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ABSTRACT

We evaluate the classical Cox, Ingersoll and Ross (1985) (CIR) model using data on LIBOR,

swap rates and caps and swaptions. With three factors the CIR model is able to fit the term structure of

LIBOR and swap rates rather well. The model is able to match the hump shaped unconditional term

structure of volatility in the LIBOR-swap market. However, statistical tests indicate that the model is

misspecified. In particular the pricing errors are related to the slope of the swap yield curve. The economic

importance of these shortcomings is highlighted when the model is confronted with data on cap and

swaption prices. Pricing errors are large relative to the bid-ask spread in these markets. The model tends

to overvalue shorter maturity caps and undervalue longer maturity caps. With only one or two factors,

the model also tends to undervalue swaptions. Our findings point out the need for evaluating term

structure models using data on derivative prices.
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1. Introduction 
  
The last two decades have seen an explosive growth in the use of interest rate 

derivatives by institutions. A number of theoretical term structure models have been 
proposed in the literature for understanding the risk in such derivative products and for 
valuing them. However, there have been only a few published empirical studies of these 
valuation models using data on derivative prices. This lack of empirical work has 
impeded the full development of practical tools based on these models. We fill this void 
in the empirical term structure literature.   

In particular, we empirically examine the classical three-factor Cox, Ingersoll 
Ross (1985) (CIR) model using data on LIBOR and swap rates. Unlike Grinblatt who 
separately identifies the credit spread, we use the framework developed by Duffie and 
Singleton (1999) and directly model the default-adjusted yield without separating the 
credit spread component. The advantage of this approach is that under mild technical 
regularity conditions, (see Duffie and Singleton (1997), 696-697) existing term structure 
models for Treasury bonds can be used to model the LIBOR yield curve, with the risk-
free rate replaced by the default-adjusted rate.  

Although the CIR model has received wide attention in the theoretical literature, 
its empirical performance has not yet been evaluated using price data on interest rate 
derivative claims.  We find that with three factors, the CIR model fits the term structure 
of LIBOR and swap rates well.  The model pricing errors are reasonable given the bid-ask 
spread in these markets.  However when evaluated using price data on caps and 
swaptions, the model is not satisfactory.  These findings are similar to those reported in 
Longstaff, Santa-Clara and Schwartz (2000) for stochastic string models and stress the 
need to use derivative price data (along with data on interest rates) to evaluate the 
economic importance of the statistical rejections of theoretical models.   

Related Literature 
Pearson and Sun (1994) evaluate the empirical performance of the two-factor 

version of the CIR model and an extension that nests the two-factor specification using 
interest rate data.  They examine the accuracy of the models' forecasts of future interest 
rates against that obtained using a "naive" rule.  They find that the "naive" rule performs 
better than the two-factor model as well as its extension. Chen and Scott (1993) use the 
model-pricing-errors for bonds of different maturities to compare the relative 
performance of two-factor and three-factor CIR models.  They find that the two-factor 
model performs almost as well as the three-factor model.  Jegadeesh and Pennacchi 
(1996) empirically examine a two-factor Gaussian term structure model.  They find that 
while the two-factor model shows a significant improvement over the one factor models 
examined in the literature the model has difficulty capturing the term structure of 
volatility in the Eurodollar futures market.  Duffie and Singleton (1997) find a two-factor 
model to be inadequate in fitting the term structure of swap yields.  Das and Foresi 
(1996), Johannes (1999) and Piazzezi (1999) suggest augmenting the models with jump 
components.  Chacko and Das (2000) provide pricing formulae for a variety of derivative 
claims for models in the affine class that may also include jump components.  Dai and 
Singleton (1999) provide a comprehensive evaluation of different term structure models 



within the affine class and find that some sub families within the affine class have better 
potential than others. However, they do not use derivative prices in their otherwise 
extensive study. 

There is substantial empirical evidence documenting the shortcomings of affine 
term structure models of which multifactor CIR models form a part.  Backus, Foresi, 
Mozumdar and Wu (1998) demonstrate that term premiums generated by affine models 
may be too low when compared with what we observe in the data.  Using semi 
nonparametric statistical methods, Ghysels and Ng (1998) find evidence against affine 
models.  Duffee (2000) points out that affine term structure models are not flexible 
enough to produce the observed temporal patterns in interest rate volatilities and produce 
poor forecasts of future changes in interest rates.  In view of this Duffee (2000) and 
Duarte (2000) propose extending the classical affine class of models to allow for more 
flexible parameterization of the market price of risk.  Bansal and Zhou (2000) propose a 
model that allows for regime shifts.   

Although these studies document the shortcomings of affine term structure models 
along interesting dimensions, none of them examine whether these shortcomings are 
sufficiently severe to affect their use in valuing interest rate derivative claims.  We show 
that this is indeed the case for multifactor CIR models.  We estimate the model 
parameters using time series data on LIBOR and swap rates, following the maximum 
likelihood method described in Pearson and Sun (1994). We assume that one LIBOR or 
swap rate is observed without error while estimating the one-factor model and that other 
LIBOR and swap rates are measured with error. For the two-factor model, we assume two 
LIBOR and swap rates are observed without error, and similarly for the three-factor 
model.  In each case, the log-likelihood is the sum of that from the exactly matched rates 
and that from the measurement error. Using the estimated model parameters, we predict 
the future LIBOR and swap rates and compare them with the realized values.  We also 
compute the pricing errors for CAPS and swaptions. Larger pricing errors would show a 
greater model misspecification.   

We organize the rest of the paper as follows. Section 2 applies multifactor CIR 
models to the LIBOR and swap markets.  Section 3 contains the estimation results using 
LIBOR and swap rates. Section 4 applies CIR models to price CAPS and swaptions.  
Section 5 concludes. 

 
2.  Multifactor CIR Models for the LIBOR Yield Curve 
 
A. Valuation of bonds that are subject to default risk 

 
Under the assumption that no arbitrage opportunities exist, the value process of a 

contingent claim discounted at the risk-free interest rate is a martingale under some 
equivalent martingale measure Q. Specifically, let Pt and rt be respectively the value of 
the contingent claim and the instantaneous risk-free interest rate at date t. Then  
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This formula can be used to price any claim where we know the timing of the 
final payoff. When the security is subject to default risk, (2.1) cannot be used directly. 
Here the final payoff PT and the time of the final payoff T are uncertain, since default can 
occur anytime. 

Duffie and Singleton (1999) show, however, that if we replace the risk-free rate in 
(2.1) with a default-adjusted rate, it can still be used to price the risky claim, with PT 
being the promised payoff at the specified expiration date T, i.e., 

(2.2)   [ ]T
T
t s

Q
tt PdsREP )exp( ∫−=  

We identify the equivalent martingale measure, Q, and relate it to the parameters of the 
stochastic process determining the temporal evolution of the interest rates in the 
following way.   

Following Duffie and Singleton (1997), we assume that there are n independent 
state variables, each evolving over time according to a square root process 
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where Wi ’s are independent Brownian motions. The market price of risk, iλ  for each 
state variable, yi, is assumed to be linear. Using arguments similar to those in Cox, 
Ingersoll and Ross (1985), it can be shown that under the equivalent martingale measure, 
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where ik  and θi is given by, 
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The instantaneous default-adjusted rate is assumed to be the sum of all state 
variables 

(2.6)   R yt it
i

n

=
=
∑

1

. 

Prices of pure discount bonds can be derived following Cox, Ingersoll, and Ross (1985). 
By using Girsanov’s theorem (see Sun (1998)) the fundamental pricing equation (2.2) can 
be transformed to an expectation under another measure, under which the state still 
follows a square root process. However the integral instead of being over a path, involves 
only the terminal value RT . Namely, there exists an equivalent measure H such that (2.2) 
can be rewritten as 
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where  
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Under measure H, the process yi  follows 

(2.10)   dy k y dt y dWit i i i it i it t= − +( ) $θ γ σ  

The defaultable discount bond price is then given by1 
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The yield to maturity is a sum of that from each state 
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where YTMi ( )τ is linear in yit but nonlinear in τ. The limiting cases are  
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If ki > 0, it can be shown that when y YTMit i< ∞( ) , YTMi ( )τ is an increasing function of 
τ; when yit i> θ , it is a decreasing function; and for intermediate values, the function is 
humped. If ki < 0 , YTMi ( )τ is an increasing function of τ initially, no matter what value 
the current state takes. Then it will continue to increase or start to decrease, depending on 
the relationship between the spot state and the long-term yield. Finally, the long-term 
yield is a decreasing and convex function of the market price of risk. A negative market 
price of risk implies a positive term premium. 

The yield curve in the multifactor model can be rising, falling or humped. 
Depending on the current realizations of the state variables, it can even have an inverse-
hump, which the one-factor model does not admit.  

One of the properties of CIR specification is that the volatility of the short rate 
diminishes as the level of it approaches zero. To enable the model to have sufficiently 
high volatility at low levels we add a negative constant to (2.6). Here the default-adjusted 
rate, Rt, and the discount bond price, P(t,T), are modified as follows: 
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1 See Sun (1998) for a derivation of the bond pricing formulae, following Cox, Ingersoll, 
and Ross (1985). 



respectively, where pi(t,T) is the same as in equation (2.11). The case (2.6) can be 
considered a special case of (2.17) where y = 0 . 
 
