeat the procedure again. The
realized returns of these optimal portfolios are recorded and examined.

The results are presented in Table 8. Panel A gives the out-of-sample
performance of the tangency portfolios. Panel B gives the corresponding
numbers for the global minimum variance portfolios. We use the Sharpe
Ratio to compare the performances of different portfolios. We draw the fol-
lowing conclusions from Table 8: (1) The constrained tangency portfolios
fared better than the unconstrained ones. This means there is some benefi-
cial shrinkage associated with imposing the constraints. (2) The constrained
tangency portfolios fared worse than the constrained global minimum vari-
ance portfolios. This means that the sampling error in the estimated mean
returns is still too large even after the shrinking induced by imposing the con-
straints. Hence there is a need to bring in other information about expected
returns. This justifies our focus on the global minimum variance portfolios.
(3) The constrained global minimum variance portfolios did worse than the
corresponding unconstrained ones. This is true even if we use the sample co-
variance matrix. This contrasts sharply with the simulation result in Table
2, where for the case of 30 stocks, 60 months observations, and the covariance
matrix is estimated using the sample covariance matrix, the constraint al-
ways helps. Recall that the simulation there was calibrated to the covariance
structure of individual stocks. The covariance matrix of returns on a collec-
tion of assets that are themselves portfolios of a large collection of stocks can
be measured with substantially more precision than the covariance matrix of
returns on individual stocks. Hence when we are working with assets that
are themselves porfolios of large number of stocks, imposing the nonnegativ-
ity constraint hurts. This provides strong support for Green and Hollifield
(1992). Also, the fact that the constraint helps there but not here presents
a clear example that the gain from imposing the constraint depends on the
amount of sampling error.
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VI Concluding Remarks

Investors often voluntarily impose no-shortsales restrictions in optimal risk
reduction. However, Green and Hollifield (1992) argue that the optimal port-
folios may well involve extreme positive and negative weights. We reconcile
this apparent contradiction. We show that imposing the no-shortsales con-
straint has a shrinkage-like effect. It follows from the theory of shrinkage
estimators that imposing the constraint can help even when the constraint
does not hold in the population. The upper bounds on portfolio weights have
similar shrinking effects. Using a Monte Carlo simulation we show that this
is indeed what is happening in optimal portfolio risk reduction.

Imposing the weight constraints also introduces specification error, since
these constraints are violated in population, as argued by Green and Hol-
lifield. So the net effect depends on the tradeoff between the reduction in
sampling error and the increase in specification error, and whether the net
effect is positive or negative is an empirical issue. Frost and Savarino (1988)
and our simulation study show that for the sample covariance matrix, im-
posing the weight constraints helps. Our empirical results also show that
for factor models and shrinkage estimators, imposing the weight constraints
hurts slightly. On the other hand, once the no-shortsales restriction is im-
posed, portfolios constructed from the sample covariance matrix perform as
well as portfolios constructed using covariance matrices estimated using fac-
tor models and shrinkage methods.

While the effect of the portfolio weight constraints has been examined
empirically in the literature before, our result on the shrinkage effect of such
constraints is the first “theoretical” result on this issue. One potential use of
this result is to gauge the tightness of a set of portfolio weight constraints by
the change from S to S̃, as measured by ||S− S̃|| for some matrix norm || · ||.
A large ||S − S̃|| means that the effect of the constraints is quite strong and
the constraints are quite tight. This measure of tightness can help portfolio
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managers to decide the appropriate lower and upper bounds on portfolio
weights when constructing the optimal portfolios.

Our empirical findings raise the following questions that deserve further
examination. (a) Why the use of daily data can help achieve better tracking
error reduction but not portfolio variance reduction? A possible explanation
is that covariances caused by exposure to the dominant factor change much
more over time when compared to those that are caused by exposure to other
factors. While the use of daily return data helps to reduce the sampling error
it does not take into account time variations in the covariance structure.
This may be less important once the dominant factor is removed as in the
case of tracking error minimization. (b) Why corrections for microstructure
effects do not help even though they provide more precise estimates of factor
betas? This could be due to the greater instability of microstructure effects
across stocks and over time. (c) Why do we find large in-sample-optimism
even for factor models and shrinkage estimators? Past researchers appear
to attribute this to sampling error. Additional Monte Carlo simulations
indicate that when returns have an exact factor structure, and the covariance
matrices are constructed using estimated factors, the in-sample optimism is
attenuated. This means that sampling error alone is unlikely to provide a
complete answer. Part of the reason has to be that either returns do not
have an exact factor structure or that the covariance structure is changing
over time. Hence shrinkage methods and factor models, which are intended
to reduce sampling errors, can only achieve limited success.

