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1. Introduction

Milton Friedman (1969) presents his famous rule for optimal monetary policy-
making. ”Our final rule for the optimum quantity of money,” he writes (p.34), 7is
that it will be attained by a rate of price deflation that makes the nominal rate of
interest equal to zero.” Friedman also suggests that this rule can be implemented
by steadily contracting the money supply at the representative household’s rate
of time preference.

Wilson (1979) and Cole and Kocherlakota (1998) assess Friedman’s proposals
using fully-specified, general equilibrium models in which money is introduced
through the imposition of a cash-in-advance constraint. These authors confirm
the relevance of the Friedman rule by demonstrating that equilibrium allocations
are efficient if and only if the nominal interest rate equals zero. However, they
also find that the Friedman rule can be implemented through any one from a
broad class of monetary policies. Some of these policies call for the money supply
to expand over an arbitrarily long, but finite, horizon; others call for the money
supply to contract, but at a rate that is slower than the representative household’s
rate of time preference. In fact, Wilson and Cole and Kocherlakota show that

necessary and sufficient conditions for the existence of an equilibrium with zero



nominal interest rates and Pareto optimal allocations place restrictions mainly on
the asymptotic behavior of the money supply: these restrictions require the money
supply to eventually contract at a rate that is no faster than the representative
household’s rate of time preference.

These asymptotic conditions present a double-edged sword to a central banker
who wishes to implement the Friedman rule. For when the conditions are satis-
fied, they leave the policymaker with considerable leeway in managing the money
supply over any finite horizon. But what should a central banker do when, for
reasons beyond his or her control, these asymptotic conditions fail to hold? Must
the policymaker abandon the Friedman rule altogether? Or can he or she still
find a way to manage the money supply so that nominal interest rates are zero
and equilibrium allocations are efficient, at least in the short run?

To answer these questions, section 2 sets up a cash-in-advance model like
those used by Wilson (1979) and Cole and Kocherlakota (1998) and, for the sake
of completeness, restates the asymptotic conditions that are both necessary and
sufficient for implementing the Friedman rule over the infinite horizon. Section
3 then assumes that these asymptotic conditions do not hold and characterizes
optimal monetary policies in this alternative case. There, the results indicate that

the central bank can still implement the Friedman rule, but only if its policies are



suitably constrained in the short run. Section 4 considers a stochastic variant of
the same problem. Surprisingly, in this stochastic case, the conditions for imple-
menting optimal allocations most closely resemble those derived for the original
model in section 2: once again, they serve mainly to restrict the long-run behavior

of the money supply. Section 5 briefly concludes.

2. A Cash-in-Advance Model

An infinitely-lived representative household has one unit of productive time during

each period t = 0,1,2,.... Its preferences are described by the utility function

ZﬂtU<Ct, 1 — nt),
t=0

where ¢; denotes its consumption and 1 — ny its leisure during period ¢. The dis-
count factor satisfies 0 < 5 < 1. The single-period utility function U is strictly
increasing in both arguments, strictly concave, and twice continuously differen-
tiable. Let U; and U, 4,7 = 1,2, denote the first and second derivatives of U,

and for y € (0,1), define

Ui(y,1 —y)

Vi) = Us(y,1—y)



It will be useful in all of what follows to assume that V is strictly decreasing with
lim, o V(y) = oo and lim,,; V(y) = 0. Since U is strictly increasing and strictly
concave, a suflicient condition for V' < 0 is Uys > 0.

The household enters period ¢ with money M; and bonds B;. The goods mar-
ket opens first; here, the description of production and trade draws on Lucas’
(1980) interpretation of the cash-in-advance model. Suppose that the represen-
tative household consists of two members: a shopper and a worker. The shopper
purchases consumption from workers from other households at the nominal price
P, subject to the cash-in-advance constraint

% > ¢

Py
The worker, meanwhile, produces output according to the linear technology vy, =
n; and sells this output to shoppers from other households for P;n; units of money.