B. LIBOR and Swap Rates 

 
The London Interbank Offer Rate (LIBOR) rates are generally higher than the 

corresponding Treasury bill interest rates since they are subject to the default risk of the 
participating banks. Given the price of a zero-coupon defaultable bond, we can compute 
LIBOR rates.  Let P(t,T) be the price at date t of a defaultable discount bond with 
maturity date T, and Rτ be the LIBOR rate with a term to maturity τ. Then by definition, 
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In a common "plain vanilla" interest rate swap,  party B agrees to pay to party A 
cash flows equal to interest at a predetermined fixed rate on notional principal for some 
number of years. At the same time, party A agrees to pay party B cash flows equal to 
interest at a floating rate on the same notional principal for the same period. The floating 
rate in the swap is set at the beginning of each period and paid at the end of the period. 
The floating rate in many interest rate swap agreements is the LIBOR rate. The life of the 
swap can range from two years to more than 15 years. By convention, a swap contract has 
a value of zero at the inception date. Since the floating side has a par value, the fixed side 
is a par coupon bond, and the coupon rate is the prevailing swap rate. 

To find a fair swap rate, it is necessary to discount the cash flows in a swap at 
LIBOR rates. The implicit assumption is that the risk associated with swap cash flows is 
the same as the risk associated with the cash flows on a loan in the interbank market. 
Assuming a 6-month settlement period, we have 
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where c is the prevailing swap rate and P the price of the same discount bonds that were 
used in (2.19) to determine LIBOR rates.  

In a CIR model, both LIBOR and swap rates are determined by state variables 
through the prices of discount bonds.  These are all non-linear functions of the state 
variables.  
 
C.  Interest Rate Caps 

 
The interest rate caps that we examine are written on LIBOR with payments made 

at the end of each period.  In general, a cap is characterized by the cap rate RX ,  the 
settlement period τ, and maturity T. Suppose interest payments are made at times τ, 2τ, ..., 
nτ=T from the beginning of the life of the cap and the notional amount of the contract is 
$1. Then the holder’s payoff at time ( )i + 1 τ  is  



(2.21)   τ max( , )R Ri X− 0  
where Ri  is the value at time iτ  of the rate being capped. This call option on the rate 
being capped is commonly referred to as a caplet.  A cap is a portfolio of caplets. The 
common practice in the financial markets is to price a caplet using Black’s (1976) model 
(see Hull (1997)). To price a cap written on LIBOR, this model assumes a log-normal 
process for the LIBOR rate. 

The value at time iτ of the payoff from the caplet that occurs at time ( )i + 1 τ  
given in (2.21) is 
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which is (1+ RX ) times the payoff on a put option on a $1 par zero-coupon bond with 
strike price 1/(1+τ RX ).  Therefore, a cap can also be considered a portfolio of put options 
on zero-coupon bonds.   

In a CIR model, an analytical expression for options on zero-coupon bonds is 
available. We therefore use the second interpretation, a portfolio of put options on zero-
coupon bonds, to compute the cap price. 

We first compute the price of a put option on a discount bond. The integration 
region in (2.7) is now given by P T s K( , ) ≤  where P(T,s) is the discount bond price. This 
generates a linear boundary 
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and Ai  and Bi  are defined by (2.12) and (2.13). The price of a put option on a discount 
bond is given by (see Chen and Scott (1992) and Sun (1998)): 

(2.25)   ( )P t T s K KP t T L Lput
n n n( , , , ) ( , ) [ ,..., ; ,..., , ,..., ]= −1 2

1 1 1χ ν ν δ δ  

    ( )− −P t s L Ln n n( , ) [ ,..., ; ,..., , ,..., ]* * * *1 2
1 1 1χ ν ν δ δ  

where 
(2.26)   L y L yi i i i i i= =2 2ψ ψ* * * *,    

(2.27)   δ φ γ ψ δ φ γ ψi it i i i i it i i iy T t y T t= − = −2 2exp[ ( )] / , exp[ ( )] /* *   

(2.28)   ψ φ
γ
σ

ψ φ
γ
σi i

i i

i
i i

i i

i
i

k k
B T s= +

+
= +

+
+2 22 2( ), ( ( , ))*   

(2.29)    φ
γ

σ γi
i

i i T t
=

− −
2

12 (exp[ ( )] )
,   ν θ σi i i ik= 4 2/  

The 2χ  is the multidimensional cumulative noncentral chi-square distribution function. 
The two and three-dimensional cases are given by 
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where F and f  are the probability and density functions respectively of a univariate 
noncentral chi-square distribution. 

The cap is then the summation of the individual caplets, where each is a put 
option on a discount bond whose price is given by (2.22). An N-period cap will have N-1 
caplets, since there is no need to cap the first payment. 
  
D. Interest Rate Swaptions 

 
An interest rate swaption is an option on interest rate swaps.  It gives the holder 

the right to enter into a specific interest rate swap at a specific time in the future. A payer-
type swaption gives the holder the right to pay the fixed interest rate payments and 
receive the floating. A receiver-type swaption gives the holder the right to receive the 
fixed rate payment and pay the floating. The receiver swaption is a portfolio of put 
options on future swap rates, each with an identical strike rate (which is the swap rate 
specified in the swaption contract), and an identical reference rate (which is the future 
swap rate). In the other case, a payer swaption is a call option. We now focus on the 
receiver-type option.  

The common practice in the financial markets is to price a swaption using Black’s 
(1976) model (see Hull (1997)). To price a swaption, this model assumes a log-normal 
process for the swap rate. 

An interest rate swaption can be regarded as an agreement to exchange a fixed-
rate bond for a floating-rate bond. Since the floating-rate bond is worth par at the start of 
the swap, a receiver swaption can be regarded as a call option on a coupon bond, with the 
strike price equal to par and the coupon rate being the future swap rate.  In the CIR 
framework, we use this interpretation to price swaptions.  

The price computation for a call option on a coupon bond is more complicated 
than that for a call option on a discount bond, since we now have a nonlinear, nonclosed 
form boundary. Consider a coupon bond ($1 par) with first coupon date T, maturity s, 
coupon rate c and settlement period τ. The price of this bond at date t is given by  
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Now consider a European call option on this coupon bond, with an exercise price K. The 
integration region in (2.7) is given by  
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We must solve (2.34) numerically to obtain the critical values of the state variables. Since 
the discount bond price is a decreasing function of the state variables, the coupon bond 
price is also a decreasing function of the state variables. The critical values thus formed a 
curve for the integration. Let y y yi i ik

*
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do not appear in the argument list. Therefore yi
* ()  is the value of yi  such that 

KcsTTP =+ ),,,,( ττ  when all other state variables are zero. 
The price of a call option on a coupon bond is given (see Chen and Scott (1995) 

and Sun (1998)) by 
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All other variables are the same as in (2.27)-(2.29). 
The two and three-dimensional cumulative noncentral chi-square distributions are 

respectively 
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E. Computation of the Multidimensional Distribution using Fourier Inversion 
 
 The multidimensional integral of the noncentral chi-square distribution in cap and 
swaption price is computationally demanding.  Chen and Scott (1995) proposed an 
alternative approach to compute the multidimensional distribution. It is based on Fourier 
inversion and is much faster when the integral boundary is linear.  



The central idea is the relationship between distribution function F x( )  and the 
characteristic function Φ( )t (see Shephard (1991)) 
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Therefore, the cumulative distribution can be regarded as Fourier inversion of the 
characteristic function. The characteristic function has a nice property that, if a random 
variable is a linear combination of some independent random variables, its characteristic 
function is simply the product of their characteristic functions. Namely,  
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Applying these results to the multidimensional noncentral chi-square distribution in the 
expression for the cap price, gives: 
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are the characteristic functions of χ ν δ2[ ; , ]x i i  and χ ν δ2[ ; , ]*x i i  respectively. Since only 
one-dimensional integrals are involved in (2.44) and (2.45), the computation becomes 
much easier. 
 For the swaption price, the boundary is nonlinear and this approach cannot be 
applied directly. Chen and Scott (1995) suggest that we compute the probability under the 
linear boundary using Fourier inversion and those between the linear and nonlinear 
boundary using the multidimensional integral. The difference between these two 
probabilities is the probability in the swaption price. The resulting computations, 
however, are still time consuming for the three-factor model. 
 
 
3.  Evaluating Multifactor CIR Models Using LIBOR and Swap Rates 
 
A. Econometric Method 

 
Following Pearson and Sun (1994), Chen and Scott (1993), and Duffie and 

Singleton (1996), the joint distribution of observed LIBOR and swap rates can be 
obtained from the noncentral chi-square distributions of the state variables through a 
change of variable. We first invert the pricing equations (2.16) and (2.17) to express the 



unobservable state variables as functions of observed rates. We then apply quasi-
maximum likelihood estimation to obtain parameter estimates. 

For this purpose, write (2.16) and (2.17) as 
(3.1)   r g y y i n nit i t nt= = =( ,..., ), ,..., ; , ,1 1 1 2 3      
where rit is either the LIBOR rate or the swap rate. Given the appropriate parameter 
values, the above system of nonlinear equations can be solved numerically for the state 
variables as functions of observed rates, i.e., y r r i n nit t nt( ,..., ), ,..., ; , ,1 1 1 2 3= = . For a n-
factor model, we assume that n of the rates are observed without any error and invert the 
rates to get the n state variables. For the one factor model, the inversion is unique since 
both LIBOR and swap rates are increasing functions of the state variable. For two- and 
three-factor models, we cannot guarantee the uniqueness.  

Through a change of variable, the joint conditional density of the exactly observed 
rates can be written as 
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where f is the conditional noncentral chi-square density given by 
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is the probability density of a non-central chi-square distribution χ ν λ2 ( ; , )x , with ν 
degrees of freedom and parameter of noncentrality λ, and Iq(.) is the modified Bessel 
function of order q, and J is the Jacobian of the transformation 
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If g is the LIBOR rate in (2.15), the derivative term is given as 
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If g is the swap rate in (2.17), the derivative is  
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The log-likelihood of the exactly observed rates is 
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For a n-factor model, only n observed rates are needed to identify the state variables 
(factors). Since we have more rates than needed to identify the factors, we follow the 
common practice, and assume that the other rates are observed with error. The 
measurement error δ it  is defined as the difference between the observed and the fitted 
rate. We assume the errors are i.i.d. Normal with mean zero and possibly nonzero 
correlation. The log-likelihood for measurement errors is 
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where Ω is the covariance matrix for δ t . The total log-likelihood is the sum of the log-
likelihoods of the exactly observed rates and the measurement errors. 
 