VII Appendix A: Covariance Matrix Estima-

tors that Use Daily Returns

This appendix describes how we estimate monthly covariance matrices us-
ing daily return data after taking into account serial correlations and cross-
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correlations at various leads and lags induced by microstructure effects. We
consider the estimators proposed by Scholes and Williams (1977), Dimson
(1979), and Cohen, et al (1983, hereafter CHMSW). We point out that the
CHMSW estimator of the sample covariance matrix is usually not positive
semi-definite. We then propose a new methodology to estimate the covari-
ance matrices of monthly returns using data on daily returns that are always
positive semi-definite. Our estimator uses the fact that the continuously
componded monthly return is the sum of continuously compounded daily re-
turns. Our estimator can be readily modified based on restrictions imposed
by microstructure models.

The CHMSW estimator is based on the following relationship:

cov(rtj,t, r
t
k,t) = cov(rj,t, rk,t) +

L∑
n=1

cov(rj,t, rk,t−n)

+
L∑
n=1

cov(rj,t−n, rk,t), (19)

for any pair of stocks j and k, j 6= k. Here rt denotes the true date t re-
turn and r denotes the observed return, t and t − n denote dates t and
t − n. Based on this relation we can estimate cov(rtj,t, r

t
k,t) using observed

daily returns. In practice, L is set to three and the variances are estimated
using sample variances without any adjustment (Cohen et al. (1983) and
Shanken (1987)). The Scholes-Williams estimator is the special case of the
above, with L set to one. The estimate of the full sample covariance matrix
using the CHMSW method is denoted as “Daily Sample Covariance Matrix
(CHMSW)” in Tables 4-6.

Equation (19) is also valid if either asset (or both) is a portfolio. For
a well-diversified portfolio, (19) is approximately valid for its variance also.
Based on this, we can estimate a stock’s beta as its covariance with the
market portfolio divided by the market portfolio’s variance. The daily one-
factor models (Scholes-Williams and CHMSW) in Tables 4-6 are estimated
using this strategy.
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There is a problem with these estimators. The estimated covariance ma-
trix, constructed from individual covariances and variances, is not positive
semi-definite. This is problematic for portfolio optimization. We propose a
new estimator that does not have this problem.11 Notice that monthly log
returns are simply sums of daily log returns:

ri,τ =
τm∑

t=(τ−1)m+1

ri,t.

Here τ is month τ, t is day t, and m is the number of days in a month. Then
the monthly return covariance is

cov(ri,τ , rj,τ ) =
τm∑

t=(τ−1)m+1

τm∑
s=(τ−1)m+1

cov(ri,t, rj,s).

Unlike the CHMSW estimator (19), the above is valid for any i and j, even
if either one (or both) is a portfolio. Assuming covariance stationarity as
usual, we can drop the time subscripts, and get

covM(ri, rj) = m · covD(ri,t, rj,t)

+ (m− 1) · (covD(ri, rj,t+1) + covD(ri,t+1, rj,t))

+ (m− 2) · (covD(ri, rj,t+2) + covD(ri,t+2, rj,t))

+ · · ·
+ (covD(ri,t, rj,t+m−1) + covD(ri,t+m−1, rj,t)). (20)

The superscripts M and D denote the covariance of the monthly returns and
the covariance of the daily returns, respectively. We set m = 21 for there are
about 21 trading days in one month.

An obvious approach is to use the sample counterpart of the RHS of
(20) to estimate the monthly return covariance. However, to guarantee that

11There is a difference between our approach and the approach taken by Scholes and
Williams and CHMSW. While they want to estimate the “true” covariances and betas
using the daily returns, we want to use daily returns to estimate the covariances and betas
of monthly returns.
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the covariance matrix is positive semi-definite, we need to further adjust the
covariance estimates (20) slightly. Let

R0 = (rt,i − r.,i)t=1,...,T ; i=1,...,N ,

the matrix of demeaned returns. For j = 1, · · · ,m− 1, let R−j be the same
size as R0, with the first j rows set to zeros, and the remaining T − j rows
the same as R0’s first T − j rows (i.e., R−j is the matrix of lag-j demeaned
returns). Let

Ωj = R′0R−j/T,

S = mΩ0 +
m−1∑
j=1

(m− j)(Ωj + Ω′j). (21)

Then S is positive semi-definite (see Newy and West (1987) for the proof)
and S is a consistent estimator of the RHS of (20). The covariance matrix
estimated this way is denoted as “Daily Sample Covariance Matrix (New)”
in Tables 5 - 7.