The asset market opens last. In this end-of-period asset market, the represen-
tative household receives a lump-sum nominal transfer H; from the central bank
and the household’s bonds mature, providing B; additional units of money. The
household spends Byy1/(1+7;) on new bonds, where r; is the net nominal interest

rate, and carries M1 units of money into period ¢ + 1. The household’s budget



constraint is therefore

M,+H,+B B 14+7)+ M,
t t t 0>+ t+1/< t) t+1‘
Py by

In addition to the cash-in-advance and budget constraints, the household’s

choices must satisfy the nonnegativity constraints

Ctzovlzntzoth+120-

And while the household can choose negative values of By, 1, it is not permitted to
borrow more than it can ever repay. Let (; denote the present discounted value
in the period 0 asset market of one unit of money received in the period ¢ asset

market, so that ()9 = 1 and

Qt:ﬁ(lim)

s=0

for t =1,2,3,.... Then the no-Ponzi-game constraints can be formalized as

B o0
Wit = Q; (Mt+1 +—= ) + > Qu(Hs+ Ping) 2 0.
L4y s—t+1



Thus, the representative household chooses {¢;, my, Myy1, Biy1}2o to maximize

its utility function subject to its cash-in-advance, budget, nonnegativity, and no-

Ponzi-game constraints, each of which must hold for all £ = 0,1,2,.... When the

market-clearing conditions

Ye=ce=ny, Myyy =M, +H;, Bi1 =0

are imposed, necessary and sufficient conditions for a solution to the household’s

problem can be written as

Ul(ﬁyt; 1- yt) = A + iy,

U2<yt7 1- yt) = A,

Ae B+ )

Py Piya 7

At _ BAei1
(1+7r)P Py’

and

M, M,
MtzothZyn/%<E—yt>:0



forallt=0,1,2 ... and
lim BN Myy

t—o0 Pt

=0, (6)

where A; and p, are Lagrange multipliers on the budget and cash-in-advance
constraints for period t. Accordingly, an equilibrium can be defined as a set of
sequences {Yi, A, iy, e, P, Miy1}5°, that satisfy (1)-(6), with the initial condition
My pinned down by a choice of nominal units.

Under the maintained assumptions on the household’s utility function, there
is a unique symmetric Pareto optimal allocation for this economy. This alloca-
tion has y, = y* for all t = 0,1,2, ..., where y* satisfies the efficiency condition
V(y*) = 1: the marginal rate of substitution between leisure and consumption
equals the corresponding marginal rate of transformation. What monetary poli-
cies, defined as sequences { My 1}32,, allow for the existence of an equilibrium in
which allocations are Pareto optimal? To answer this question, Wilson (1979)

and Cole and Kocherlakota (1998) present results like the following.

Proposition 1 An equilibrium with y, = y* for all t = 0,1,2,... exists if and
only if



and

Jim My =0, (8)

Proof To begin, suppose that (7) and (8) are satisfied, and set y, = y*, \s =
Ui(y*,1 —y*) = Us(y*,1 —y*), p, = 0, 7, = 0, and B, = B'Fy for all
t=0,1,2,..., where ) > 0 is chosen below. Clearly, these values satisfy

(1)-(4). Since p, = 0, (5) requires that

B "M, > Poy*

forall t =0,1,2,.... But (7) guarantees the existence of an € > 0 such that
B tM, > e forallt = 0,1,2, ..., and thereby allows this last condition to be
satisfied for any choice of Py < £/y*. Meanwhile, (8) guarantees that (6)

will hold. Thus, (7) and (8) are sufficient conditions for the existence of an

optimal equilibrium.

Next, suppose that an equilibrium with 3, = y* for all ¢ = 0,1,2, ... exists. By

(1)-(4), \x = Us(y*, 1—y*) = Ua(y*, 1—y"), gt = 0,7, = 0, and P, = 3Py > 0



for all t =0,1,2,... in any such equilibrium. Thus, (5) requires that

BM; > Poy* > 0

for all £ = 0,1,2,..., which implies that (7) must be satisfied. Meanwhile,
(6) implies that (8) must hold. This establishes that (7) and (8) are also
necessary conditions for the existence of an optimal equilibrium, completing

the proof.

