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ABSTRACT

In the manufacturing sector of the U.S. economy, nearly 9% of output is not accounted for as

payments to either physical capital or labor. The value of this output is a little larger than the value of the

stock of physical capital. We build a model to measure how much of this output can be attributed to

payments to organization capital-organization-specific knowledge that is built up with experience. We

find that roughly 4% of output can be accounted for as payments to organization capital and that this

capital has roughly two-thirds the value of the stock of physical capital.
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In the U.S. national income and product accounts (NIPA), output is accounted for as

payments to labor and payments to owners of firms. In the standard growth model, output

is accounted for as payments to labor and to physical capital. Using this growth model to

analyze NIPA data on the U.S. manufacturing sector during 1959—99, we find that nearly 9%

of the output of this sector is not accounted for by payments to either of these factors. We

interpret this unaccounted-for output as payments to various forms of unmeasured capital or

monopoly rents. The discounted present value of this unaccounted-for output is about 120%

of the value of the stock of physical capital. In this paper, we build a model of one type of

unmeasured capital in organizations and measure the portion of unaccounted-for output that

can be accounted for as payments to this form of capital.

The type of capital that we attempt to measure is one which has long been considered

significant. At least as far back as Marshall (1930, Book iv, Chap. 13.I), economists have

argued that organizations store and accumulate knowledge that affects their technology of

production. This accumulated knowledge is a type of unmeasured capital that is distinct

from the concepts of physical or human capital in the standard growth model. Following

Prescott and Visscher (1980), we call this knowledge organization capital.

We find that 4% of output in the U.S. manufacturing sector can be accounted for as

payments to organization capital. Thus, a little less than half of the nearly 9% unaccounted-

for output in manufacturing can be accounted for as payments to organization capital. In

the model, the discounted present value of payments to organization capital is 66%, or about

two-thirds, of the value of physical capital.

Our model of organization capital builds on the industry evolution models of Jovanovic

(1982), Nelson and Winter (1982), and Hopenhayn and Rogerson (1993). We model the



accumulation of organization capital at the plant level. Each plant is distinguished by its

specific productivity and its age, and this pair of distinguishing features is what we consider

the plant’s organization capital. The specific productivity of a plant depends on the vintage

of the plant’s technology and its built-up stock of knowledge on how to use that technology.

When new plants are built, their blueprints embody the best available, or frontier, technology,

but they have little built-up knowledge. As a plant operates over time, specific productivity

grows stochastically at a rate that depends on its age. We interpret this growth of a plant’s

specific productivity as arising from a stochastic learning process.

To quantify the learning process in our model, we rely on the simple observation that

the relative size of plants in the model is determined by their relative specific productivities.

We calibrate the stochastic process by which plant productivity grows so that the model can

reproduce panel data on employment, job creation, and job destruction in manufacturing

plants of different ages in the U.S. economy. When interpreted in the context of our model,

these data on industry evolution indicate that learning is both prolonged and substantial.

In the data, as a cohort of plants ages from newborn to 20 years old, its share of the labor

force grows by a factor of about seven. In our model, these data imply that the aggregate

of specific productivities across a cohort of plants grows substantially for 20 years. More

generally, our model replicates the patterns of plant birth, growth, and death in the U.S.

economy and, hence, quantifies the accumulation of organization capital in this economy.

In terms of the literature, two broad themes have emerged since Marshall’s (1930)

work. One theme is that organization capital is embodied in the firm’s workers or in their

matches to tasks within the firm. Jovanovic (1979), Prescott and Visscher (1980), Becker

(1993), and others have developed explicit microeconomic models of this idea. Jovanovic and
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Moffit (1990), Topel (1991), and others have measured different aspects of this firm-specific

human capital. Another theme in the literature is that organization capital is a firm-specific

capital good jointly produced with output and embodied in the organization itself. Arrow

(1962), Rosen (1972), Ericson and Pakes (1995), and many others have developed models

in which organization capital is acquired by endogenous learning-by-doing. We follow this

second theme and regard organization capital as embodied in the organization and as being

jointly produced with measured output.

We model specific productivity as an exogenous stochastic process in a manner similar

to that of Hopenhayn and Rogerson (1993). Our approach differs from that of a large litera-

ture which models specific productivity as endogenous. The main advantage of our approach

is that it allows us to match the process for specific productivity directly to data on the

growth process of plants. Moreover, we need not take a stand on whether this productivity

is derived from active or passive learning, matching, or ongoing adoption of new technologies

in existing plants.

The economy considered here is a steady state version of the one in our earlier work,

Atkeson and Kehoe (2001), which we used to study the transition of the U.S. economy

following the Second Industrial Revolution. Here we use this model to measure the value of

organization capital in the U.S. economy.

1. The value of unaccounted-for output in U.S. manufacturing

Here we analyze data on the U.S. manufacturing sector during 1959—99. We ask what

fraction of output cannot be accounted for by payments to labor and physical capital. This

unaccounted-for output must be payments to owners of firms as corporate profits, proprietor’s
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income, or net interest that cannot be accounted for as payments to physical capital.