If we assume a k−factor model, then the beta estimates are

b = (v̂ar(f))−1 ˆcov(f, r).

Here b is k × N, v̂ar(f) is the estimated factor covariance matrix (of size
k× k) and is estimated according to (21), and ˆcov(f, r) is estimated (similar
to (21)) by

ˆcov(f, r) =
1
T

mF ′0R0 +
m−1∑
j=1

(m− j)(F ′0R−j + F ′−j R0)

 ,
with F−j defined similarly as R−j.

For factor models, the residual covariance matrix is assumed diagonal
and the residual variances are estimated by the sample variances of residu-
als calculated from observed stock returns, observed factor returns, and the
estimated betas. In Tables 5-7, the estimators denoted as “Daily 1 Factor

33



Model (New),” “Daily Connor-Korajczyk 3 Factor Model,” “Daily Connor-
Korajczyk 5 Factor Model,” and “Daily Fama-French 3 Factor Model,” are
all estimated using this strategy.

We construct the daily Connor-Korajczyk factors and Fama-French fac-
tors by following the same procedure as outlined in Connor and Korajczyk
(1988) (using daily returns instead of monthly returns) and Fama and French
(1993).

Finally, in Tables 5-7, the estimator “Daily Sample Covariance Matrix”
denotes the sample covariance of daily returns.

VIII Appendix B: Proof of the Propositions

Proof of Proposition 1:
12 S̃ is obviously symmetric. Now we prove that

it is positive demi-definite. Suppose that

(ω1, · · · , ωN , λ1, · · · , λN , δ1, · · · , δN , λ0) ≡ (ω′, λ′, δ′, λ0)

is a solution to the constrained portfolio variance minimization problem (1)
- (4). For any vector x,

x′S̃x = x′Sx−x′(1λ′+λ1′)x+x′(1δ′+δ1′)x = x′Sx−2(x′1)(x′(λ−δ)). (22)

(Here 1 is a vector of ones.) By the first order condition, λ− δ = Sω − λ01.
Hence, x′(λ− δ) = x′Sω − λ0x

′1. Therefore

2(x′1)(x′(λ− δ)) = 2(x′1)(x′Sω)− 2λ0(x′1)2. (23)
12We thank Gopal Basak for providing a part of this proof.
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But

|(x′1)(x′Sω)| = |(x′1)(x′S1/2)(S1/2ω)| ≤ |(x′1)|(x′Sx)1/2(ω′Sω)1/2.

The first equality holds since S is positive semi-definite, and the last inequal-
ity is due to the Cauchy-Schwarz inequality.

Again from the First Order Condition,

0 ≤ ω′Sω = ω′λ− ω′δ + λ0ω
′1 = λ0 − ω̄δ′1 ≤ λ0.

So
|(x′1)(x′Sω)| ≤ |(x′1)|(x′Sx)1/2(λ0)1/2.

Combining the above inequality with (22) and (23), we have

x′S̃x = x′Sx− 2(x′1)x′Sω + 2λ0(x′1)2

≥ x′Sx− 2|(x′1)x′Sω|+ 2λ0(x′1)2

≥ x′Sx− 2|(x′1)|(x′Sx)1/2(λ0)1/2 + 2λ0(x′1)2

= (a− b)2 + b2, (24)

where a = (x′Sx)1/2 and b = λ
1/2
0 |(x′1)|. Obviously this is always nonnega-

tive. So S̃ is positive semi-definite.

Because S̃ is positive semi-definite, to show that ω = (ω1, · · · , ωN) is a
(unconstrained) global minimum variance portfolio of S̃, it suffices to verify
the first order condition:

S̃ω = Sω − (1λ′ + λ1′)ω + (1δ′ + δ1′)ω

= Sω − λ1′ω + 1ω̄(δ′1) + δ1′ω

= Sω − λ+ ω̄(δ′1)1 + δ

= (λ0 + ω̄δ′1)1.

The second equality follows from the fact that ωiλi = 0 for all i, and δi(ωi−
ω̄) = 0 for all i. The third equality holds because

∑
j wj = 1, and the last
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equality follows from (5). The fact that S̃ω = (λ0 + ω̄δ′1)1 shows that
ω solves the (unconstrained) variance minimization problem for covariance
matrix S̃. QED

Proof of Proposition 2: First, let’s re-write the second constraint in the
constrained MLE problem as

(1− ω̄)
∑
j

Ωi,j ≤ ω̄
∑
k 6=i

∑
j

Ωk,j.