Proposition 1 and its proof support Friedman’s (1969) assertion that in mon-
etary economies, Pareto optimal allocations are associated with price deflations
and zero nominal interest rates. Friedman also suggests that his zero-nominal-
interest-rate rule can be implemented by steadily contracting the money supply at
the representative household’s rate of time preference and, indeed, the policy that
sets M; = 3*My for all t = 0,1,2, ... satisfies both (7) and (8). As emphasized by
Wilson (1979) and Cole and Kocherlakota (1998), however, many other monetary
policies also satisfy (7) and (8), including ones that call for positive rates of money
growth over arbitrarily long, but finite, horizons and ones that set M; = 7'M,
with 1 >7 >, forallt =0,1,2,....

In fact, although (7) does require the money supply to be strictly positive in



every period, the additional constraints imposed by (7) and (8) apply only to the
very long-run behavior of the money supply. Condition (7) places a lower bound
on the asymptotic money growth rate: since the gross inflation rate equals 5 under
the Friedman rule, the money stock must eventually grow at a rate that is at least
as large as 0 to prevent the cash-in-advance constraint from binding. Condition
(8) places an upper bound on the asymptotic money growth rate: evidently, the
money supply must eventually contract to keep the nominal interest rate fixed at
zero. Together, therefore, (7) and (8) simply require the money supply to asymp-
totically contract at a rate that is no faster than the representative household’s

rate of time preference.

3. Implementing the Friedman Rule in the Short Run

When (7) and (8) hold, they leave the central bank with a great deal of flexibility;
in fact, they allow the central bank to choose any time path for the money supply
over any finite horizon while still implementing the Friedman rule. But what
should a central banker do when (7) or (8) fails to hold?

When (7) fails to hold, the money supply contracts asymptotically at a rate
that exceeds the representative household’s rate of time preference. A second

result, resembling those found in Woodford (1994), helps in considering this case.

10



Proposition 2 Let the money supply contract at a constant rate that exceeds
the representative household’s rate of time preference, so that My /M, =

< Plorallt=0,1,2, ... If the single-period utility function U takes the

additively separable form

Ule,1 —n) =u(c) +v(1l —n), 9)

where the functions u and v are strictly increasing, strictly concave, and

twice continuously differentiable and if, in addition, the function u satisfies

lim e/ (c) > 0, (10)

c—0

then no equilibrium exists.

Proof The proof proceeds in two steps. The first step shows that when Mgy /M, =
< forallt=0,1,2, ... and when utility is additively separable as in (9),
the only equilibria that can possibly exist are those in which real balances
approach zero asymptotically. The second step shows that under the addi-

tional assumption that (10) is satisfied, even those equilibria fail to exist.

Thus, to begin, suppose that My /My = 7 < f for all £ = 0,1,2,... and that

11



utility is additively separable as in (9). Define the sequence {F;}3°, by

for all t =0,1,2,.... In any equilibrium, (2), (3), and (5) require that

v~y N B+ peyy) < By Sl = y1)
Py Py Py — Py Py

and hence

b > (g) iy > Py

for all t = 0,1,2,.... Evidently, {F}}°, is strictly decreasing and bounded

below by zero; it follows that this sequence converges to some number F' > 0.

Next, define the sequence {G}7°, by

for all t =0,1,2,.... In any equilibrium, (1), (3), and (5) require that

Wy _ Mt o A BAers + peyy) _ B (W)

= A & Py Py

12



and hence

Gy > (g) Gy > G

for all t =0,1,2,.... Thus, {G}°, is also strictly decreasing and bounded

below by zero; it, too, converges to some number G > 0.

Now define the sequence {D}}2°, by

Bt + o) A
P b

Dtlet

for all t = 0,1,2,.... Equation (3) and the assumptions that M, /M; =

7w < 8 < 1imply that D} =0 for all £ = 0,1,2,... and that
lim D} =0.
Meanwhile, (1) and (2) imply that

e

D, = (ﬂ> Gy — Fi.