B. Description of the Data 

 
The average bid-ask spreads for the LIBOR and swap rates were obtained from 

Bloomberg for the period from February 3, 1995 till July 16, 1999. The LIBOR rate is for 
the 3-month maturity, and swap rates are for maturities of 2-, 3-, 5-, 7- and 10-years. For 
each rate2, the observations are weekly, and there is a total of 233 data points. To show 
the behavior of interest rates during this sample period, the 3-month LIBOR, 2-year swap, 
and 10-year swap rates are graphed in Figure 1. The rates generally decrease during the 
first quarter of the sample period. Then the short rate remains relatively stable till 
September 1998, while the long rate goes up and down during that period, reaching as 
high as 7.365%, June of 1996. During the last quarter the long rate goes up while the 
short rate takes a dive to 4.195% before going up. The 10-year swap rate is generally 
higher than the 3-month LIBOR rate, but the only exception is two weeks in October of 
1998. The spread varies a great deal without any observable pattern. 

We report the sample means and standard deviations in Table 2, panel A. Our 
sample means and standard deviations of weekly changes in LIBOR and swap rates are 
reported in panel B. The average 3-month LIBOR rate in this period is 5.627% with 
standard deviation 0.322% (the 3-month LIBOR rate data set has had an anomaly 
substituted with an average of previous and following rates). The average 10-year swap 
rate is 6.513% with standard deviation 0.565%, and the rates are on average upward 
sloping. The LIBOR rate is less volatile than the swap rate, and the short-term swap rate 
is less volatile than the long-term swap rate. For weekly changes, all the means are 
                                                           
2 All rates are quoted on annual basis and in computations one week is assumed to represent 1/52 of a year. 



approximately .5 - .6 basis points negative. This shows that over the past half decade 
interest rates have on average declined. The standard deviations range from 5.036 basis 
points for the 3-month LIBOR up to 10.651 basis points for the 3-year swap rate, and the 
volatility curve is hump shaped (see Figure 3).  

Table 4, Panel A contains the results from principal component analysis of weekly 
changes of LIBOR and swap rates. Each column represents one independent factor and 
each row represents the weight of a particular rate in this factor. For example, the first 
factor (Level) consists of 0.1228 of the 3-month LIBOR rate changes, 0.4280 of the 2-
year swap rate changes, etc., all the way down to 0.4198 of the 10-year swap rate changes. 
Since this factor has positive, almost equal weights on all rates, we generally refer to it as 
the level factor. The last row is the percentage of the sum of the variances of all the rate 
changes explained by each factor. The level factor explains 93.697% of the total variation 
and is the dominant factor. The second factor is mainly the difference between the LIBOR 
rate (weight -0.8662) and swap rates (with larger weight put on longer rates). It is 
therefore generally called the slope factor. It explains 3.554% of the total variation. The 
third factor has positive weights on short-end LIBOR (0.4817) and long-end 7- and 10-
year swap rates (total weights 0.7986), but negative weights on intermediate 2-, 3-, and 5-
year swap rates (total weights -0.9424).  It is generally named the curvature factor. It 
explains 1.961% of the total variation. These three independent factors explain more than 
99% of the total variation in rates. We therefore conclude that three independent factors 
drive the term structure of LIBOR and swap rates: level, slope and curvature. 

Table 3, Panel B reports the R-square values from the regression of weekly 
changes in the 3-month LIBOR, and 2- and 10-year swap rates on the level, slope and 
curvature factors. For the 3-month LIBOR rate, the slope factor is the dominant factor. It 
explains 59.34% of the variance. The level factor also explains 31.78%. Therefore, the 
LIBOR rate is driven by the slope and level factors.  For the 2-year swap rate, the level 
explains 94.11% and the curvature explains 4.29%. For the 10-year swap rate, the level 
explains 94.81% and the curvature explains 2.57%. So the swap rates are mainly driven 
by the level factor, with other factors having little explanatory power.  
 
C. Empirical Results 
 
C.1 One-Factor CIR Model 

 
The one-factor CIR model is estimated first. Only one observed LIBOR or swap 

rate is needed to recover the unobservable state variable. The 3-month LIBOR rate and 2- 
and 10-year swap rates were tested, and the 2-year swap rate gave the smallest fitting 
errors for all other LIBOR and swap rates. Table 1 reports the estimated parameter values. 

For the one factor model, the state variable is the instantaneous default-adjusted 
rate, or the short rate itself. The long-run mean, y0, of the short rate is estimated at 
6.747%. The speed of adjustment k is estimated at 0.05532. The conditional mean and 
variance of the short rate for the one-factor model are given by: 
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where ν is defined in (2.29). This is a gamma distribution Γ( ; , )x a b . The steady state has 

a mean and standard deviation of θ and σ θ
2k

 respectively, which are the limits of 

(3.12) and (3.13) as τ goes to infinity. 
The “half-life” of the process (the time when the short rate is expected to reach a 

value halfway between the current level and the long-run mean), is ln /2 k , or roughly 
12.5 years. This implies weak mean reversion.  

For the estimated parameter values the implied long-term yield, as defined in 
(2.16), is 8.929% (see Table 1, Panel B). The absolute value of the pricing (fitting) errors 
(Table 2, Panel A) for the 3-month LIBOR and the 10-year swap rates have means of 
33.853 and 18.610 basis points respectively. Those for other swap rates have smaller 
means but still large standard errors. With typical bid-ask spreads in the swap market 
during this period of about four basis points, this pricing error is very large.  We also 
report the mean and standard deviation of the weekly changes in LIBOR and swap rates. 
In Table 2, Panel B, we find that the one-factor CIR model is unable to match the 
volatility of the changes in LIBOR and long-term swap rates. The sizable pricing errors 
can be taken as evidence against the one factor CIR model. 

To test whether the recovered values of the state variable have the conditional and 
marginal densities implied by the estimated parameters, we calculate test statistics for the 
conditional moments.  If a n-dimensional vector g has an asymptotic normal distribution, 
N ( , )0 Ω , then the test statistic is given by: 

(3.15)  g g n' ( )Ω− →1 2χ . 
To construct this test for the conditional distribution of the CIR state variable, we 

use the following three moment conditions as the g function 
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where t1µ  and t2µ  are the first and second conditional moments defined by (3.12) and 
(3.13) for 1+= tτ . The asymptotic covariance matrix Ω is estimated using the Newey-
West procedure. We use the square root of the 233 observations, or 15, as the window 
width in Newey-West procedure. The test statistic is 8.9117 (Table 1, panel A, Test 1 
column) for the one factor model. Since the 5% critical value for chi-square distribution 
with four degrees of freedom is 9.49, we cannot reject the hypothesis at the conventional 
level that the sample conditional first and second moments are indeed the ones implied by 
the estimated parameter values.  



Table 4, Panel C reports the R-square values from the regression of the previously 
defined three main factors on changes in the recovered state variable.  The value 0.9402 
shows that the state variable captures the level factor. 
 
C.2 Two-Factor Model 
 

We now continue with the estimation of the two-factor CIR model. Two rates 
need to be matched to recover the state variables. Table 1 reports the results when 2- and 
10-year swap rates are used to recover the state variables. 

The risk premia for both state variables are negative. The estimated parameters 
imply a long rate of 5.330%. The two-factor model generates a long run mean of the short 
rate of 3.546%.           

From Table 2 we can see that the pricing errors of the two-factor model are much 
smaller than that for the one-factor model. The mean absolute pricing errors for the 3- and 
5-year swap rates are both less than the bid-ask spread (about four basis points), while the 
mean absolute pricing error for the fitted LIBOR rate is not. This is encouraging since it 
seems that the swap market can be priced by a two-factor equilibrium model. The LIBOR 
rate is still not well fitted. This suggests that the short-term rate has distinctive features 
that the dynamics of the intermediate and long-term rates do not capture (see Figure 1), 
the 3-month LIBOR behaves considerably different from the swap rates. Figure 2 
illustrates differences in behavior between observed and fitted (using 2-factor 
specification) 3-month LIBOR rates. When comparing Figures 1 and 2 we can see that the 
largest discrepancies occur when the yield curve has negative slope (for example October, 
1995 – March, 1996 and September, 1998 – December, 1998). One possible explanation 
could be that even a 2-factor model does not correctly capture the slope component. 

The correlation of the changes of the two state variables is, 0.0013 (see Table 1, 
Panel B).  Remember that in the model we assume the two factors were independent.  
Therefore, this evidence does not contradict the model specifications.  

The test statistic3 for the null hypothesis that the sample conditional first and 
second moments are consistent with those implied by the estimated parameter values is 
4.6567 for the first variable and 6.4909 for the second variable. So again we cannot reject 
the hypothesis that the sample conditional first and second moments are indeed the ones 
implied by the estimated parameter values. 

Table 4, Panel C reports R-square values from regressing the level, slope and 
curvature factors on the changes in the two recovered state variables. The level factor is 
mainly explained by the second state variable and the curvature by the first. The first 
factor also explains a significant portion of the slope factor. If we include both state 
variables, the level factor is almost entirely explained as well as most of the curvature 
factor. The slope factor, however, is not captured by the two state variables. Furthermore, 

                                                           
3 We can extend one-factor specification test to multifactor models because we assume that factors are not 
correlated. For multifactor models we do the test separately for each factor and tR  refers to the respective 
state variable. 



the R-square values are in line with the independency result: the first factor explains 
changes of slope and curvature factors but not the level factor.   