Let the constrained MLE be Ω̂. The Kuhn-Tucker conditions for the con-
strained MLE problem are (Morrison (1990), p. 99):

∂l

∂Ωi,i
=

1
2

Ω̂i,i −
1
2
Si,i = −λi + (1− ω̄)δi, all i (25)

∂l

∂Ωi,j
= Ω̂i,j − Si,j = −(λi + λj) + (1− ω̄)(δi + δj), all i < j (26)

λi ≥ 0, and λi = 0 if
∑
j

Ω̂i,j > 0, (27)

δi ≥ 0, and δi = 0 if (1− ω̄)
∑
j

Ωi,j < ω̄
∑
k 6=i

∑
j

Ωk,j. (28)

These conditions imply that the constrained MLE can be written as

Ω̂ = S − (λ1′ + 1λ′) + (1− ω̄)(δ1′ + 1δ′)

Notice that Ω̂ has the same form as S̃.

We will only prove Part 1. The proof of Part 2 is similar.

Let {λi, δi, ωi}Ni=1 be a solution to the constrained portfolio variance min-
imization problem (1) - (4), given S, and construct S̃ according to (8). Then
we can easily verify that {λi, (1− ω̄)δi}Ni=1 and S̃ satisfies (25), (26), and the
first halfs of (27) and (28). Now we need to verify the second halfs of (27)
and (28), i.e.,

∑
j S̃

i,j > 0 implies λi = 0 and (1− ω̄)
∑
j S̃

i,j < ω̄
∑
k 6=i

∑
j S̃

k,j

implies δi = 0. By Proposition 1, ω is the unconstrained global minimum
variance portfolio of S̃, so ωi =

∑
j S̃

i,j/
∑
j

∑
k S̃

j,k. From the second half of
(6) we know that ωi > 0 implies λi = 0. This says that

∑
j S̃

i,j > 0 implies
λi = 0. Likewise, the second half of (7) implies the second half of (28). QED
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Table 1. The effect of portfolio weight constraints 
 
This table shows the effects of nonnegativity constraints and upper bound on portfolio weights. 
The covariance matrix S is the sample covariance matrix of monthly returns of a random sample 
of 30 stocks from 1988-1997 (120 months). λ and δ are the vectors of Lagrange multipliers on 
the nonnegativity constraint and the upper bound, respectively. The upper bound is set at 10%. 
The numbers below the correlation coefficients (and in parenthesis) are significant levels. 
The numbers below the regression coefficients are standard errors. 
 

Panel A: Summary statistics of the row sums of S, unconstrained portfolio weights, and 
the Lagrange multipliers 
Variable Mean Std Dev Minimum Maximum 
Row sums of S 0.0358 0.0169 0.0106 0.0695 

Unconstrained portfolio weights 0.0333 0.0926 -0.1251 0.3569 

λi’s 0.000063 0.000092 0 0.000316 

δi’s 0.000016 0.000045 0 0.000169 

Panel B: Correlations among the row sums of S, unconstrained portfolio weights, and the 
Lagrange multipliers 
 Unconstrained 

portfolio weights 
λi’s δi’s  

Row sum’s of S -0.496 
(0.0053) 

0.713 
(0.0001) 

-0.425 
(0.0191) 

 

Unconstrained portfolio weights  -0.494 
(0.0055) 

0.808 
(0.0001) 

 

λi’s   -0.255 
(0.173) 

 

Panel C: Summary statistics for the (distinct) individual elements of S, and the 
adjustments to the individual elements due to the portfolio weight constraints 
Variable Mean Std Dev Minimum Maximum 
Sij 0.00139 0.00216 -0.00186 0.019 

λi + λj 0.000127 0.00013 0 0.000632 

δi + δj 0.000032 0.000063 0 0.000338 

Panel D: Correlations among the (distinct) individual elements of S and the adjustments 
to the individual elements due to the portfolio weight constraints 
 λi + λj δi + δj   
Sij  0.296 

(0.0001) 
-0.184 

(0.0001) 
  

λi + λj  -0.255 
(0.0001) 

  

Panel E: Regression of the adjustments on the (distinct) individual elements of S 
Dependent Variable  Intercept Sij No. of obs. Adj. R2 
λi + λj 1.02E-4 

(6.84E-6) 
0.0177 

(0.00266) 
465 0.085 

δi + δj 3.94E-5 
(3.44E-6) 