13



Taken together, these last two results imply that

Finally, define the sequence {D?}2°, by

D? = (ﬂ> Gt—Ft

T
for all t =0,1,2, ..., and note that under this definition,

lim D} = (@>G—F=0.
t—o0 Tr

Note also that in any equilibrium, (1), (2), and (5) require that
Wlye) =X+ p > A =0 (1 =)

forallt =0,1,2,.... Since both v and v are strictly concave, this last set of
requirements implies that vy, < y* for all £ = 0,1, 2, ... where, as before, y*

is the unique value that satisfies V' (y*) = 1. More specifically, this last set

14



of requirements implies that

(g) u'(ye) = v'(L—ye) > (g - 1) u'(y) > (g - 1) u'(y") >0

so that, in particular,

(g) W (ye) = v'(1— )

is bounded away from zero. The definitions

D? = (g) G, —F, = (%) Kg) u'(ye) = V' (1= we)

then imply that for lim; ., D? = 0 to hold as required,

M,
lim — =20
tiglo P,

must also hold in any equilibrium. This establishes that when M, /M; =
< forallt=0,1,2, ... and when utility is additively separable as in (9),
the only equilibria that can possibly exist are those in which real balances

approach zero asymptotically.

15



To show that the additional restriction in (10) rules out all such equilibria, sup-
pose to the contrary that an equilibrium of this type does exist when (10)

is satisfied, and return to the definitions that imply

D = (%) Kg) u(ye) —v'(1 - yt)] :

for all t = 0,1,2,.... Combine this last equality with (1), (2), and (5) to

obtaln
D? > (%) (g - 1) o () > (g - 1) gl () > 0

for all t = 0,1,2,.... Since, as shown above, lim; .o, D? = 0 must hold in

any equilibrium, it follows that
tlim Y () = 0

must hold as well. But lim, ., M;/P; = 0 must also hold in any equilibrium;
hence, (5) requires that

thm Yy = 0

as well. Taken together, however, these last two results contradict the as-

sumption that (10) is satisfied. This establishes that when My /M, =7 <

16



B forallt=0,1,2 ... and when the utility function satisfies the restrictions

in (9) and (10), no equilibrium exists.

Scheinkman (1980), Lucas and Stokey (1987), and Woodford (1994) also use
assumptions like (9) and (10). They interpret (10), in particular, as a condition
that makes the gains from monetary trade sufficiently important to rule out equi-
libria in which self-fulfilling inflations drive the level of real balances to zero as the
price level grows faster, or contracts more slowly, than the money supply. These
conditions are satisfied by a wide range of utility functions, including those of the

familiar form

U(c,l—n):—l—l—v(l—n)

for all o > 1.

Proposition 2 suggests that when (7) fails to hold, the problem involves the
likely nonexistence of an equilibrium, not just the suboptimality of equilibrium
allocations. What happens when a central bank adopts a policy that is inconsis-
tent with the existence of an equilibrium? Exploring the subtleties of this issue is
left for future research; instead, the remainder of this paper focuses on the case
in which the conditions of proposition 1 are violated because (8) does not hold.

Suppose, for example, that a central banker is appointed at the beginning of

17



period 0 and granted the authority to choose {H;}l ', the monetary transfers
for the first T" periods. With the initial condition My taken as given, this central
banker’s control over {H;}] o gives him or her control over { M1}/, the path
for the money supply through the beginning of period T

This central banker’s term lasts for only T’ periods, however: during period 7',
a new central banker takes over and arbitrarily decides that the money supply will
grow at the constant gross rate m > 1, so that My, ; = 7/ My for all j =0,1,2, ...
Under the maintained assumptions on the household’s utility function, there is
a unique steady-state equilibrium under this policy, in which output ¥, and real
balances m; = M, /P, are constant and equal to §, where § < y* uniquely satisfies
V(7) = 7/8. Sosuppose in addition that, independent of the first central banker’s
decisions, ypi; = mpy; =g forall 7 =0,1,2, ...