We find that roughly 9% of U.S. manufacturing output is unaccounted for.1 The value

of this unaccounted-for output is about 120% of the value of the physical capital stock in this

sector. We think of this unaccounted-for output as payments to various forms of unmeasured

capital, including monopoly rents.

We arrive at this conclusion by measuring payments to labor and to physical capital

during 1959—99 as a share of output. The payments to labor can be obtained from the NIPA

(U.S. Commerce, various dates).2 On average during the 1959—99 period, these payments are

72.9% of the gross output of this sector. To measure the payments to physical capital, we

use a growth model with equipment and structures. We find that, on average, the payments

to physical capital are 18.4% of the output of this sector. Thus, 8.7% of the output of this

sector (or roughly 9%) is not accounted for by payments to either labor or physical capital.

We interpret this unaccounted-for output as a net flow of payments to the owners

of the manufacturing sector. Thus, to the extent that these are payments to unmeasured

capital, these payments are net of the costs of investing in that capital. One way to gain

some perspective on the magnitude of this flow is to compare it to the flow of returns that the

owners of physical capital receive net of the cost of investing in new capital. Since investment

in physical capital has averaged 11.0% of output in manufacturing, these returns are 7.4%

(= 18.4 − 11.0) of the output of this sector. Since the value of either type of capital is the

present value of their flows, we conclude that the value of the claim to unaccounted-for output

in this sector is 119% (∼= 8.7/7.4) of the value of the stock of physical capital in this sector.

We measure the payments to physical capital as follows. In a growth model with

equipment and structures, the payments to physical capital are given by rEkE + rSkS, where
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rE and rS are the rental rates and kE and kS are the stocks of the two types of capital. In the

U.S. data, the value of each stock of capital is recorded, but the rental rates are not. Thus,

to measure the portion of output that can be accounted for as payments to physical capital,

we must measure these rental rates indirectly.

To do so, let i denote the rate of return on financial assets, namely, the return to the

portfolio of financial claims on firms. In the model, this return is equal to the return from

buying one unit of capital of either type in period t after corporate income taxes and changes

in the relative price of that type of capital are taken into account. Thus, equating these

returns gives

1 + it = [(1− τ c)r
j
t+1 + τ cp

j
t+1δ

j + (1− δj)pjt+1]/p
j
t , (1)

where rj, pj, and δj are the rental rate, price, and depreciation rate on capital of type

j = E, S and τ c is the corporate income tax rate. As described below, we measure i = 5.7%,

δE = 11.1%, δS = 3.0%, pEt+1/p
E
t = 98.3%, pSt+1/p

S
t = 101%, and τ c = 30.5%. From (1),

these figures imply rental rates of rE = 22.0% and rS = 9.9%, which together with measured

physical capital/output ratios of kE/y = 62.9% and kS/y = 45.5% imply capital shares of

rEkE/y = 13.9% and rSkS/y = 4.5%, for a total capital share of 18.4%.

To measure the return on financial assets i, we compute the average return to the

portfolio of financial claims on the nonfinancial corporate business sector. This return is a

weighted average of returns on equity, long-term corporate debt, and short-term debt, where

the weights are determined by the weights of these categories in the total value of claims on

that sector. We obtain values for real asset returns from Ibbotson Associates (2000). Since

real asset returns are volatile, we use the longest consistent time series available to compute
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their average returns and, hence, take averages over the period 1926—99. These averages

are 7.94% for equity (the Standard & Poor’s 500-stock price index), 2.46% for long-term

corporate bonds, and .7% for short-term debt (30-day U.S. Treasury bills). We obtain the

weights for the categories by taking average shares over the period 1959—99 from the Federal

Reserve System’s U.S. flow of funds accounts (FR Board, various dates, Table L102). For

weights for equity returns, long-term bond returns, and short-term debt returns, we use the

average of the weights in the total market value of the three items: equities (line 41), 63%;

securities and mortgages (line 42), 22%; and loans and short-term paper (line 43), 15%.

We measure the depreciation rates as the ratio of the depreciation to the current cost

of capital reported by the U.S. Bureau of Economic Analysis (Herman 2000). We measure

the prices of equipment and structures as the implicit price deflators (from Table 7.1 of the

NIPA). We measure the corporate tax rates τ c as the average of the ratio of corporate profits

tax payments for the nonfinancial corporate business sector to the sum of corporate profits

and net interest for that sector (using Table 1.16 of the NIPA).

Our estimate for the share of output unaccounted for clearly depends on the return

on financial assets i. We measure that return as i = 5.7%. In Figure 1, we plot the share of

output paid to physical capital and the share of output unaccounted for against the return on

financial assets i. For example, if i were 4%, then the share of output paid to physical capital

would be 15.7% and the share of output unaccounted for would be 11.4%, while if i were

8.0%, the physical capital share would be 21.9% and the share of unaccounted-for output

would be 5.1%. The share of unaccounted-for output would be zero only if the interest rate

were 11.25%. In Figure 2, we plot the corresponding ratio of the value of unaccounted-for

output relative to the value of physical capital against the return on financial assets. When
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i is 4%, this ratio is 247%; when i is 8%, the ratio is 47%; and when i is 11.25%, it is zero.