-0.00539 
(0.00134) 

465 0.032 



Table 2. Effects of imposing nonnegativity constraints and the single-factor 
constraint 
 
This table shows the percentage reduction in the ex post standard deviations of the global 
minimum variance portfolios, when the nonnegativity and/or single factor model 
constraints are imposed, relative the ex post variances of the global minimum variance 
portfolios constructed from the sample covariance matrix and the equal-weighted 
portfolio. N is the number of assets; T is the sample size used to estimate the covariance 
matrix. σβ is the cross-sectional standard deviation in the stocks’ betas with respect to the 
first factor. The true stock returns have a two factor structure, and the covariance 
structure roughly matches that of the NYSE when σβ is 0.4. Refer to the text for details of 
the setup of the simulation. When σβ is 0, the nonnegativity constraint is correct in 
population; when σβ is 0.4, the nonnegativity constraint is violated roughly to the same 
extent as using the NYSE stocks; and when σβ is 0.2, the nonnegativity constraint is more 
severely violated than when σβ is 0.4. The rows with T = Infinity are the population 
results. 
 
  

N T Percentage reduction in ex post standard deviation of the optimal portfolios 
from imposing the constraints 

  Relative to the portfolio constructed 
from the sample covariance matrix 

Relative to the equal-weighted 
portfolio 

  Single-
factor 
model  

Nonnegativity 
constraint  

Both Single-
factor 
model 

Nonnegativity 
constraint  

Both 

Panel A: σβ = 0       
30 60 21.6 25.2 26.0 -12.2 -7.0 -6.0 
30 360 0.8 1.2 1.4 -1.7 -1.3 -1.0 
30 Infinity 0.0 0.0 0.0 1.1 1.1 1.1 

300 60 na na na -8.1 -11.6 -6.9 
300 360 54.6 58.8 59.1 -14.6 -3.9 -3.2 
300 Infinity 0.0 0.0 0.0 0.2 0.2 0.2 

Panel B: σβ = 0.2       
30 60 20.7 16.2 18.7 8.4 3.3 6.1 
30 360 1.7 -3.2 -2.6 14.8 10.6 11.1 
30 Infinity -0.3 -5.6 -5.8 16.8 12.4 12.3 

300 60 na na na 45.9 18.1 23.2 
300 360 56.2 26.1 26.5 60.3 33.0 33.3 
300 Infinity -5.0 -80.7 -81.3 62.8 35.9 35.7 

Panel C: σβ = 0.4       
30 60 27.2 16.8 21.2 38.9 30.2 33.9 
30 360 2.3 -7.6 -7.1 42.6 36.8 37.0 
30 Infinity -0.1 -10.0 -10.0 43.3 37.7 37.7 

300 60 na na na 72.9 50.8 57.6 
300 360 59.2 25.0 27.2 79.3 61.9 63.0 
300 Infinity -0.8 -79.4 -80.7 79.9 64.2 64.0 



 
Table 3. Cutoff points for the sample sizes when the nonnegativity constraints start 
to hurt. 
 
The true return covariance has a two factor structure. Across stocks, the betas with 
respect to the first factor is normally distributed with mean one and standard deviation δβ. 
The number of stocks is N, and the sample size is T. We estimate the covariance matrix 
for the stocks using simulated returns of  sample size T using the sample covariance 
matrix. Then we form the nonnegativity constrained and unconstrained global minimum 
variance portfolios using the estimated covariance matrix, and calculate the ex post 
variances of these portfolios. For each (δβ, N) pair, we report the cutoff point for T such 
that when the sample size is greater than or equal to the cutoff point, the nonnegativity 
constraint will hurt. For more details of the simulation specification, please refer to the 
text.  
 
 

N δβ   
 0.2 0.3 0.4 
    

30 na1 120 120 
60 150 150 150 

120 270 270 330 
180 330 270 330 
240 390 390 450 
300 450 450 450 

 
1: Such cutoff point is not found in that set of simulation. 
 
 
 



Table 4. Short interests in the global minimum variance portfolios  
 
The true return covariance has a two factor structure. Across stocks, the betas with 
respect to the first factor is normally distributed with mean one and standard deviation δβ, 
the betas with respect to the second factor is normally distributed with  mean zero and 
standard deviation 0.2. The two factor returns have unit variances and zero covariance. 
The stocks’ residual variances are constant over time, but follow a Lognormal(0.8, 0.7) 
distribution. The number of stocks is N. For each (δβ, N) pair, we draw the betas and the 
residual variances according to the above-mentioned distributional assumptions, and then 
calculate the true stock return covariance matrix. We then calculate the unconstrained 
global  minimum variance portfolio and its short interest (i.e., the sum of the negative 
portfolio weights). This procedure is repeated ten times and the averages are reported 
below. The short interests give the extent to which the nonnegativity constraint is wrong.  
 