The assumption that 7 > 1 implies that (8) will not hold when the first central
banker takes office at the beginning of period 0. The question now becomes: can
this first central banker, through an appropriate choice of { M, 1 }1_', nevertheless
guarantee the existence of an equilibrium in which nominal interest rates are zero
and allocations are efficient, at least in the short run?

As a first step in answering this question, note that with Mz, ; = 7 My and

yri; =mry; =g lorall j =0,1,2 ..., (1)-(5) are satisfied with A\, = Ua(7,1 — %),

18



He = Ul(:g?l - y) - U2<y71 - y) > 07 Ty = V(ﬂ) - 17 and Pt = Mt/y for all
t=T,T+1,T+2, .., and (6) is satisfied as well. Hence, the values influenced by
the first central banker, {y:, A, phy, 76, Pr, M1 o', need only satisfy (1), (2), and

(5) forallt =0,1,....,7 — 1, (3) and (4) for all t =0, 1,...,T — 2,

Ao _ BU (5,1 — 97

11
Pr My (11)
and
)\Tfl _ ﬂU2<y7 1-— y)ﬂ (12>
(14+7rp_1)Pr My ’

where these last two conditions correspond to (3) and (4) for ¢ = T'— 1. These

observations are useful in establishing the following result.

Proposition 3 Suppose that Mpy; = 7/ My, with 7 > 1, for all j = 0,1,2, ...
and that this policy puts the economy in its unique steady state from period
T forward, with yry; = mpy; =g forall 7 =0,1,2,.... Then an equilibrium

with y, = y* for all t =0,1,....,T — 1 exists if and only if

Mr >0 (13>

19



and

Ui(y*, 1 —y)y*
AU(g,1—9)F

M, > ﬁtl ]MT (14)
forallt=0,1,....,T — 1.

Proof To begin, suppose that (13) and (14) are satisfied, and set y; = y*, A\, =

U(y*,1—y*) =Us(y*, 1 —y*), p, = 0, and

P :ﬂtl Uiy, 1—y")

M.
AU (7,1 - y)@] !

for all ¢ = 0,1,...,7 — 1. In addition, set r, = 0 for all t = 0,1,...,T — 2

and 77—y = V(§) — 1. Condition (13) guarantees that P, > 0 for all t =
0,1,...,7 — 1, as required for the existence of this equilibrium. Clearly, (1)
and (2) hold for allt = 0,1,...,7 —1 and, since P,;; = §F;, (3) and (4) hold
forallt =0,1,...,7 — 2. Equations (11) and (12) hold as well. Since p, = 0,

(5) requires that

MtZﬂtlUl<y71_y)y ]MT

UG- 9)7
forallt =0,1,...,7 — 1, but this condition coincides with (14) and is there-
fore guaranteed to hold. Thus, (13) and (14) are sufficient conditions for

1

1., T — 1.

the existence of an equilibrium with vy, = y* for all £ = 0

20



Next, suppose that an equilibrium with y, = y* for all ¢ = 0,1,....,T — 1 exists.

By (1)-(3) and (11), \s = Uy(y*, 1 —y*) = Ua(y*, 1 — y*), p, = 0, and

Ui(y*,1 —y*)
BTU(y.1 - 9)y

Pt:ﬂt[ ]MT>0

forallt =0,1,....,7 — 1 in any such equilibrium; this condition implies that

(13) must hold. In addition, (5) requires that

Ui(y*, 1 —y*)y*
AU(9,1—9)F

w@zﬁ[ ]MT
for allt =0,1,...,7 — 1, and this condition says that (14) must hold. This

establishes that (13) and (14) are also necessary conditions for the existence

of an equilibrium with y, = y* for allt = 0,1, ..., T'—1, completing the proof.

Before going on to interpret (13) and (14), it is useful to note that proposition
3 holds much more generally. In particular, the assumption that the economy is
in steady state from period T forward is not essential. All that is required is that
the monetary policy adopted from period T forward give rise to an equilibrium in
which the cash-in-advance constraint binds during period T', so that Mr/Pr = yr

for some yr < y*. In the more general case, the proof goes through unchanged,

21



with yr in place of . As stated, however, the proposition makes clear that optimal
allocations can be achieved in periods ¢ = 0,1,...,T — 1 even when the rate of
money growth is positive, even when the cash-in-advance constraint binds, and
even when allocations are suboptimal for all t =TT+ 1,T + 2, ....