The share of output unaccounted for is much higher in the manufacturing sector than

in the nonfinancial corporate sector as a whole. For the larger sector, the share of payments

to labor is 72.5% while, based on the same methodology as above with i = 5.7%, the share

of payments to physical capital is 24.8%. This leaves only 2.7% of output not accounted

for instead of 8.7%. The major reason for this difference between the two sectors is that

the capital/output ratio is much higher in the nonfinancial corporate sector than it is in

manufacturing (1.64 vs. 1.08). In the nonfinancial corporate sector, the investment/output

ratio has averaged 15.2%; thus, the value of a claim to unaccounted-for output relative to the

value of the stock of physical capital is only 28%. (Larkins 2000 performs a similar calculation

of factor payments for all domestic nonfinancial corporations and arrives at similar numbers.)

2. A model of organization capital

In this section, we develop our quantitative model of organization capital. In the

model, time is discrete and is denoted by periods t = 0, 1, . . . , . The economy has two

types of agents: workers and managers. There exist a continuum of size 1 of workers and a

continuum of size 1 of managers.

Workers are each endowed with one unit of labor per period, which they supply in-

elastically. Workers are also endowed with the initial stock of physical capital and ownership

of the plants that exist in period 0. Workers have preferences over consumption given by

P∞
t=0 β

t log(cwt), where β is the discount factor. Given sequences of wages and intertemporal

prices {wt, pt}∞t=0, initial capital holdings k0, and an initial value a0 of the plants that exist

in period 0, workers choose sequences of consumption {cwt}∞t=0 to maximize utility subject to

7



the budget constraint

∞X
t=0

ptcwt ≤
∞X
t=0

ptwt + k0 + a0. (2)

Managers are endowed with one unit of managerial time in each period. Managers have

preferences over consumption given by
P∞
t=0 β

t log(cmt). Given sequences of managerial wages

and intertemporal prices {wmt, pt}∞t=0, managers choose consumption {cmt}∞t=0 to maximize

utility subject to the budget constraint
P∞
t=0 ptcmt ≤

P∞
t=0 ptwmt. Notice that we have given

all the initial assets to the workers. Since worker and manager utilities are identical and

homothetic, aggregate variables do not depend on the initial allocation of assets.

Production in this economy is carried out in plants. In any period, a plant is char-

acterized by its specific productivity A and its age s. To operate, a plant uses one unit of

a manager’s time, physical capital, and (workers’) labor as variable inputs. If a plant with

specific productivity A operates with one manager, capital k, and labor l, the plant produces

output

y = zA1−νF (k, l)ν, (3)

where the function F is linearly homogeneous of degree 1 and the parameter ν ∈ (0, 1).

The technology parameter z is common to all plants and grows at an exogenous rate. We

call z economy-wide productivity. Following Lucas (1978, p. 511), we call ν the span of

control parameter of the plant’s manager. The parameter ν may be interpreted more broadly

as determining the degree of diminishing returns at the plant level. We refer to the pair

(A, s) as the plant’s organization-specific capital, or simply its organization capital. This pair
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summarizes the built-up expertise that distinguishes one organization from another.

The timing of events in period t is as follows. The decision whether to operate or not is

made at the beginning of the period. Plants that do not operate produce nothing; the organi-

zation capital in these plants is lost permanently. Plants with organization capital (A, s) that

do operate, in contrast, hire a manager, capital kt, and labor lt and produce output according

to (3). At the end of the period, operating plants draw independent innovations ² to their

specific productivity, with probabilities given by age-dependent distributions {πs}. Thus, a

plant with organization capital (A, s) that operates in period t has stochastic organization

capital (A², s+ 1) at the beginning of period t+ 1.

Consider the process by which a new plant enters the economy. Before a new plant can

enter in period t, a manager must spend period t− 1 preparing and adopting a blueprint for

constructing the plant that determines the plant’s initial specific productivity τ t. Blueprints

adopted in period t − 1 embody the frontier of knowledge regarding the design of plants at

that point in time. This frontier technology evolves exogenously, according to the sequence

{τ t}∞t=0. Thus, a plant built in t − 1 starts period t with initial specific productivity τ t and

organization capital (A, s) = (τ t, 0). We refer to growth in τ t as embodied technical change.

We assume that capital and labor are freely mobile across plants in each period. Thus,

for any plant that operates in period t, the decision of how much capital and labor to hire

is static. Given a rental rate for capital rt, a wage rate for labor wt, and a managerial wage

wmt, the operating plant chooses employment of capital and labor to maximize static returns:

max
k,l
ztA

1−νF (k, l)ν − rtk − wtl − wmt. (4)
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Define

dt(A) = ztA
1−νF (kt(A), lt(A))

ν − rtkt(A)− wtlt(A), (5)

where kt(A) and lt(A) are the solutions to this problem. The dividend to the owner of a

plant with organization capital (A, s) in t is given by dt(A) minus the fixed cost of hiring the

manager wmt. We refer to dt(A) as variable profits.