N  δβ   
 0.1 0.2 0.3 0.4
     

30 -0.181 -0.401 -0.391 -0.350
60 -0.554 -0.706 -0.584 -0.468

120 -1.188 -1.012 -0.737 -0.515
180 -1.578 -1.161 -0.828 -0.555
240 -1.845 -1.250 -0.816 -0.534
300 -2.042 -1.308 -0.831 -0.526

 
 
 
 
 



Table 5. Ex post mean, standard deviation, and other characteristics of the global 
minimum variance portfolios 
 
At the end of April each year from 1968-1997, the covariance matrix of a random sample 
of 500 stocks is estimated according to variance estimators. We use these covariance 
matrix estimates to construct the global minimum variance portfolios, both constrained 
and unconstrained. We hold the portfolios for the next 12 months and their monthly 
returns are recorded. The ex post means, standard deviations, and other characteristics of 
these portfolios are reported. The C after an estimator indicates the nonnegativity 
constrained portfolios, and D after an estimator indicates the portfolio with both the 
nonnegativity constraint and the upper bound of 2%. For the equal-weighted and value-
weighted portfolios of 25 stocks, the 25 stocks are randomly selected from the 500 ones. 
Means and standard deviations are in percentage per year, maximum weight, minimum 
weight, and short interest are in percentage.  
 

Covariance matrix estimator Mean Std 
Dev 

Max. 
weight 

Min. 
weight 

Short 
interest 

No. of 
positive 
weights 

Monthly sample covariance matrix, C 13.55 12.43 18.4 0 0 24.1
Monthly sample covariance matrix, D 13.55 12.85 2.0 0 0 59.5
One-factor model 13.99 11.69 3.8 -0.9 -50.7 268.8
One-factor model, C 12.68 12.62 11.3 0 0 39.3
One-factor model, D 13.51 12.50 2.0 0 0 63.1
Ledoit 13.09 10.76 4.9 -1.7 -80.6 283.2
Ledoit, C 12.79 12.29 13.4 0 0 39.7
Ledoit, D 13.49 12.43 2.0 0 0 65.4
Fama-French 3 factor model 13.04 11.35 4.2 -1.4 -63.5 284.1
Fama-French 3 factor model, C 12.65 12.38 12.2 0 0 40.1
Fama-French 3 factor model, D 13.34 12.53 2.0 0 0 64.0
Daily sample covariance matrix 14.06 10.64 6.3 -2.5 -122.4 270.7
Daily sample covariance matrix, C 13.95 12.34 8.8 0 0 64.7
Daily sample covariance matrix, D 14.22 12.28 2.0 0 0 81.1
Daily sample covariance matrix of 
CHMSW, C 

13.89 12.31 9.1 0 0 62.5

Daily sample covariance matrix of  
CHMSW, D 

14.18 12.25 2.0 0 0 80.1

Daily sample covariance matrix (New) 13.94 10.60 6.3 -2.6 -128.5 269.5
Daily sample covariance matrix (New), C 13.81 12.26 9.0 0 0 62.9
Daily sample covariance matrix (New), D 14.12 12.21 2.0 0 0 79.5
Daily Fama-French 3-factor 13.07 11.25 4 -1.4 -66.9 276.8
Daily Fama-French 3-factor, C 13.03 12.03 12.7 0 0 40.7
Daily Fama-French 3-factor, D 13.09 12.15 2 0 0 63.6
Equal-weighted portfolio of the 500 stocks 14.52 17.48 0.2 0 0 500
Value-weighted portfolio of the 500 stocks 13.39 15.60 7.3 0 0 500
Equal-weighted portfolio of 25 stocks 15.16 17.78 4 0 0 25
Value-weighted portfolio of 25 stocks 14.25 17.79 30 0 0 25

 



Table 6. Ex post mean, standard deviation, and other characteristics of the 
minimum tracking error variance portfolios 
 
At the end of April each year from 1968-1997, the covariance matrix of a random sample 
of 500 stocks is estimated according to variance estimators. We use these covariance 
matrix estimates to construct the minimum tracking error variance portfolios, both 
constrained and unconstrained. The target is the S&P 500 returns. We hold the portfolios 
for the next 12 months and their monthly tracking errors are recorded. The ex post means 
and standard deviations of the tracking errors and some characteristics of the tracking 
portfolios are reported. The C after an estimator indicates the nonnegativity constrained 
portfolios, and D after an estimator indicates the portfolio with both the nonnegativity 
constraint and the upper bound of 2%. For the equal-weighted and value-weighted 
portfolios of 25 stocks, the 25 stocks are randomly selected from the 500 ones. 
Means and standard deviations are in percentage per year, maximum weight, minimum 
weight, and short interest are in percentage.  
 