Proposition 3 indicates that the Friedman rule need not be abandoned when (8)
fails to hold: the central bank can still select { M, 1}, in a way that guarantees
the existence of an equilibrium in which the nominal interest rate is zero for all
t=0,1,...,T — 2 and allocations are efficient for all t =0,1,...,T — 1. Condition
(13) simply insures that money is always in positive supply, given that (14) must
hold for allt =0,1,...,T — 1 and that My =7M, forallt =TT+ 1, T+ 2, ....
Condition (14), meanwhile, places upper and lower bounds on the money growth
rate and thereby provides finite-horizon analogs to (7) and (8).

Consider (14) for ¢ = 0. Since the initial condition My is given, this constraint

places an upper bound on Mrp:

[ﬂTUl (7.1 —9)7

Mo > Mo 15
Ul(y*,l—y*)y*] 0=T (15)

Thus, like (8), (14) implies that money growth must be sufficiently slow if the

nominal interest rate is to remain at zero. Given a choice of My that satisfies

22



(15), (14) also places lower bounds on M, for all t = 1,2 ..., T — 1. Thus, like
(7), (14) implies that money growth must be sufliciently fast to keep the cash-in-
advance constraint from binding.

Conditions (13) and (14) still leave the central bank with some flexibility in
choosing its policy: the money supply can expand for the first T'— 1 periods, for
instance, provided that it contracts in period T'—1 so that (15) holds. Unlike (7)
and (8), however, (13) and (14) do impose nontrivial restrictions on the behavior
of the money supply over a finite horizon. Thus, proposition 3 requires the central

bank to act in the short run to implement the Friedman rule in the short run.

4. Stochastic Regime Changes

As a variation on the same theme, suppose now that instead of taking place at
the end of a finite horizon of fixed length, the regime change described above
occurs randomly. More specifically, suppose that at the beginning of each period
t=1,23,..., all agents observe a random signal that determines whether or not
the first central banker’s term will end. With probability 1 — 6, the first central
banker continues in office, and with probability 6, the second central banker takes
over during period t. These assumptions allow the first central banker to operate

for sure during period 0; during each period that follows, however, there is a

23



constant probability of the regime change. And once the regime change does
occur, it cannot be reversed: the second central banker stays in office for the
remainder of the infinite horizon.

As before, suppose that once in office, the second central banker arbitrarily
decides to increase the money supply at the constant gross rate m > 1, placing the
economy in its unique steady state. Thus, M;,;/M; = 7m and y, = m; = ¢ for all
periods following the regime change, where § again satisfies V(3) = /3. Even for
arbitrarily small values of 6 > 0, the stochastic process governing the timing of the
regime change implies that the first central banker’s term will be finite in length.
The question remains: can the first central banker, through an appropriate choice
of policy, still guarantee the existence of an equilibrium in which allocations are
efficient, with y, = y*, for all periods before the regime change?

To begin answering this question, note first that before the stochastic regime
change, the representative household must make its decisions under uncertainty.
Among the conditions that are both necessary and sufficient for a solution to the
household’s optimization problem, the intratemporal relationships (1), (2), and

(5) remain as above. However, the intertemporal conditions (3), (4), and (6)

24



generalize under uncertainty to

At App1 + Mt+1>
— =0k | —, 16
rY ( Piys o)