Note that we would expect either a positive or zero constant as the lower bound 
for the nominal rate. The estimated value of the constant is negative and statistically 
significantly different from zero, -0.25495 (0.00003).  This suggests that the short rate is 
too volatile even at low interest rate levels to be consistent with the standard CIR 
specification where the constant is equal to zero. 

 
C.3 Three-Factor Model 
 

We now continue to observe if adding another factor into the CIR framework 
significantly improves the performance. In Figure 3, with the 3-factor specification, we 
can closely fit the volatility curve. Table 1 gives the estimation results when the 3-month 
LIBOR, and 2- and 10-year swap rates are matched to recover three state variables. The 
long-run mean of the short rate is estimated at 6.244% and the long-term yield is 6.257%. 
The risk premia are all negative, but not estimated with sufficient precision. Correlations 
among the three state variables are –0.35, -0.50, and –0.58 respectively. Thus the 
independence assumption is violated as we increase the number of variables. Table 2, 
Panel C reports additional inconsistencies between theoretical models and estimation 
results. We assume that the autocorrelations of rates’ pricing errors to be zeros but as one 
can see from the table they are significantly positive. We have tried to estimate a model 
with autocorrelated pricing errors, but it did not converge. 

The tests cannot reject the hypothesis that the conditional means and variances of 
the factors are as given by their assumed theoretical distribution.  

As can be seen from Table 4, by increasing the number of factors to three, we 
capture all three factors (level, slope and curvature) estimated by the principal component 
analysis.  While the mean absolute pricing errors are all either smaller than the bid-ask 
spread or pretty close to it, we are unable to justify our assumption that the factors are 
independent. The negative value for the estimated constant term suggests that the square 
root process is unable to provide a good description of the volatility: the volatility is 
rather large even when the rate is close to zero. Hence the dependence of volatility on the 
level of the state variables could also be higher than that suggested by a square root 
process. 

 
D.  Out of Sample Performance 

 
To test these specifications we apply estimated models to another data set 

containing 3-month LIBOR and 2-, 3-, 5-, 7- and 10-year swap rates. This data set covers 
the period from April 7, 1989 till September 12, 1997. We obtained the LIBOR and swap 
rates from Bloomberg.  



 
As in the earlier sections, we assumed no pricing errors for some of the swap rates 

and inverted the pricing functions to obtain the state variables for each point in time. For 
example, for a 3-factor specification, 3-month LIBOR, and 2- and 10-year swap rates 
were used. As we can see from Table 3, the results, in particular for a 3-factor model, are 
surprisingly good. The mean absolute pricing errors are comparable with the ones for the 
original data set. For a 3-factor model two out of three figures (3- and 7-year swap rates) 
are less than bid-ask spread of about four basis points and the remaining one is 4.629 
basis points. These pricing errors are comparable to those reported by Dai and Singleton 
(1999) for models that belong to the more general affine term-structure class that nests 
the CIR specification. Their data set contains 6-month LIBOR and 2-, 3-, 5-, 7-, and 10-
year swap rates and covers the period from April 3, 1987 till August 23, 1996. The lowest 
means of pricing errors they report for 3-, 5-, and 7-year swaps are -11.3, 16.9, and -12.7 
basis points, respectively.  
 
E.  Prediction of Future Spot Rates 
 

We use equation (3.13) to find the expected value of the state variable to evaluate 
the predictive power, regress the actual monthly changes in rates on a constant and the 
predicted 3-month change in rates. We use the change in rates instead of the level of rates 
because the LIBOR and swap rates are persistent. A good model would have an intercept 
a close to zero and a regression coefficient b close to one. Table 5 reports the results. 

For the prediction of the 3-month LIBOR, all three models generate an intercept 
insignificantly different from zero and a coefficient b insignificantly different from one. 
However, for all specifications R-square is small, the one-factor model has the largest R-
square of 13.30%.  

For the 2-year swap rate, only one of the intercepts (the two-factor model) is 
insignificantly different from zero but the corresponding slope coefficient is significantly 
different from one. For other models both estimated parameters are off.  

For the 10Y swap rate, the intercept is insignificantly different from zero for the 
one-factor model, but the slope coefficients for all three models are significantly different 
from one. To summarize the preceding discussion, we can say that to go to three factors 
does not appear to improve the performance when it comes to forecasting future swap 
rates.  
 Notice that the one-factor model performs best in forecasting 3-month changes for 
the 3-month LIBOR, this happens though the three-factor model was forced to match the 
3-month LIBOR rate. The three-factor model does worst, again showing that something is 
missing in the model specifications. The pattern continues forecasting three-month 
changes in 2- and 10-year swap rates.  
 
 
 
 



4. Valuation of Caps and Swaptions 
 
So far we have been focusing on the LIBOR and swap rates. We have used 

correlation, conditional distributions, and predictive power as evidence against the 
multifactor CIR models. To evaluate the economic importance of the statistical evidence 
against the models reported in the earlier sections, we examine the models’ pricing errors 
for caps and swaptions. 
 
A. Pricing Errors of Caps Using CIR Models 
 

The weekly cap data, obtained from Fannie Mae, consists of bid prices from 
February 17, 1995 to July 16, 1999. Cap maturities are 1-, 2-, 5-, and 10-years. All 
contracts are at the money –, i.e., the strike rate is the spot rate for the corresponding 
maturity.  The original data is quoted as the Black’s volatility, we transform it into price 
data using Black’s formula. For this purpose, we obtain the data for LIBOR zero coupon 
bonds from University Capital Strategies Group, Minneapolis, Minnesota. The forward 
rate is computed from these LIBOR zeros. We compute the strike from the forward rates. 
The derived price is in basis points, or cents per $100 face value of the cap contract. The 
typical bid-ask spread is one to two percent in Black’s volatility. We also transform this 
bid-ask spread in volatility into that in basis points using Black’s formula.   

Table 6, Panel A reports the means and standard deviations of the cap prices 
during this period, along with the average bid-ask spreads. The average price is only 
19.60 basis points for the one-year contract, but 638.20 basis points for the ten-year 
contract. Although the 10-year cap has only ten times the individual caplets that the 1-
year cap has. The longer maturity caplets are more valuable, so that the average price of 
the 10-year cap is about 30 times that of the 1-year contract. If you compare the price of a 
5-year and 10-year cap, you will find that the relative price difference is close to the 
difference in the number of caplets in each contract. This is because the 5-year cap also 
has many long-maturity caplets. Beyond five years, although the longer maturity caplet is 
still more valuable, the difference is small.  An average bid-ask spread in the cap market 
is 8% to 10% of the price, which implies a very illiquid market. The shorter maturity 
price is more volatile than the longer maturity price. For 5- and 10-year contracts, the 
volatility is just about 50% larger than the bid-ask spread, but for the 1-year contract, the 
volatility is more than three times the bid-ask spread. 

Table 6, Panel A also reports the mean absolute pricing errors from using the 
estimated CIR models in the previous section. The 1-year cap computed using two-factor 
model has pricing error larger than those of one-factor. This is surprising, given that the 
two-factor model fit the LIBOR and swap rates more precisely than the one-factor model. 
However, the negative value for the constant term suggests that the two-factor model is 
misspecified. The pricing errors for longer maturities are better with two-factor model, 
for 2-, 5-, and 10-year caps they are about twice as low as the ones for one-factor model. 
So the one-factor model outperforms the two-factor model on the short end but loses a lot 
for all other maturities. 



The three-factor model, in Table 6, does not do as well as the two-factor model 
for 1- and 2-year caps. However, pricing errors for 5- and 10-year caps are 30-35% lower 
than those for the two-factor model.  

Overall, no CIR model can price the cap consistently into the bid-ask spread, and 
all CIR models are misspecified. Thus, it also could be viewed that by increasing the 
number of factors we lose the descriptive power on the short end and gain with longer 
maturity caps. Comparing Figures 1 and 4, we can see that estimated caps prices behave 
very differently for both 1- and 3-factor models when the yield curve has negative slope. 
This observation suggests, the CIR specification does not capture the interaction between 
the intertemporal dynamics of level and slope. 
 
B.  Joint Estimation 
 

In order to test how information contained in caps prices data relates to the term 
structure we also did joint estimation. Sum of caps’ absolute pricing errors was added to 
the likelihood function. The results of these computations for two- and three-factor 
models are reported in the Table 1’. As we can see from Table 1 and Table 1’ comparison 
the coefficients for state variables processes are basically the same. Assigning larger 
weights to the sum of caps’ absolute pricing errors did not result in any significant 
change. One possible reason for this outcome could be the LIBOR and swap rates alone 
do not span the fixed income related instruments, as it was mentioned before in the 
literature, see for example Collin-Dufresne and Goldstein (2001). Another possible 
reason could be the shortcomings of CIR models. Although the models we use are 
multifactor ones the structure imposed by CIR specification is quite nonflexible. We will 
illustrate this point using Dai and Singleton (1999) framework a bit later when we will 
talk about stochastic volatility in CIR models. 
 
C.  Pricing Errors of Swaptions Using CIR Models 

 
The weekly swaption data, obtained from Fannie Mae, consists of bid prices from 

February 17, 1995 to July 16, 1999. The swaption maturities are 3-months and 2-years 
and the underlying swap lengths are 2-, 5- and 10-years. All contracts are at the money 
and of receiver type.  The original data is quoted as the Black’s volatility. We transform it 
into price using Black’s formula. Prices of LIBOR zero coupon bonds are used to 
compute the forward swap rate. We compute the forward swap rate such that the forward 
swap contract has a value of zero at the future entering date, by assuming the forward 
LIBOR is realized. The transferred price is in basis points, or cents per $100 face value of 
the swaption contract. The typical bid-ask spread is one to two percent in Black’s 
volatility. We also transform this bid-ask spread in volatility to one in price.   