The decision whether or not to operate a plant is dynamic. This decision problem is

described by the Bellman equation

Vt(A, s) = max [0, V
c
t (A, s)] , (6)

where

V ct (A, s) = dt(A)− wmt +
pt+1
pt

Z
²
Vt+1(A², s+ 1)πs+1(d²)

and the sequences {τ t, wt, rt, wmt, pt}∞t=0 are given. The value Vt(A, s) is the expected dis-

counted stream of returns to the owner of a plant with organization capital (A, s). This value

is the maximum of the returns from closing the plant and those from operating it. The term

V ct (A, s), the expected discounted value of operating a plant of type (A, s), consists of current

returns dt(A)−wmt and the discounted value of expected future returns Vt+1(A, s). The plant

operates only if the expected returns V ct (A, s) from operating it are nonnegative.

The decision whether or not to hire a manager to prepare a blueprint for a new plant

is also dynamic. In period t, this decision is determined by the equation

V 0t = − wmt +
pt+1
pt
Vt+1(τ t+1, 0). (7)

10



The value V 0t is the expected stream of returns to the owner of a new plant, net of the cost

wmt of paying a manager to prepare the blueprint for the plant. Such blueprints are prepared

only if the expected returns from them, V 0t , are nonnegative.

Let µt denote the distribution in period t of organization capital across plants that

might operate in that period, where µt(A, s) is the measure of plants of age s with productivity

less than or equal to A. Let φt ≥ 0 denote the measure of managers preparing blueprints for

new plants in t. Denote the measure of plants that operate in t by λt(A, s). This measure is

determined by µt and the sign of the function V
c
t (A, s) according to

λt(A, s) =
Z A

0
1V c(a, s)µt(da, s),

where 1V c(a, s) = 1 if V ct (a, s) ≥ 0 and 0 otherwise. For each plant that operates, an

innovation to its specific productivity is drawn, and the distribution µt+1 is determined from

λt,φt, {πs} , and {τ t} as follows:

µt+1(A
0, s+ 1) =

Z
A
πs+1(A

0/A)λt(dA, s) (8)

for s ≥ 0 and

µt+1(τ t+1, 0) = φt.

Let kt denote the aggregate physical capital stock. Then the resource constraints for

physical capital and labor are
P
s

R
A kt(A)λt(dA, s) = kt and

P
s

R
A lt(A)λt(dA, s) = 1. The

resource constraint for aggregate output is cwt+cmt+kt+1 = yt+(1−δ)kt, where yt is defined

by yt = zt
P
s

R
AA

1−νF(kt(A), lt(A))νλt(dA, s). The resource constraint for managers is
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φt +
X
s

Z
A
λt(dA, s) = 1. (9)

Managers are hired to prepare blueprints for new plants only if V 0t ≥ 0. Since there

is free entry into the business of starting new plants, in equilibrium we require that V 0t ≤ 0.

We summarize this condition as V 0t φt = 0. Also, in equilibrium, a0 =
P
s

R
A V0(A, s)µ0(dA, s)

is the value of the workers’ initial assets.

Given a sequence of frontier blueprints and economy-wide productivities {τ t, zt}, initial

endowments k0 and a0, and an initial measure µ0, an equilibrium in this economy is a collection

of sequences of consumption; aggregate capital {cmt, cwt, kt} ; allocations of capital and labor

across plants {kt(A), lt(A)}; measures of operating plants, potentially operating plants, and

managers preparing plans for plants
n
λt, µt+1,φt

o
; value functions and operating decisions

{dt, Vt,V ct , V 0t }; and prices {wt, rt, wmt, pt, }, all of which satisfy the above conditions.

3. Variable profits, size, and value of plants

Now we link the variable profits dt(A) of a plant to the size of that plant as measured

by its employment. We will calibrate the model to match U.S. data on the pattern of plant

employment growth with age. We use this link to argue that our model will thus also match

the evolution of variable profits of plants as they age. We then compute the value of these

plants by computing the present discounted value of their variable profits. Finally, we show

that if we choose parameters to hold constant the model’s implications for the size of plants,

then the value of plants is invariant to the decomposition of technical change into the part

that is embodied and the part that is economy-wide.

Consider the allocation of capital and labor across plants at any point in time. Since
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capital and labor are freely mobile across plants, the problem of allocating these factors across

plants in period t is static. For a given distribution λt of organization capital, it is convenient

to define

nt(A) =
µ
A

Āt

¶
(10)

as the size of a plant of type (A, s) in period t, where

Āt =
X
s

Z
A
Aλt(dA, s) (11)

is the aggregate of the specific productivities. The variable nt(A) measures the size of a plant

in terms of its capital or labor or output, in that the equilibrium allocations are

kt(A) = nt(A)kt, lt(A) = nt(A)lt, and yt(A) = nt(A)yt, (12)

where yt = ztĀ1−νt F (kt, lt)
ν is aggregate output. To see this, note that since the production

function F is linear-homogeneous of degree 1 and there is only one fixed factor, all operating

plants in this economy use physical capital and labor in the same proportions. The propor-

tions are those that satisfy the resource constraints for capital and labor. The variable profits

for a plant with organization capital (A, s) is

dt(A) = (1− ν)yt(A) = (1− ν)nt(A)yt.

Variable profits dt(A) minus managerial wages wmt are the profits earned on organi-

zation capital. The value function Vt(A, s) is the discounted value of these profits from t
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on.