(1+7r)P Py
and
A M,
lim £, (%) —0, (18)

where E; denotes the household’s rational expectation based on information avail-
able during period ¢. Each of these conditions must hold for all £ = 0,1, 2, ....
Some additional notation will now prove useful. For all ¢ = 0,1,2, ..., let ¥/,
)\tl, pt, v, PL,and M} denote the values of vy, A, iy, 7¢, iy, and M, that will
prevail in equilibrium if the first central banker remains in power during period
t. Similarly, for all t = 1,2,3,..., let y2, A2, p2, r2, P2, and M? denote the
values that will prevail if the second central banker takes charge before or during
period ?. Since the economy reverts to its steady state after the regime change,
i =7, M =0a(.1—9) = (B3/m)U(7.1 = §), pf = Ua(5,1 = ) — V(5,1 — ) =
(1-38/m)U(g,1—9y) > 0,72 =V(y) — 1, P2 = M?/y, and M2 ,/M} =m > 1 for

allt =1,2,3,.... These values satisly (1), (2), (5), and (16)-(18), as required, for

25



all periods after the regime change.
For all periods before the regime change, (1), (2), (5), and (16)-(18) require

that !, A, ul, rl, P}, and M} satisfy

U(ys, 1—yp) = A+, (19)
Us(yr, 1 — ) = AL, (20)
)‘i )‘i L B Ui(g,1—9)7
ZL—B(1-6 (; + p6 | —F—2] 21
Ptl ( ) Ptl+1 Mt1+1 ( >
A A A\ [U(5,1 — 9)y
Tt (1= (L) y s () | 922
TRV >(P3+1 P\ T (22)
M} M}
=0, > b (B ) =0 (23
and
1— &N ML
hm [ﬂ( )]1 t t+1 — 0 (24>
t—o0o Pt

In deriving (21) and (22) from (16) and (17), use has been made of the fact that
if the regime change occurs during period ¢ 4 1, the beginning-of-period money
supply My, 1 has still been determined by the past actions of the first central bank,
so that M2, = M}, .

In terms of this new notation, the first central banker takes the initial con-
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dition My = My as given and chooses an entire infinite sequence {M} 1},
indicating how much money he or she plans to supply contingent on remaining
in office during each period ¢ = 0,1,2,.... Of course, this infinite-horizon plan
gets implemented only during periods before the stochastic regime change; how-
ever, the announcement of the entire sequence { M}, | }22, serves to pin down the
representative household’s expectations of what will happen so long as the first
central banker remains in office. The key question from above can now be stated
more precisely as: can the first central banker, through an appropriate choice of
{M} 120, guarantee the existence of a solution to (19)-(24) that has y; = y* for

allt=0,1,2,...7 The next result answers this question in the affirmative.

Proposition 4 Suppose that at the beginning of each period ¢ = 0,1,2, ...,
there is a constant probability 6 > 0 that a new central banker will set
Myyig1/Mey; = 7 > 1 for all j = 0,1,2,... and that following this sto-
chastic regime change, the economy reverts to its unique steady state, with
Yer; =my; =g lorall j =0,1,2,.... Then an equilibrium with y, = 3} = y*
for all periods before the regime change exists if the sequence { M}, }3° cho-

sen by the first central banker satisfies

M}y >0 (25)
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forallt =0,1,2,...,

t—1 1
1j 1-96)]° 2
i S0 o) (=) <0 (26)
and
thj?o Mt1+1 =0. 27)

Proof Suppose that (25)-(27) are satisfied, and set y} = y*, A, = Ur(y",1—y*) =
Us(y*,1 —y*),and pf =0 for all t =0,1,2,.... Fort =1,2,3,..., set P! so

that

L Wl_mt{%_ga [gjéyyl—l__y)y] i[ﬁu_é)]s(Mll )}

s+1

where Fy satisfying

H} S8 - o) (Mll )

1
— > 36
Pol —0 s+1

is chosen below. Condition (26), coupled with the fact that the sequence

{X¢}22, defined by

X, =[50 - 8 (M;l)

s=0
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for all t = 0,1,2,... is strictly increasing, guarantees that P! > 0 for all

t=20,1,2, ..., as required for the existence of this equilibrium. Finally, set

36 <7r;_[3) [U1(]l\/4,}y)y}

t+1

1
Ty = . — >0
A1 = 8) | Lld=rl] . s (2) | lggnn]

forallt=0,1,2 ...