Table 6, Panel B reports the means and standard deviations of swaption prices 
during this period, along with the average bid-ask spread. The average price of a 2-year 
contract is about 2.5 times the price of a 3-month contract with the same underlying swap 
length. The average bid-ask spread in the swaption market is approximately 8% to 10% of 



the price, similar to those in the cap market. Three-month contracts are more volatile than 
the 2-year contracts. For those contracts that have the same maturity but different 
underlying swap lengths, the ones that have shorter underlying swap lengths are more 
volatile. For all the contracts, the volatility and bid-ask spread are of the same order. We 
can say that the swaption price is relatively stable over time. 

Table 6, Panel B also reports pricing errors using the estimated CIR models. The 
one-factor model did reasonably well, pricing 3-month swaptions with an underlying 
swap length of two years, specifically contract 3M2Y. Nevertheless it produces large 
pricing errors for all other contracts and every time the one-factor model gives us more 
volatile swaption prices. As in the cap market, the one-factor model can be used to price 
short-term swaptions, both as to swaption maturity and underlying swap length. The two-
factor model considerably improves the pricing errors for long-term swaptions.  The 
pricing errors are still large when compared with the typical bid-ask spread in this market. 
Standard deviations of fitted prices produced by the three-factor model are too low 
compared to the observed swaption prices standard deviations. The conclusion is that 
none of the models capture the processes driving the pricing of swaptions well enough. 
Although the one-factor model cannot capture the long rate well, it can be used to price 
the shorter maturity swaptions. The two-factor model prices the longer maturity 
swaptions better, but still the pricing errors are too large. Similar to the caps, comparing 
Figures 1 and 5, we can see that the biggest differences in behavior are during the 
negative sloped yield curve.  

 
 
D.  Slope of Term Structure and Models’ Specification 
 

As we already mentioned in subsection 4.A estimated caps prices seem to be 
behave very different from market prices. To test that observation we run regressions of 
the following form 
 
(4.1) ,PrPr tttt SlopeicepObservedCaiceFittedCap εβα ++=−  

 
where for tSlope  we have two options: the short end slope, the difference between 2-year 
swap and 3-month LIBOR rates, and the yield curve slope, the difference between 10-year 
swap and 3-month LIBOR rates. The results for these regressions are reported in the 
Table 7. As we can see there is certain dependence between pricing errors and slope of 
the term structure. It is especially evident for the latter choice of slope variable, in this 
case all p-values are very close to zero. With the three factor CIR model we force fit 3-
month LIBOR, 2-year swap, and 10-year swap rates so this particular model produces 
exactly the same slopes as we observe in data but even model demonstrates strong 
dependence of pricing errors on slope. Again it suggests that CIR models fail in capturing 
intertemporal dynamics of slope. Regression coefficients for 1-year cap are positive. Also 
on average this cap is overpriced by all three models. Therefore as term structure slope 
starts decreasing the pricing error starts shrinking and if term structure becomes more 
negatively sloped the 1-year cap may become underpriced. On the other hand 10-year cap 



is underpriced by all models and all regression coefficients are positive. Hence the pricing 
error for 10-year cap also starts decreasing in absolute value as slope becomes smaller 
and at some point this cap may become overpriced. So although the coefficients differ in 
sign the cap prices behave the same way as the structure flattens the caps become more 
precisely priced. 

We also extend our chi-square test of subsection 3.C.1 and add one moment 
condition that includes slope  
 (4.2) [ ] 0))(( 2

2
11 =−−+ tttt SlopeRE µµ . 

These new test statistics are reported in the Table 1 in the Test 2 column. As we can see 
now all three specifications (one-, two-, and three-factor CIR models) are rejected at .5% 
significance level.  
 
E.  Stochastic volatility in CIR models 
 

With the three-factor CIR model we can force-fit term structure of interest rates 
with good precision but as we already pointed out the model has difficulty replicating 
standard deviations of caps and swaptions prices. Caps and swaptions are volatility 
instruments and they are even quoted in terms of Black volatility. So problem with 
correct pricing could be inability of CIR specifications to deal with stochastic volatility. 

To demonstrate CIR models flaws let us apply Dai and Singleton (1999) 
framework. The general identified AY(3,3) model is 

 


















⋅+

⋅+

⋅+

Σ+
















−
−
−

= ×

3
'

33

2
'

22

1
'

11

33

333

222

111

)(

)(

)(

)(
)(
)(

)(

dWtY

dWtY

dWtY

dt
Yk
Yk
Yk

tdY

βα
βα
βα

θ
θ
θ

. 

For multifactor CIR model ( )321 ,, βββ  is diagonal. We assume that the factors are not 
correlated so  33×Σ  is diagonal as well. Therefore the model we study is 
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The Ar(3,3) equivalent of the model above is 
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The variables tr , tθ , and tν  are traditionally called short rate, stochastic central tendency, 
and stochastic volatility, respectively. This transformation allows us to see why we may 
have problems with modeling: the stochastic volatility tν  appears in the drift of tθ . 

In contrast the following AY(3,2) model has nice interpretation of level, stochastic 
central tendency and stochastic volatility 
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which becomes more evident from its Ar form 
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The models of this type could a way to pursue, though there may be other roadblocks, for 
example Chen (1996) model is from that class ( 0    ,0 === νθ σσ rra ) but it was rejected 
by Dai and Singleton (1999) based solely on interest rates data. 
 



5. Conclusion 
 
In this paper we investigate the ability of one-, two- and three-factor CIR models 

to describe the dynamics of the LIBOR and swap markets. We estimate the model 
parameters using the maximum likelihood method and time series data on LIBOR and 
swap rates. Using the estimated model parameters, we predict the future LIBOR and swap 
rates and compare them with realized rates. We then use the estimated model to price 
interest rate derivatives, specifically caps and swaptions, and to compute the resulting 
pricing error. 

Although the use of more factors fits the LIBOR and swap rates more precisely, 
the statistical properties of the estimated factors are not consistent with the properties 
implied by the model. In particular, we found that in the three-factor model the factors are 
correlated, contradicting the assumption that they are independent. The constant term in 
all three models (a short rate is the sum of the factor(s) plus a constant) is estimated to be 
negative. We added a constant term so that nominal interest rates would be bounded away 
from zero. Why is the constant negative? The short interest rate volatility falls to zero at 
very low levels in the CIR specification without a constant. However, in the data (see, for 
example, Figure 1) the short (3-month LIBOR) rate volatility is still high at the lowest 
levels suggesting that the volatility fall with level may be too high in the CIR model 
without a constant. By adding a negative constant the volatility of the short rate at low 
levels can still be kept sufficiently high to match what we observe in the data. This clearly 
suggests that the CIR specification may have to be modified. Also notice that the constant 
becomes more negative with a number of factors. This fact provides an additional 
indicator that just increasing the number of factors in the CIR model is not going to help. 

When used to predict future LIBOR and swap rates, we found there are more 
indications of model misspecification. When used to value interest rate derivatives, 
specifically caps and swaptions, no CIR model can correctly price all contracts 
simultaneously. Although the one factor model is clearly deficient, it is the best among all 
the CIR models considered for the pricing of short maturity caps and swaptions. 
However, the pricing error is still too large relative to the typical bid-ask spread. More 
factors may help improve the pricing of longer term caps and swaptions, although again 
the pricing error is large compared with the bid-ask spread. Adding these factors makes 
the pricing of short-term contracts worse. In other words, the stochastic process for the 
factors may be misspecified. While it is possible to satisfactorily fit the term structure of 
swap rates by increasing the number of factors to three, the fitting errors for short 
maturity caps and swaptions in fact become larger with more factors. 

Clearly the models cannot capture the cap and swaption prices around the LTCM 
failure date (see Figures 4 and 5). During the periods when the short rate was relatively 
stable the models’ movements in the cap and swaption prices closely resemble the 
movements in the market prices of caps and swaptions. The largest differences in 
behavior between actual and modeled prices are where the yield curve has a negative 
slope. These observations suggest that the models have a problem with simultaneously 
matching the dynamics of the level of the short rate and the slope of the yield curve as 
pointed out by Duffee (2000). In order to satisfactorily value derivative claims, we need 



richer term structure models that satisfactorily capture the time series properties of the 
spot rates and risk premia. Several alternatives to the CIR specification have been 
proposed in the literature, for example, Anderson and Lund (1997), Dai and Singleton 
(1999), Duarte (2000), and Duffee (2000). Attari (1999) suggests a three factor -- four 
state variable model, where the short rate is assumed to be a sum of two instantaneously 
perfectly negatively correlated state variables.  Using these models for valuing derivative 
claims involve complex and time consuming computational methods. Therefore an 
examination of the extent to which these models are suitable for valuing derivative claims 
is left for future research.       
 



Table 1.  Estimates of Multi-Factor CIR Model Using LIBOR and Swap Rates 
 
These tables show the estimated parameters and implied rates for one-, two-, and three-factor CIR models. 
All models are estimated using 3-month LIBOR and 2-, 3-, 5-, 7-, and 10-year swap rates over the period 
from 2/3/1995 to 7/16/1999. The quasi-maximum log-likelihood method was used for estimation. The 
results are presented in the following form: estimated parameter (standard error).  
 