The value of a plant of type (A, s) at the beginning of period t+ 1 measured in units

of period t consumption goods is composed of two parts: the value of its physical capital and

the value of its organization capital. The value of physical capital in this plant is kt+1(A).

Likewise, the value of organization capital in this plant is pt+1Vt+1(A, s)/pt. Hence, the value

of both physical and organization capital in this plant is

qt(A, s) = kt+1(A) +
pt+1
pt
Vt+1(A, s).

Hence,

X
s

Z
A
qt(A, s)µt+1(dA, s) = kt+1 +

pt+1
pt

X
s

Z
A
Vt+1(A, s)µt+1(dA, s), (13)

where we have used the market-clearing condition
P
s

R
A kt+1(A)µt+1(dA, s) = kt+1. Clearly,

the first term on the right side of (13) is the value of physical capital in all plants while the

second term is the value of organization capital in all plants.

Now consider our model’s implications for the size and value of plants on a steady-

state growth path. To ensure that our model has a balanced growth path, we assume that

F (k, l) = kθl1−θ.3 We define a steady-state growth path in this economy as an equilibrium in

which the quality of the best available blueprint τ t and the productivity Āt of the average

plant grow at a constant a rate 1 + gτ ; the economy-wide level of productivity zt grows at

a constant rate 1 + gz; aggregate variables yt, ct, kt, wt, and wmt grow at a rate 1 + g, where

1+g = [(1+gz)(1+gτ )
1−ν ]1/(1−νθ); variables φt, V

0
t , and rt are constant; the productivity-age

distributions of plants satisfy µt+1(A, s) = µt(A/(1+gτ ), s) and λt+1(A, s) = λt(A/(1+gτ ), s)
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for all t, A, s; and Vt+1(A, s) = (1+g)Vt((A/(1+gτ ), s), dt+1(A, s) = (1+g)dt(A/(1+gτ ), s),

and V ct+1(A, s) = (1 + g)V
c
t (A/(1 + gτ ), s) for all t, A, s.

Note that, by definition, the size-age distribution of plants is constant along the steady-

state growth path. Now we show that data on the size-age distribution of plants do not pin

down the span of control parameter ν. Define functionsW (n, s), W c(n, s), andW 0(n, s) such

that for n = A/Ā0, W (n, s) = V0(nĀ0, s),W c(n, s) = V c0 (nĀ0, s), andW
0(n, s) = V 00 (nĀ0, s).

Let {ρs} be the cumulative distribution functions of η = ²/(1+gτ ) induced by {πs} .We refer

to {ρs} as the steady-state distributions of shocks to plant size. Consider another Bellman

equation

W (n, s) = max [0,W c(n, s)] , (14)

where

W c(n, s) = d0(Ā0n)− wm0 + β
Z
η
W (nη, s+ 1)ρs+1(dη)

wm0 = βW (τ0/Ā0, 0).

By definition of the value functions V, V c, V 0 along the steady-state path, W satisfies this

equation. The terms in this second Bellman equation (14) have the same interpretation as

those in the first (6), as descriptions of the returns to operating or closing a plant of size n

and age s. The functionW c(n, s) defines a rule for operating plants: plants withW c(n, s) ≥ 0

operate, and those with W c(n, s) < 0 do not.

Having replaced specific productivity with size as a state variable, we have the following

proposition:

Proposition. Consider two economies with the same steady-state growth rate g and the
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same distribution of shocks to size. Let these economies have different rates of growth of

economy-wide and embodied technical change that satisfy

(1 + gz)(1 + gτ )
1−ν = (1 + g0z)(1 + g

0
τ )
1−ν,

so that the two economies have the same steady-state growth rate of output g. Let the

distributions of shocks to specific productivity correspondingly differ so that ²/(1 + gτ ) and

²/(1 + g
0
τ ) have the same distribution. Then these two economies have the same steady-state

size-age distribution of plants and the same value of organization capital.

Proof. Since the economies have the same distribution of shocks to size, the decision to

operate plants of size n and age s in both economies is characterized by the solution to (14);

thus, the economies have the same steady-state size-age distribution of plants. By definition,

the value functions are the same; thus, so are the values of organization capital. Clearly, the

rest of the equilibrium prices and quantities are the same as well. q.e.d.

4. Calibration and measurement

Now we calibrate our model. We draw on aggregate data from the U.S. manufacturing

sector to determine the growth rate of output per hour g, the discount factor β, the depre-

ciation rate δ, the physical capital share νθ, and the growth rate of aggregate total factor

productivity which must be allocated between growth in the frontier technology and growth

in the economy-wide technology. We use observations from micro data on manufacturing

plants in the United States to choose the parameters affecting the shocks to size.