Clearly, these values satisfy (19)-(22) for all t = 0,1,2,.... Since pu; = 0, (23)

requires that

o1 =0 wtt { g 8| L8 S - o () =

for all t =1,2,3,.... But (26) implies that

and together with (25), this last condition guarantees the existence of an

e > 0 such that [8(1 —6)] "My > e forall t =0,1,2,.... Fort =1,2 3, ...,
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therefore, (23) is satisfied for any choice of Py such that

s=0

For t = 0, (23) requires that

My .

1 > Yy,

Fo
but since Mg > e, this condition holds as well. Finally, (26) and (27)
guarantee that (24) will hold. Thus, as stated in the proposition, (25)-(27)
are sufficient conditions for the existence of an equilibrium with 3, = 3} = 3*

for all periods before the stochastic regime change.

Condition (25) simply guarantees that money is always in positive supply.
Conditions (26) and (27), meanwhile, bear a close resemblance to (7) and (8) from
proposition 1. Like (7), (26) places a lower bound on the asymptotic money growth
rate: it requires that the money supply eventually grow at a rate that exceeds
the probability-adjusted discount factor 3(1 — 6), ruling out policies under which
the money supply contracts at so fast a rate that the representative household’s

demand for real balances becomes infinite. And like (8), (27) places an upper
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bound on the asymptotic money growth rate: once again, efficiency requires that
the money supply eventually contract. Together, therefore, (26) and (27) only
require the first central banker to promise that should he or she remain in office,
the money supply will eventually contract at a rate that is no faster than the
representative household’s probability-adjusted discount rate [3(1 — §)]7! — 1.
Suppose, in particular, that the first central banker chooses a policy { M}, | }22,
such that M}, = vM} for all t = 0,1,...,7 — 1 and M}, = wM} for t =
T T+1,T4+2 .., withy>1 3(1—-¢) <w<1,and T < co. Policies from this
class, which call for the money supply to grow at a constant rate for the first T'
periods before contracting at a rate that is slower than the probability-adjusted
discount rate thereafter, satisfy (25)-(27). By adopting one of these policies,
therefore, the first central banker can guarantee the existence of an equilibrium in
which allocations are Pareto optimal for all periods before the stochastic regime
change. And if, after announcing a policy of this type, the first central banker
loses power before the arrival of period T, the promised monetary contraction will
never actually be observed! Strikingly, in this case, expectations of what the first
central banker will do so long as he or she remains in office are by themselves

sufficient to implement optimal allocations.

Surprisingly, therefore, the assumption that the regime change occurs ran-
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domly in any period, instead of for certain in a fixed period, actually weakens
the constraints placed on a central banker who wishes to implement optimal al-
locations in the short run. The conditions imposed by proposition 4, like those
imposed by the original proposition 1, serve mainly to restrict the long-run be-

havior of the money supply.

5. Conclusion

Wilson (1979) and Cole and Kocherlakota (1998) show that in cash-in-advance
models, necessary and sufficient conditions for the existence of an equilibrium
with zero nominal interest rates and Pareto optimal allocations place restrictions
mainly on the asymptotic behavior of the money supply. For a central banker who
wishes to implement the Friedman (1969) rule, these results are unambiguously
positive. So long as the asymptotic conditions are guaranteed to hold, tremendous
flexibility remains in how the money stock is managed over any finite horizon.
But what happens when these asymptotic conditions fail to hold? The two
examples studied here indicate that the central bank can still find policies that
implement optimal allocations, at least in the short run. In the first example,
the asymptotic conditions fail to hold because the central banker remains in office

for a fixed term of finite length. Nevertheless, by acting appropriately over his
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or her finite horizon, the central banker can still implement the Friedman rule.
And in the second example, where the central banker’s term ends in a randomly-
determined period, the optimality conditions become even easier to satisfy. There,
the central banker’s leverage over expectations of what will happen in the distant
future, so long as he or she remains in office, helps support optimal allocations even
without direct action in the short run. These results, too, provide unambiguously

good news for central bankers who wish to implement the Friedman rule.
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