A. Factor Parameters 
The percentiles for chi-square distribution with 4 degrees of freedom (test 1) are 7.78 (10% confidence 
interval) and 9.49 (5% confidence interval) and the percentiles for chi-square distribution with 5 degrees of 
freedom (test 2) are 9.24 (10% confidence interval), 11.07 (5% confidence interval) and 16.75 (.5% 
confidence interval).  Test 1 includes four moment conditions as described on page 14 and Test 2 includes 
five moment conditions as described on page 20. 
 

 κκκκ θθθθ σσσσ λλλλ Test 1 Test 2 
One-Factor 

Y 
 

0.05532 
 (0.04522) 

       
0.09615 

(0.11615) 

 
0.02702 

(0.01806) 

 
-0.01854 
(0.04068) 

 
8.9117  

 

 
20.8347  

 
Two-Factor 

Y1 
 

Y2 

 
0.39269 

(0.03172) 
0.05205 

(0.03486) 

 
0.27315 

(0.00003) 
0.01626 

(0.01059) 

 
0.01553 

(0.00091) 
0.03906 

(0.00633) 

 
-0.00038 
(0.01765) 
-0.05789 
(0.03492) 

 
4.6567  

 
6.4909  

 

 
5.8826 

 
79.4120  

 
Three-Factor 

Y1 
 

Y2 
 

Y3 

 
3.96377 

(0.38200) 
0.03424 

(0.09165) 
0.37520 

(0.04571) 

 
0.52095 

(0.23463) 
0.15236 

(0.46651) 
0.37601 

(0.10268) 

 
0.01930 

(0.00435) 
0.02607 

(0.02523) 
0.01826 

(0.00294) 

 
-0.00767 
(0.03411) 
-0.00301 
(0.09002) 
-0.01972 
(0.04287) 

 
4.2478  

 
5.5523  

 
4.6755  

 

 
8.6076  

 
133.4975  

 
8.9600  

 
 
 
B. Derived Model Parameters 
The table reports estimates of constant, y , values of log-likelihood function, factors correlations, and 
implied short and long rates. 
 

 y  y0 y∞∞∞∞ LogL Corr12 Corr23 Corr13 
One-Factor -0.02868 

(0.01892) 
0.06747 

 
0.08977 7280.70    

Two-Factor -0.25395  
(0.00003) 

0.03546 0.05330 8314.27 0.0013   

Three-Factor -0.98689  
(0.00005) 

0.06244 0.06257 8513.61 -0.35 -0.50 -0.58 

 
 
 
 
 
 
 



Table 1’.  Estimates of Multi-Factor CIR Model Using LIBOR and Swap Rates , and Cap 
Prices 
 
These tables show the estimated parameters and implied rates for two- and three-factor CIR models. All 
models are estimated using 3-month LIBOR and 2-, 3-, 5-, 7-, and 10-year swap rates over the period from 
2/3/1995 to 7/16/1999, and 1-, 2-, 5-, and 10-year cap prices. The quasi-maximum log-likelihood method 
was used for estimation. The results are presented in the following form: estimated parameter (standard 
error).  
 
A. Factor Parameter 
 

 κκκκ θθθθ σσσσ λλλλ 
Two-Factor 

Y1 
 

Y2 

 
0.39220 

(0.01724) 
0.05319 

(0.02015) 

 
0.27274 

(0.15365) 
0.01619 

(0.00140) 

 
0.01534 

(0.00247) 
0.04302 

(0.00369) 

 
-0.00038 
(0.00435) 
-0.05917 
(0.01814) 

Three-Factor 
Y1 
 

Y2 
 

Y3 

 
3.97490 

(1.04442) 
0.03439 

(0.07936) 
0.37531 

(0.15012) 

 
0.52205 

(0.28391) 
0.15567 

(0.44937) 
0.37307 

(0.16397) 

 
0.04140 

(0.01492) 
0.02470 

(0.02403) 
0.03320 

(0.01108) 

 
-0.02990 
(0.15550) 
-0.00304 
(0.07840) 
-0.01657 
(0.14512) 

 
 
B. Derived Model Parameters 
The table reports estimates of constant, y , values of log-likelihood function, factors correlations, and 
implied short and long rates. 
 

 y  y0 y∞∞∞∞ LogL Corr12 Corr23 Corr13 
Two-Factor -0.22893  

(0.11022) 
0.06000 0.07510 7566.63 -0.67   

Three-Factor -0.98960  
(0.00015) 

0.06118 0.06178 7481.69 -0.09 -0.89 -0.29 

 
 
 



Table 2. Observed and Fitted LIBOR and Swap Rates 
 
The tables present the actual and implied LIBOR and swap rates. The estimated parameters used for 
computations are shown in Table 1. The numbers in bold represent the results for exactly fitted rates, so 
they should be exactly the same as the corresponding market figures. We also report implied autocorrelation 
in the LIBOR and swap rates’ pricing errors. 
 
A. Level of LIBOR and Swap Rates 
 
 3M 2Y 3Y 5Y 7Y 10Y 
MEAN (%) 

Market 
One-Factor 
Two-Factor 

Three-Factor 

 
5.627 
5.742 
5.677 
5.627 

 
5.966 
5.966 
5.966 
5.966 

 
6.093 
6.062 
6.075 
6.083 

 
6.254 
6.235 
6.246 
6.259 

 
6.444 
6.387 
6.372 
6.384 

 
6.513 
6.578 
6.513 
6.513 

STD (%) 
Market 

One-Factor 
Two-Factor 

Three-Factor 

 
0.322 
0.524 
0.512 
0.322 

 
0.514 
0.514 
0.514 
0.514 

 
0.534 
0.506 
0.522 
0.538 

 
0.551 
0.488 
0.540 
0.559 

 
0.538 
0.471 
0.554 
0.567 

 
0.565 
0.448 
0.565 
0.565 

M.A.E (bps) 
One-Factor 
Two-Factor 

Three-Factor 

 
33.853 
31.179 
0.000 

 
0.000 
0.000 
0.000 

 
6.058 
2.651 
1.692 

 
11.518 
2.280 
1.608 

 
15.327 
7.248 
6.403 

 
18.610 
0.000 
0.000 

*M.A.E: mean absolute pricing error. 
 
 
B. Weekly Changes of LIBOR and Swap Rates 
 
 3M 2Y 3Y 5Y 7Y 10Y 
MEAN (bps) 

Market 
One-Factor 
Two-Factor 

Three-Factor 

 
-0.437 
-0.686 
-0.706 
-0.437 

 
-0.676 
-0.676 
-0.676 
-0.676 

 
-0.673 
-0.664 
-0.659 
-0.675 

 
-0.651 
-0.641 
-0.635 
-0.655 

 
-0.545 
-0.619 
-0.619 
-0.632 

 
-0.603 
-0.590 
-0.603 
-0.603 

STD (bps) 
Market 

One-Factor 
Two-Factor 

Three-Factor 

 
5.036 
10.322 
11.021 
5.036 

 
10.145 
10.145 
10.145 
10.145 

 
10.691 
9.963 
9.928 
10.314 

 
10.350 
9.611 
9.818 
10.243 

 
10.556 
9.278 
9.849 
10.118 

 
9.906 
8.818 
9.906 
9.906 

CORR. 
One-Factor 
Two-Factor 

Three-Factor 

 
0.571 
0.574 
1.000 

 
1.000 
1.000 
1.000 

 
0.976 
0.986 
0.986 

 
0.960 
0.990 
0.990 

 
0.923 
0.987 
0.987 

 
0.901 
1.000 
1.000 

*CORR: correlation between fitted and observed changes. 
 
 
 
 
 



 
C. Implied Autocorrelations of Rates’ Pricing Errors 
Entries for exactly fitted rates are left blank. 
 
 3M 2Y 3Y 5Y 7Y 10Y 
1 week 

One-Factor 
Two-Factor 

Three-Factor 

 
0.933 
0.923 

 

  
0.800 
0.673 
0.620 

 
0.910 
0.689 
0.632 

 
0.916 
0.941 
0.946 

 
0.954 

 



Table 3. Out of Sample Performance Check. Observed and Fitted LIBOR and Swap Rates  
 
The tables present the actual and implied LIBOR and swap rates. The period is from 4/7/1989 till 
9/12/1997. The estimated parameters used for computations are shown in the Table 1 (the parameters are 
estimated using the rates’ data from 2/3/1995 till 7/16/1999). The numbers in bold represent the results for 
exactly fitted rates (these rates are used to extract state variables, so they should be exactly the same as the 
corresponding market figures). We also report implied autocorrelation in the LIBOR and swap rates’ 
pricing errors. 
 
A. Level of LIBOR and Swap Rates 
 
 3M 2Y 3Y 5Y 7Y 10Y 
MEAN (%) 

Market 
One-Factor 
Two-Factor 

Three-Factor 

 
5.734 
6.212 
5.736 
5.734 

 
6.432 
6.432 
6.432 
6.432 

 
6.734 
6.519 
6.699 
6.715 

 
7.138 
6.677 
7.085 
7.116 

 
7.379 
6.815 
7.343 
7.369 

 
7.591 
6.987 
7.591 
7.591 

STD (%) 
Market 

One-Factor 
Two-Factor 

Three-Factor 

 
1.807 
1.563 
1.873 
1.807 

 
1.539 
1.539 
1.539 
1.539 

 
1.432 
1.512 
1.411 
1.426 

 
1.272 
1.459 
1.257 
1.277 

 
1.197 
1.410 
1.175 
1.190 

 
1.112 
1.342 
1.112 
1.112 

M.A.E. (bps) 
One-Factor 
Two-Factor 

Three-Factor 

 
62.567 
39.524 
0.000 

 
0.000 
0.000 
0.000 

 
22.037 
4.287 
3.008 

 
47.409 
6.368 
4.629 

 
58.281 
4.871 
3.064 

 
63.652 
0.000 
0.000 

 
*M.A.E: mean absolute pricing error. 
 