Covariance matrix estimator Mean Std 
Dev 

Max. 
weight 

Min. 
weight 

Short 
interest 

No. of 
positive 
weights 

Monthly sample covariance matrix, C 4.28 3.36 2.4 0 0 200
Monthly sample covariance matrix, D 4.23 3.40 1.8 0 0 194
One-factor model 4.91 5.04 0.9 0 0 499
One-factor model, C 4.91 5.04 0.9 0 0 499
One-factor model, D 4.91 5.04 0.9 0 0 499
Ledoit 4.18 3.48 1.8 -0.3 -8.7 391
Ledoit, C 4.21 3.34 2.2 0 0 314
Ledoit, D 4.27 3.36 1.8 0 0 312
Fama-French 3 factor model 3.76 4.41 1.4 -0.2 -3.3 433.1
Fama-French 3 factor model, C 3.71 4.39 1.5 0 0 394.6
Fama-French 3 factor model, D 3.71 4.39 1.5 0 0 394.5
Daily sample covariance matrix 3.69 2.94 5.3 -1 -36.6 322.4
Daily sample covariance matrix, C 3.93 2.78 5.4 0 0 231.3
Daily sample covariance matrix, D 4.17 2.96 2 0 0 227.6
Daily sample covariance matrix of 
CHMSW, C 

3.92 2.75 5.4 0 0 231.4

Daily sample covariance matrix of  
CHMSW, D 

4.17 2.92 2 0 0 226.3

Daily sample covariance matrix (New) 3.72 2.92 5.3 -1 -36.8 322.2
Daily sample covariance matrix (New), C 3.93 2.73 5.4 0 0 228
Daily sample covariance matrix (New), D 4.17 2.89 2 0 0 224.2
Daily Fama-French 3-factor 3.82 4.50 1.3 -0.2 -3.7 427.8
Daily Fama-French 3-factor, C 3.76 4.50 1.5 0 0 384.1
Daily Fama-French 3-factor, D 3.77 4.51 1.4 0 0 383.8
Equal-weighted portfolio of the 500 stocks 4.92 6.58 0.2 0 0 500
Value-weighted portfolio of the 500 stocks 3.6 2.37 6.7 0 0 500
Equal-weighted portfolio of 25 stocks 4.66 8.62 4 0 0 25
Value-weighted portfolio of 25 stocks 4.13 8.24 29.7 0 0 25



Table 7. t-tests of equal mean returns and equal mean squared returns 
 
This table reports the t-tests of equal mean returns and equal mean squared returns of the 
minimum variance and minimum tracking error variance portfolios. For each such 
portfolio, we test whether its mean returns and mean squared returns are statistically 
different from those of the nonnegativity constrained portfolio constructed from the 
sample covariance matrix of monthly returns.  
 

Covariance matrix estimator Minimum variance 
portfolio 

Minimum tracking error 
portfolio 

 Equality 
in mean 
return 

Equality in 
mean squared 

return 

Equality 
in mean 
return 

Equality in 
mean squared 

return 
Monthly sample covariance matrix, D -0.01 1.36 -0.53 1.49 
One-factor model 0.26 -1.16 1.06 5.35 
One-factor model, C -0.76 0.19 1.06 5.34 
One-factor model, D -0.05 0.15 1.06 5.34 
Ledoit -0.40 -2.99 -0.32 1.06 
Ledoit, C -1.05 -0.60 -0.30 -0.32 
Ledoit, D -0.07 -0.02 -0.03 0.08 
Fama-French 3 factor model -0.38 -2.34 -1.02 4.46 
Fama-French 3 factor model, C -1.08 -0.29 -1.15 4.42 
Fama-French 3 factor model, D -0.22 0.23 -1.15 4.41 
Daily sample covariance matrix 0.38 -3.86 -1.30 -3.29 
Daily sample covariance matrix, C 0.35 -0.11 -0.87 -4.43 
Daily sample covariance matrix, D 0.65 -0.22 -0.28 -3.26 
Daily sample covariance matrix of 
CHMSW, C 