The macro parameters are chosen to reproduce several average statistics observed in
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the data on the U.S. manufacturing sector during 1959—99, obtained from the U.S. Depart-

ment of Commerce’s national income and product accounts (NIPA). To match the model to

observations, we introduce a corporate profits tax τ c since tax payments of this type comprise

a substantial portion of the output of the corporate sector. We assume that this tax is levied

on corporate profits measured as sales less compensation of employees and the depreciation

of physical capital (yt− wtlt − wmt − δkt). We assume that these corporate tax revenues are

rebated as a lump-sum payment to workers. Accordingly, the workers’ Euler equation for

physical capital implies that

ct+1
βct

=
1 + g

β
= (1− τ c)(νθ

yt+1
kt+1

− δ) + 1. (15)

We use data from the U.S. Department of Labor (various dates) on output per hour of

all persons in manufacturing to compute the trend growth rate of output from 1959 to 1999,

which turns out to be g = 2.9%. We choose the discount factor β so that the ratio (1 + g)/β

equals the average rate of return on financial assets that we computed above to be 5.7%.

We choose the parameters of our one-sector model to equal the relevant aggregates in

the manufacturing sector: the total depreciation rate on capital in manufacturing is δ = 7.7%,

the total capital/output ratio is k/y = 116%, the physical capital share of νθ = 18.4%, and

the corporate profits tax rate is τ c = 30.5%.

Consider next the growth of the Solow residual. The steady-state growth rate of

output per worker, 1+ g, is related to the growth of the Solow residual by (1+ g)1−νθ, which

can be decomposed as (1 + g)1−νθ = (1 + gz)(1 + gτ )
1−ν. Given our choices of g = 2.9%

and νθ = 18.4%, the growth of the Solow residual is (1 + g)1−νθ = 1.024. Since we calibrate
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our model to reproduce observations on plant size, the steady state is not affected by this

decomposition of the Solow residual. For concreteness, we let all the growth come from the

growth in the frontier technology.

Now consider the span of control parameter ν. Hundreds of studies have estimated

production functions with micro data. These analyses incorporate a wide variety of assump-

tions about the form of the production technology and draw on cross-sectional, panel, and

time series data from virtually every industry and developed country. Douglas (1948) and

Walters (1963) survey many studies. More recent work along these lines has also been done

by Baily, Hulten, and Campbell (1992); Bahk and Gort (1993); and Bartelsman and Dhrymes

(1998). Atkeson, Khan, and Ohanian (1996) review this literature and present evidence, in

the context of a model like ours, that ν = .85 is a reasonable value for this parameter.

In parameterizing the distributions of shocks to specific productivity, we assume that

these shocks to size have a lognormal distribution, so that log ²s ∼ N(ms, σ
2
s). We choose

the means and standard deviations of these distributions to be smoothly declining functions

of s. In particular, we set ms = γ1 + γ2(
S−s
S
)2 for s ≤ S and ms = γ1 otherwise and

σs = γ3 + γ4(
S−s
S
)2 for s ≤ S and σs = γ3 otherwise. With this parameterization, the shocks

for plants of age S or older are drawn from a single distribution. Thus, shocks to plant-specific

productivity are parameterized by {γi}4i=1 and age S.

We choose the parameters governing these shocks so that the model matches data on

the fraction of the labor force employed in plants of different age groups, as well as data on

job creation and job destruction in plants of different age groups, from the 1988 panel of the

U.S. Census Bureau’s Longitudinal Research Database (the LRD).4 We choose the data from

this panel because it has the most extensive breakdown of plants by age. We think of these
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statistics as analogous to choosing means and variances of shocks to productivity.

More formally, Davis, Haltiwanger, and Schuh (1996) define the following statistics.

Employment in a plant in year t is (lt + lt−1)/2, where lt is the labor force in year t. Job

creation in a plant in year t is lt − lt−1 if lt ≥ lt−1 and zero otherwise. Job destruction in

a plant in year t is lt−1 − lt if lt ≤ lt−1 and zero otherwise. In Figure 3, we report for each

age category these three statistics for U.S. manufacturing plants in 1988 for all plants in that

category relative to the total employment in all plants.

We set the parameter S = 100 and choose the γi to minimize the sum of the squared

errors between the statistics computed from the model and those in the data. The resulting

model statistics are also plotted in Figure 3. For completeness, note that the implied statistics

for the overall job creation and destruction rates are 8.3% and 8.4% for the data and 10.4%

and 10.4% for the model. To get a feel for how these numbers fluctuate, note that in annual

data during 1972—93, the standard deviation of the job creation and job destruction rates

are 2.0 and 2.7. In Figure 4, we plot the means and standard deviations of shocks to the log

of the size of plants, ms and σs. The parameters that generate these shocks are S = 100,

γ1 = −.1149, γ2 = .1711, γ3 = .2018, and γ4 = .0009.

5. Industry evolution in the steady state

We have calibrated our model to data on employment shares and job creation and

destruction for plants in various age groups. Here we compare the implications of our cali-

brated model to other important features of data on the birth, growth, and death of plants.

We find that our model approximately captures most of these features. Hence, we argue that

the model replicates the basic patterns of the accumulation of organization-specific capital in
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the data.

Specifically, we compare our model to data on job destruction in failing plants, the

distribution of growth rates of capital and labor by plants, and the distribution of labor and

capital productivity in plants by size and age. We think of the data on job destruction in

failing plants as measuring the failure rate of plants, in contrast to job destruction, which is

the death rate of jobs. The data on the distribution of plant growth rates are a check on our

assumption that the shocks to size are normally distributed.