 
B. Weekly Changes of LIBOR and Swap Rates 
 
 3M 2Y 3Y 5Y 7Y 10Y 
MEAN (bps) 

Market 
One-Factor 
Two-Factor 

Three-Factor 

 
-1.046 
-0.973 
-1.083 
-1.046 

 
-0.962 
-0.962 
-0.962 
-0.962 

 
-0.899 
-0.946 
-0.907 
-0.914 

 
-0.823 
-0.914 
-0.829 
-0.841 

 
-0.787 
-0.885 
-0.780 
-0.789 

 
-0.735 
-0.846 
-0.735 
-0.735 

STD (bps) 
Market 

One-Factor 
Two-Factor 

Three-Factor 

 
11.176 
16.524 
19.634 
11.176 

 
16.272 
16.272 
16.272 
16.272 

 
15.684 
15.983 
15.132 
15.734 

 
14.772 
15.428 
13.946 
14.569 

 
13.866 
14.906 
13.457 
13.828 

 
13.157 
14.194 
13.157 
13.157 

CORR. 
One-Factor 
Two-Factor 

Three-Factor 

 
0.955 
0.965 
1.000 

 
1.000 
1.000 
1.000 

 
0.994 
0.999 
0.999 

 
0.964 
0.998 
0.999 

 
0.932 
0.999 
0.999 

 
0.899 
1.000 
1.000 

*CORR: correlation between fitted and observed changes. 
 
 



 
 
 
 
C. Implied Autocorrelations of Rates’ Pricing Errors 
Entries for exactly fitted rates are left blank. 
 
 3M 2Y 3Y 5Y 7Y 10Y 
1 week 

One-Factor 
Two-Factor 

Three-Factor 

 
0.939 
0.858 

 

  
0.985 
0.804 
0.729 

 
0.992 
0.862 
0.799 

 
0.992 
0.762 
0.657 

 
0.992 

 

 



Table 4.  Principal Component Analysis 
 
The tables show the results of standard principal component analysis of data. The 3-month LIBOR and 2-, 
3-, 5-, 7-, and 10-year swap rates are from 2/3/1995 to 7/16/1999. 
 
A. Principal Component Analysis on Changes in Rates  
 
 ∆∆∆∆3M ∆∆∆∆2Y ∆∆∆∆3Y ∆∆∆∆5Y ∆∆∆∆7Y ∆∆∆∆10Y T.V.E (%)* 
Level 0.1228 0.4298 0.4624 0.4500 0.4542 0.4214 93.697 
Slope -0.8662 -0.2727 -0.1120 0.0812 0.2231 0.3262 3.554 
Curvature 0.4817 -0.6007 -0.2884 -0.0351 0.3553 0.4433 1.961 
Factor 4 -0.0096 -0.6056 0.6616 0.2352 0.0158 -0.3738 0.327 
* Total Variation Explained 
 
 
B. R-square: Regression of Changes in Rates on Factors 
Each entry is a R-square for a regression of a rate’s weekly changes of one of the factors from Table 3, 
Panel A. The principal component analysis factors are independent by construction. 
 
 ∆∆∆∆3M ∆∆∆∆2Y ∆∆∆∆10Y 
On Level 0.3178 0.9411 0.9481 
On Slope 0.5934 0.0188 0.0252 
On Curvature 0.1078 0.0429 0.0257 
 
 
C. R-square: Regression of Factors on Changes in Implied State Vectors 
Each entry is a R-square for a regression of one of the principal component analysis factors on an implied 
state vector. Implied state vectors correspond to the estimates shown in Table 1. 
 
 Level Slope Curvature 
One-Factor 

on ∆y 
 

0.9402 
 

0.0180 
 

0.0385 
Two-Factor 

on ∆y1 
on ∆y2 

on ∆y1 +∆y2 

 
0.0047 
0.7615 
0.9934 

 
0.3622 
0.0981 
0.3634 

 
0.5983 
0.1295 
0.5983 

Three-Factor 
on ∆y1 

on ∆y2 

on ∆y3 

on ∆y1 +∆y2+∆y3 

 
0.5517 
0.6866 
0.0082 
0.9940 

 
0.0153 
0.1061 
0.2210 
0.9922 

 
0.4215 
0.1932 
0.7339 
0.9602 

 
 



Table 5. Prediction of 3-Month Changes of LIBOR and Swap Rates 
 
 
A. Sample: 3-Month Changes of Rates (bps) 
Because we work with weekly data, a 3-month period is assumed to be equal to 13 weeks. That assumption 
gives us 17 three-month changes for 233 weeks. 
 
 3M 2Y 10Y 
Mean -6.8250 -15.7250 -15.8813 
STD 24.3526 59.2229 44.9111 
 
 
B. Prediction of 3-Month Changes 
 
 const (bps) B R-square 
3M LIBOR 

One-Factor 
Two-Factor 

Three-Factor 

 
20.1804* 
10.8231* 
-7.5643* 

 
0.6844** 
0.5693** 
0.4928** 

 
0.1330 
0.0905 
0.0973 

2Y Swap 
One-Factor 
Two-Factor 

Three-Factor 

 
1.4707 

1.4086* 
-7.4916 

 
0.0092 
0.0397 
-0.0319 

 
0.3773 
0.4270 
0.0732 

10Y Swap 
One-Factor 
Two-Factor 

Three-Factor 

 
0.5563* 
-1.4580 
-2.1863 

 
-0.1251 
0.0224 
-0.0003 

 
0.0612 
0.4396 
0.0001 

* - insignificantly different from 0, **- insignificantly different from 1. 
 
 



Table 6. Cap and Swaption Price 
 
The tables report means, standard deviations, and mean absolute errors (M.A.E.s) of actual and fitted caps 
and swaptions data series.  
 
A. Cap Price (bps) 
 
The 1-, 2-, 5-, and 10-year caps are from 2/17/1995 to 7/16/1999. 
  
 1Y 2Y 5Y 10Y 
MEAN  

Market 
One-Factor 
Two-Factor 

Three-Factor 

 
19.60 
21.97 
26.66 
33.95 

 
72.92 
50.68 
67.55 
88.04 

 
284.84 
185.88 
235.59 
292.94 

 
638.20 
462.69 
533.18 
618.39 

STD  
Market 

One-Factor 
Two-Factor 

Three-Factor 

 
5.57 
6.20 
5.32 
5.73 

 
15.80 
0.56 
3.97 
5.01 

 
48.88 
25.25 
13.32 
8.52 

 
81.51 
82.39 
18.82 
9.84 

Bid/Ask 
M.A.E  

One-Factor 
Two-Factor 

Three-Factor 

1.70 
 

7.24 
9.47 

15.03 

5.51 
 

23.00 
11.64 
17.36 

33.01 
 

104.61 
53.00 
36.62 

54.74 
 

204.93 
110.77 
70.59 

 
 
B. Swaption Price (bps) 
 
The 3-month-2-year, 3-month-5-year, 3-month-10-year, 2-year-2-year, 2-year-5-year, and 2-year-10-year 
swaptions are from 2/17/1995 to 7/16/1999. 
 
 3M2Y 3M5Y 3M10Y 2Y2Y 2Y5Y 2Y10Y 
MEAN 

Market 
One-Factor 
Two-Factor 

Three-Factor 

 
37.75 
32.64 
39.02 
44.03 

 
86.97 
73.48 
78.55 
85.01 

 
144.85 
92.86 
118.63 
95.56 

 
104.57 
75.78 
87.57 
104.30 

 
228.45 
174.73 
208.57 
187.97 

 
358.50 
187.16 
277.01 
322.79 

STD 
Market 

One-Factor 
Two-Factor 

Three-Factor 

 
8.06 
7.48 
6.73 
1.01 

 
15.40 
35.07 
18.86 
5.43 

 
20.61 
70.29 
24.43 
7.86 

 
15.99 
18.88 
7.64 
4.37 

 
26.95 
52.55 
17.65 
15.43 

 
36.19 
91.36 
32.66 
32.05 

   Bid/Ask 
M.A.E 

One-Factor 
Two-Factor 

Three-Factor 

3.37 
 

7.92 
8.42 
8.26 

8.12 
 

25.29 
17.88 
11.68 

14.49 
 

68.08 
28.95 
49.52 

9.17 
 

28.81 
18.76 
12.50 

21.40 
 

59.00 
31.39 
42.15 

37.40 
 

171.34 
81.49 
59.10 

 



Table 7. Real and Estimated Cap Prices and Slope of Yield Curve 
 
The tables report regression coefficients for regressions of the following form 
 

,PrPr tttt SlopeicepObservedCaiceFittedCap εβα ++=−  
 
P-values for each coefficient are reported in parentheses. 

 
A. 3Month-2Year Slope 
 
For this table Slope = 2-Year Swap Rate – 3-Month LIBOR Rate. 
   
 1Y 2Y 5Y 10Y 

One-Factor 
 

Two-Factor 
 

Three-Factor 

15.9752 
(0.0000) 
14.0395 
(0.0000)  
14.9764 
(0.0000) 

-9.1432 
(0.0008) 
-5.1930 
(0.0197) 
3.4068 

(0.1872) 

-54.7213 
(0.0000) 
-17.7983 
(0.0075) 
-12.1523 
(0.1071) 

-124.2013 
(0.0000) 
-9.2060 
(0.4386) 
-43.7534 
(0.0020) 

 
 
B. 3Month-10Year Slope 
 
For this table Slope = 10-Year Swap Rate – 3-Month LIBOR Rate. 
   