0.29 -0.20 -0.89 -4.82 

Daily sample covariance matrix of  
CHMSW, D 

0.62 -0.31 -0.29 -3.72 

Daily sample covariance matrix (New) 0.29 -3.82 -1.24 -3.40 
Daily sample covariance matrix (New), C 0.23 -0.35 -0.87 -5.09 
Daily sample covariance matrix (New), D 0.57 -0.44 -0.29 -4.11 
Daily Fama-French 3-factor -0.31 -2.41 -0.82 4.28 
Daily Fama-French 3-factor, C -0.51 -0.95 -0.95 4.25 
Daily Fama-French 3-factor, D -0.44 -0.78 -0.93 4.26 
Equal-weighted portfolio of the 500 stocks 0.54 6.79 0.73 6.76 
Value-weighted portfolio of the 500 stocks -0.10 5.25 -1.48 -7.33 
Equal-weighted portfolio of 25 stocks 0.82 6.94 0.29 9.48 
Value-weighted portfolio of 25 stocks 0.32 7.07 -0.10 9.88 

 



Table 8. Comparison of the ex post performance of tangency portfolios and global minimum variance portfolios 

The assets are the Fama-French 25 size-beta sorted portfolios.
The covariance matrix is estimated at the end of April, using monthly
returns of the previous 5 year. The tangency portfolios and the global minimum variance portfolios are then formed
and held for one year. This procedure is repeated from 1968 to 1998.
The table reports characteristics of ex post excess returns of these portfolios. 
Both unconstrained and nonnegativity constrained portfolios are considered.
Means and standard deviations of returns are monthly ones. Sharpe ratios are annualized.

Portfolios
in-sample in-sample  Sharpe  Sharpe  Average Average No.

mean std dev  Ratio Mean Std Dev Minimum Maximum  Ratio total short  of assets
position held long

Panel A: Tangency portfolios

Sample cov matrix, constrained 1.01 5.34 0.66 0.72 5.59 -25.24 25.74 0.45 0.00 2.29
Sample cov matrix, unconstrained -2.96 14.01 -0.73 0.80 43.94 -243.78 193.46 0.06 -36.69 12.68
One-factor model, constrained 0.97 5.19 0.65 0.67 5.64 -26.19 26.78 0.41 0.00 4.16
One-factor model, unconstrained 6.27 10.57 2.06 4.87 46.31 -160.16 500.39 0.36 -9.23 12.94
FF 3-factor model, constrained 1.02 5.35 0.66 0.71 5.60 -25.24 25.74 0.44 0.00 2.32
FF 3-factor model, unconstrained 18.03 42.63 1.46 -0.33 83.32 -715.70 533.18 -0.01 -51.97 12.81
Ledoit estimator, constrained 1.01 5.31 0.66 0.71 5.58 -25.24 25.74 0.44 0.00 2.55
Ledoit estimator, unconstrained -208.78 409.80 -1.76 -66.40 1851.19 -19304.37 15046.03 -0.12 -611.30 13.16
Equally-weighted portfolio 0.62 5.15 -26.56 22.54 0.41 0.00 25.00

Panel B: Global minimum variance portfolios

sample cov matrix, constrained 0.58 4.33 0.46 0.51 3.75 -24.42 16.78 0.46 0.00 3.58
sample cov matrix, unconstrained 0.80 4.60 0.60 0.75 2.15 -21.95 17.44 0.60 -4.82 13.00
one-factor model, constrained 0.58 4.45 0.45 0.54 3.73 -26.34 17.95 0.45 0.00 4.55
one-factor model, unconstrained 0.69 4.82 0.49 0.65 2.43 -19.75 20.16 0.49 -1.48 12.35
FF 3-factor model, constrained 0.58 4.36 0.46 0.51 3.77 -24.66 17.79 0.46 0.00 3.42
FF 3-factor model, unconstrained 0.85 4.13 0.72 0.68 2.48 -20.93 18.27 0.72 -2.52 13.03
Ledoit Estimator, constrained 0.58 4.34 0.46 0.52 3.76 -24.52 17.00 0.46 0.00 4.06
Ledoit Estimator, unconstrained 0.71 4.04 0.61 0.73 2.68 -20.85 16.29 0.61 -2.23 13.39
Equally-weighted portfolio 0.62 5.15 -26.56 22.54 0.41 0.00 25.00

 In-sample Out-of-sample 