First consider plant failure rates. In Figure 5, we show job destruction in failing plants

by age group for the model and the data. For each age group, job destruction in failing plants

is the ratio of employment in plants that fail in that age group to total employment. This

ratio has the interpretation of a size-weighted failure rate of plants. Total job destruction in

plants that fail is 3.0% in the model and 2.2% in the data. In terms of the breakdown of

job destruction in plants that fail by age group, the model has substantially higher failure

rates for the youngest plants (aged 1—5 years) than the data show. We have seen in Figure

3 (bottom panel), however, that the model has about the right amount of job destruction in

plants aged 1—5. Hence, the model has too many of the young plants dying and not enough

job destruction in young plants that continue.

Next consider the distribution of plant growth rates. In Figure 6, we show the distribu-

tion of plant-level job creation and job destruction in the model and the data. In this figure,

we divide plants into ten groups, based on the plants’ growth rate of employment (measured

here by G = (lt− lt−1)/lt−1), and show the fraction of total job creation (when G is positive)

and the fraction of total job destruction (when G is negative) accounted for by plants in

each of these groups.5 For the data, we again draw on the work of Davis, Haltiwanger, and
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Schuh (1996). In their data, a substantial amount of job creation comes from continuing

plants that more than double in size (15.3%), and a substantial amount of job destruction

comes from continuing plants that more than halve in size (18.4%). In our model with nor-

mally distributed shocks to size, shocks this large are more than three standard deviations

from the mean and occur with extremely low probability. In order to match these extreme

observations, we would need fatter-tailed distributions for the shocks.

Finally, consider the distributions of labor and capital productivity across plants by

size and age. Our model predicts that at each point in time, both of these measures of

productivity are constant across plants. This implication follows immediately from our as-

sumption that the production function is Cobb-Douglas. To see this, note that (12) implies

that yt(A)/lt(A) = yt/lt and yt(A)/kt(A) = yt/kt. For the data, Bartelsman and Dhrymes

(1998) report, for a large sample of U.S. manufacturing plants drawn from the LRD, a geo-

metric weighted average of capital and labor productivity

(
yit
kit
)α(
yit
lit
)1−α

by age group and size decile as measured by the average size of employment during 1972—86,

where the weights are obtained from a regression of outputs on inputs. In Figure 7, we report

the Bartelsman and Dhrymes values for this measure by age groups (top panel) and by size

deciles (bottom panel). Although Bartelsman and Dhrymes find substantial variations in

average productivity across individual plants in their data, Figure 7 demonstrates that they

find no systematic relation between the average productivity in a plant and either its age or

its size.
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Jensen, McGuckin, and Stiroh (2001) found similar results in the data. They study

labor productivity measured as value added per hour worked in a more extensive sample of

U.S. manufacturing plants, also drawn from the LRD. They note that across individual plants,

in their sample, there is extensive variation. When productivity is averaged across plants in a

cohort, however, there seems to be no systematic relationship between labor productivity and

age. Indeed, Jensen, McGuckin, and Stiroh report that after about 5—10 years, all cohorts of

surviving plants have similar productivity levels.

6. Findings

Here we report our model’s measure of the share of output that is paid to organization

capital and the value of that capital relative to the value of physical capital. We also compare

these findings to corresponding data for the U.S. manufacturing sector.

Recall that in our model, aggregate output is given by

y = zĀ1−νkvθlν(1−θ). (16)

This output is paid to four factors: physical capital, workers, managers, and organization

capital. The share of output paid to physical capital is νθ; to workers, ν(1 − θ); and to

managers, wm/y; and the rest is paid to organization capital. We have calibrated the physical

capital share in the model to match that in the data, so that νθ = 18.4%. The share of output

paid to labor is the sum of the shares paid to workers and managers. With a span of control

parameter ν = .85, the share paid to workers is ν(1− θ) = 66.6%.

We use the model to compute the division of the remaining 15% of output into the share
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paid to managers and the share paid to organization capital. In the model, the managerial

wage is determined by the condition that there be zero profits to starting new plants, namely,

that

wmt =
1

1 + it
Vt+1(τ t+1, 0).

In Table 1, we report these shares for the data and the model, first with ν = .85. With

our calibration, 11.0% of output is paid to managers, so that the share paid to labor is 77.6%,

and the share paid to organization capital is 4.0%. In comparison, the shares in the data are

72.9% for labor and 8.7% unaccounted for. Our model thus accounts for about 46% (4.0/8.7)

of the unaccounted-for output in manufacturing. Since the shares in our model must sum to

1, the remainder of the unaccounted-for output, 4.7% (8.7 − 4.0), must show up in another

share. Since we calibrate the model to match the physical capital share, the remainder shows

up as payments to managers and is thus added to the labor share, giving a total labor share

of 77.6% (72.9 + 4.7).

In terms of values, the payments to physical capital net of investment are 6.1% of

output (= 18.4−12.3). Hence, the value of organization capital relative to physical capital in

the model is 66% (4.0/6.1). In the data, recall, the value of unaccounted-for output is 119%

that of physical capital.

Most of the parameters of our model are well-measured. One has greater uncertainty,

however: the span of control parameter ν. We consider the sensitivity of our findings to this

parameter.