 1Y 2Y 5Y 10Y 

One-Factor 
 

Two-Factor 
 

Three-Factor 

9.4554 
(0.0000) 
6.7235 

(0.0000)  
6.7174 

(0.0000) 

-18.0537 
(0.0000) 
-11.8317 
(0.0000) 
-7.9676 
(0.0001) 

-98.5700 
(0.0000) 
-38.2459 
(0.0000) 
-40.6191 
(0.0000) 

-223.8566 
(0.0000) 
-56.1248 
(0.0000) 
-92.9875 
(0.0000) 

 
 



Figure 1: LIBOR and Swap Rates
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Figure 2: 3M LIBOR
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Figure 3: Weekly Changes Volatility
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Figure 4: 1Y ATM Cap
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Figure 5: 3M2Y ATM Swaption

20

30

40

50

60

70

80

Feb-95 Jun-95 Oct-95 Feb-96 Jun-96 Oct-96 Feb-97 Jun-97 Oct-97 Feb-98 Jun-98 Oct-98 Feb-99 Jun-99

year

p
ri

c
e
 (

b
p

s
)

market 1-Factor CIR 2-Factor CIR



 
References 
 
Aït-Sahalia, Y., 1996, “Testing Continuous-Time Models of the Spot Interest Rate,” 

Review of Financial Studies, 9(2), 385-426. 
 
Andersen, T. and J. Lund, 1997, “Short Rate Diffusion: Sources of Steepness, Level and 

Curvature in the Yield Curve,” working paper, Northwestern University. 
 
Attari, M., 1999, “Testing Interest Rate Models: What Does Futures and Options Data 

Tell Us?” working paper, University of Wisconsin at Madison. 
 
Backus, D., S. Foresi, A. Mozumbar and L. Wu, 1998, “Predictable Changes in Yields 

and Forward Rates,” NBER working paper no. 6379. 
 
Bansal, R. and H. Zhou, 2000, “Term Structure of Interest Rates with Regime Shifts,” 

working paper, Duke University. 
 
Beaglehole, D. and M. Tenny, 1991, “General Solutions of Some Interest Rate 

Contingent Claim Pricing Equations,” Journal of Fixed Income, September 1991, 
69-83. 

 
Berndt, E., B. Hall, R. Hall, and J. Hausman, 1974, “Estimation and Inference in 

Nonlinear Structural Models,” Annals of Economic and Social Measurement, 3/4, 
653-665. 

 
Bjork, T., 1996, “Interest Rate Theory,” Department of Finance, Stockholm School of 

Economics, Sweden.  To appear in Springer Lecture Notes in Mathematics. 
 
Black, F., 1976, “The Pricing of Commodity Contracts,” Journal of Financial 

Economics, 3, 167-179. 
 
Black, F., E. Derman and W. Toy, 1990, “A One-Factor Model of Interest Rates and Its 

Application to Treasury Bond Options,” Financial Analyst Journal, January-
February 1990, 33-39. 

 
Black, F. and P. Karasinski, 1991, “Bond and Option Pricing when Short Rates are 

Lognormal,” Financial Analyst Journal, July-August 1991, 52-59. 
 
Brennan, M. J. and E. S. Schwartz, 1979, “A Continuous-time Approach to the Pricing of 

Bonds,” Journal of Banking and Finance, 3, 133-155. 
 
Chacko, G. and S. Das, 2000, “Pricing Interest Rate Derivatives: A General Approach,” 

working paper, Harvard University. 
 



Chan, K. C., A. Karolyi, F. Longstaff and A. Sanders, 1992, “An Empirical Comparison 
of  Alternative Models of the Short-term Interest Rate,” Journal of Finance, 
48,1209-1227. 

 
Chen, L. 1996, “Interest Rate Dynamics, Derivatives Pricing, and Risk Management,” 

Lecture Notes in Economics and Mathematical Systems, 435, Springer. 
 
Chen, R.-R., and L. Scott, 1992, “Pricing Interest Rate Options in a Two-Factor Cox- 

Ingersoll-Ross Model of the Term Structure,” Review of Financial Studies. 5 (4), 
613-636. 

 
Chen, R.-R. and L. Scott, 1993, “Maximum Likelihood Estimation for a Multifactor 

Equilibrium Model of the Term Structure of Interest Rates,” Journal of Fixed 
Income, December 1993, 14-31. 

 
Chen, R.-R. and L. Scott, 1995, “Interest Rate Options in Multifactor Cox-Ingersoll-Ross 

Models of the Term Structure” Journal of Fixed Income, Winter 1995, 53-72. 
 
Collin-Dufresne, P. and R. S. Goldstein, “Do Bonds Span Fixed Income Markets? Theory 

and Evidence for ‘Unspanned’ Stochastic Volatility,” working paper, Carnegie 
Mellon University 

 
Constantinides, G., 1992, “A Theory of the Nominal Term Structure of Interest Rates,” 

Review of Financial Studies, 5(4), 531-552. 
 
Cox, J., J. Ingersoll and S. Ross, 1985, “A Theory of the Term Structure of Interest 

Rates,”  Econometrica, 53(2), 385-407. 
 
Das, S. and S. Foresi, 1996, “Exact Solutions for Bond and Option Prices with Systematic 

Jump Risk,” Review of Derivatives Research, 1, 7-24. 
 
Dai, Q. and K. Singleton, 1999, “Specification Analysis of Affine Term Structure 

Models,” working paper, Stanford Graduate School of Business. 
 
Dothan, M., 1978, “On the Term Structure of Interest Rates,” Journal of Financial 

Economics, 6, 59-69. 
 
Duarte, J., 2000, “The Relevance of the Price of Risk in Affine Term Structure Models,” 

working paper. 
 
Duffee, G., 2000, “Term Premia and Interest Rate Forecasts in Affine Models,” working 

paper, Haas School of Business, UC Berkeley. 
 
Duffie, D. and K. Singleton, 1997, “An Econometric Model of the Term Structure of 

Interest Rate Swap Yields,” Journal of Finance, 52, 1287-1321. 
 



Duffie, D. and K. Singleton, 1999, “Modeling Term Structures of Defaultable Bonds,” 
Review of Financial Studies, 12, 687-720. 

 
Feller, W., 1951, “Two Singular Diffusion Problems,” Annals of Mathematics, 54, 173-

182. 
 
Friedman, A., 1975, “Stochastic Differential Equations and Application (I),” Academic 

Press, New York. 
 
Ghysels, E. and S. Ng, 1998, “A Semi-Parametric Factor Model of Interest Rates and 

Tests of the Affine Term Structure,” Review of Economics and Statistics, 80, 535-
548. 

 
Grinblatt, M., 1995, “An Analytic Solution for Interest Rate Swap Spreads,” working 

paper no. 9-94, Anderson Graduate School of Management, UCLA. 
 
Harrison, M. and D. Kreps, 1979, “Martingales and Arbitrage in Multiperiod Security  

Markets,” Journal of Economic Theory, 20, 381-408. 
 
Ho, T. 1995, “Evolution of Interest Rate Models: A Comparison,” Journal of Derivatives, 

Summer 1995, 9-20. 
 
Hull, J., 1997, "Options, Futures and Other Derivatives," Third Edition, Prentice  Hall, 

New Jersey. 
 
Johannes, M., 1999, “Jumps in Interest Rates: A Nonparametric Approach,” Job Market 

Paper, Department of Economics, University of Chicago. 
 
Johnson, N. and S. Kotz, 1983, “Continuous Univariate Distributions,” John Wiley & 

Sons.  
 
Karlin, S. and H. Taylor, 1981, “A Second Course in Stochastic Process,” Academic 

Press,  New York. 
 
Litterman, R. and A. Scheinkman, 1991, “Yield Curve Factors,” Journal of Fixed Income, 

June 1991, 54-61. 
 
Longstaff, F. and E. Schwartz, 1992, “Interest Rate Volatility and the Term Structure: A 

Two-Factor General Equilibrium Model,” Journal of Finance, 47, 1259-1282. 
 
Longstaff, F., P. Santa-Clara and E. Schwartz, 2000, “The Relative Valuation of Caps and 

Swaptions: Theory and Empirical Evidence,” working paper, Anderson Graduate 
School of Management, UCLA. 

 
Marsh, T. and E. Rosenfeld, 1983, “Stochastic Processes for Interest Rates and 

Equilibrium Bond Prices,” Journal of Finance, 38, 635-646. 



 
Øksendal, B., 1998, “Stochastic Differential Equations: An Introduction with 

Applications,” 5th Edition, Springer-Verlag, Berlin Heidelberg. 
Pearson, N. and T. Sun., 1994, “Exploiting the Conditional Density in Estimating the 

Term Structure: An Application to the Cox, Ingersoll, and Ross Model,” Journal 
of Finance, 49(4), 1279-1304. 

 
Piazzesi, M., 1999, “An Econometric Model of the Yield Curve with Macroeconomic 

Jump Effects,” Job Market Paper, Department of Economics, Stanford University. 
 
Stanton, R., 1997, “A Nonparametric Model of Term Structure Dynamics and the Market 

Price of Interest Rate Risk,” working paper; forthcoming in Journal of Finance. 
 
Sun, G., 1997, “The Test Function Method for Estimating Continuous-Time Models of 

Short Term Interest Rate,” working paper, Department of Finance, University of 
Minnesota. 

  
Sun, G., 1998, “Essays on Term Structure Models,” unpublished dissertation, University 

of Minnesota. 
 
Vasicek, O., 1977, “An Equilibrium Characterization of the Term Structure,” Journal of 

Financial Economics, 5, 177-188. 
 
Wei, D. and D. Guo, 1997, “Pricing Risky Debt: An Empirical Comparison of the 

Longstaff and Schwartz and Merton Models,” Journal of Fixed Income, 
September 1997, 8-28. 

 
 