Consider raising ν to .9 and adjusting θ so that the physical capital share νθ is un-

changed at 18.4%. With this change in the span of control parameter–the results of which
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are also shown in Table 1–the share of output paid to organization capital falls from 4.0% to

2.7%. Again, because the factor shares sum to 1, the remainder of the unaccounted-for out-

put is attributed to labor. The ratio of the value of organization capital relative to physical

capital falls from 66% to 44%.

More generally, we can show that the payments to organization capital relative to the

sum of the payments to organization capital and managers is independent of ν. To see this,

note from (6) and (7) that the value functions and managerial wages are homogeneous of

degree 1 in 1 − ν. Thus, if we have two economies with the same shocks to plant size, one

having span of control parameter ν, managerial wages wmt, and value function Vt(A, s) and

the other having span of control parameter ν̃, managerial wages w̃mt, and value functions

Ṽt(A, s), then

Ṽt(A, s)

1− ν̃
=
Vt(A, s)

1− ν

and

w̃mt
1− ν̃

=
wmt
1− ν

.

Since 1− ν is the sum of managerial wages and payments to organization capital, the result

follows.

In Table 1, we see that of the 15% share paid to organization capital and managers,

organization capital gets roughly one-quarter of the share and managers get roughly three-

quarters. Given the above result, this relation holds for all ν. Hence, for any ν, the organiza-

tion capital share is roughly (1− ν)/4, and the managerial share is roughly 3(1− ν)/4.
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7. Conclusion

We have found that nearly half of the unaccounted-for output in the U.S. manufac-

turing sector can plausibly be attributed to organization capital and that the value of this

organization capital is roughly two-thirds of the value of the physical capital stock. This orga-

nization capital is produced as part of the turbulent and time-consuming process of building

up a stock of organization-specific knowledge in plants. Our measurement of the value of

this capital–4% of manufacturing output–is based on micro data on the birth, growth, and

death of plants.

Still, despite our measurement of organization capital, 4.7% of output in the manu-

facturing sector remains unaccounted for. Presumably, this remainder can be attributed to

other forms of unmeasured capital and monopoly rents.

Note that for broader measures of output, like that in the nonfinancial corporate sector,

a much smaller fraction of output is unaccounted for. This is consistent with the idea that

knowledge built up over time in specific organizations–organization capital–is particularly

important for the manufacturing sector.

25



Notes

1In measuring output, we subtract indirect business taxes from the NIPA measure of

gross output.

2We divide the 1.4% of manufacturing output that is accounted for as proprietors’

income between payments to labor and payments to owners of firms in proportion to the

division of output less proprietors’ income between labor and the owners of firms.

3This assumption of Cobb-Douglas production is necessary for a steady-state growth

path. Along such a path, Ā grows at constant rate 1 + gτ , the capital/labor ratio k grows

at rate 1 + g, and (1 + gτ )f((1 + g)k)= (1 + g)f(k), where f(k) = F (k, 1). Thus, f(k) is

homogeneous of degree x = 1− [log(1+gτ )/ log(1+g)]. Since f(λk) = λxf(k), f(k) = kxf(1);

so f is a power function, and thus, F is Cobb-Douglas.

4Here and throughout the paper, our microeconomic data are taken from the U.S. Cen-

sus Bureau’s 1998 Longitudinal Research Database (LRD) on U.S. manufacturing plants.

These data are broken down by crude age categories. In Figure 7, we use data from the

1988 panel of the LRD obtained from the computer disk that accompanies Davis, Halti-

wanger, and Schuh’s (1996) book; these data are also available from Haltiwanger’s Web site:

http://www.bsos.umd.edu/econ/haltiwanger/.

5For each plant, let Git = (lit− lit−1)/lit−1. Then, for example, for the category [0, 10%],

the statistic plotted is P
{i|Git∈[0,.1]} lit − lit−1P
i
max{0, lit − lit−1} .
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Table 1
Accounting for Output in the U.S. Manufacturing Sector

Model

U.S. Manufacturing � = .85 � = .9
Shares of Output
Labor 72.9% 77.6% 78.9%
    Workers — 66.6 71.6
    Managers — 11.0 7.3

Physical Capital 18.4 18.4 18.4

Unaccounted for 8.7 — —

Organization capital — 4.0 2.7

Other Ratios: Values of
Unaccounted for output/
Physical capital

119 — —

Org. capital/Physical capital — 66 44

Investment/Output 11.0 12.3 12.3

U.S. manufacturing data described in Section 1.



Figure 2
Unaccounted-For Output as a Percentage of Physical Capital

vs. Return on Financial Assets
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Figure 1 
Share of Output Paid to Physical Capital and to Output Unaccounted For  

vs. Return on Financial Assets
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Figure 3 Employment Statistics by Manufacturing Plant Age
in the Model and in the 1988 U.S. Data
(% of Total Employment)
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Figure 4
Mean and Standard Deviation  

of Shocks to Plant Size by Age of Plant
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Figure 6
Distribution of Job Creation and Destruction
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Figure 7

Average Productivity Plants by Age and Size
in U.S. Data for 1972–86
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