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Convex adjustment costs were introduced in general equilibrium models
to help smooth the behavior of aggregate investment in these models! and
to allow the equilibrium price of capital to be determined endogenously.?
Although the introduction of convex adjustment costs has interesting effects
on the price and accumulation of capital in the long run, as well as in the short
run, the long-run rate of return on capital is invariant to the introduction
of adjustment costs in neoclassical growth models in which the utility of
a representative consumer is maximized, either by a social planner or by
individuals in competitive markets. = Though this invariance is a robust
and easily-derived result in a widely-analyzed class of neoclassical growth
models, it has apparently gone unnoticed. For instance, Abel and Blanchard
(1983) concluded that convex adjustment costs require a modification to the
Modified Golden Rule relating the marginal product of capital and the growth
rate of the economy. However, here I focus on the rate of return to capital,
rather than on the marginal product of capital, and show that there is no
need to modify the Modified Golden Rule relationship between the rate of
return and the growth rate of the economy.

The invariance of the Modified Golden Rule relationship between the rate
of return and the growth rate has several important implications. First, as
noted above, in neoclassical growth models in which the long-run growth
rate of the economy is exogenous, the long-run rate of return is invariant
to adjustment costs, either in competitive economies with a representative
consumer or in allocations chosen by a social planner. Second, by letting the
social discount rate equal zero, the Modified Golden Rule delivers the Golden
Rule. Therefore, the introduction of convex adjustment costs has no effect
on the equality of the rate of return and the growth rate of capital in the
Golden Rule. Third, Phelps (1961, 1965) and Swan (1964) have shown that
in neoclassical growth models without adjustment costs, the Golden Rule is
characterized by the equality of aggregate consumption and aggregate wage
income. I show that this characterization also holds in the presence of
convex adjustment costs, and I go on to generalize this result to characterize
optimal consumption when the social discount rate is positive and there are
convex adjustment costs: in the absence of productivity growth, aggregate
consumption equals aggregate wage income plus the value of the end-of-
period capital stock multiplied by the discount rate. Fourth, in endogenous

!See, for example, Abel and Blanchard (1983) and Baxter and Crucini (1993).
2See, for example, Basu (1987), Jermann (1998), and Abel (2000).



growth models of the AK variety, the introduction of convex adjustment
costs reduces the rate of return on capital in the Modified Golden Rule. 1
will show that the Modified Golden Rule relationship between the rate of
return and the growth rate of capital in AK models is invariant to convex
adjustment costs. However, the introduction of convex adjustment costs
reduces the long-run growth rate of the capital stock, and, according to the
unchanged Modified Golden Rule relationship, also reduces the rate of return.

I describe the production-cum-adjustment-cost technology in Section 1
and then express the price of capital and the rate of return on capital in
terms of the technology. In Section 2, I define two notions of growth paths
to describe the long-run behavior of the economy, and I show that the price
of capital and the rate of return on capital are constant along these paths.
I also derive an expression for aggregate consumption along these paths. 1
introduce intertemporal optimization in Section 3 and derive the Modified
Golden Rule and various corollaries, including the invariance of the rate of
return to the introduction of convex adjustment costs in neoclassical growth
models. In Section 4, I show that the introduction of convex adjustment
costs reduces (or leaves unchanged, in a limiting case) the capital-labor ratio
along balanced growth paths in neoclassical growth models. In AK models,
the introduction of convex adjustment costs reduces the long-run growth rate
of the capital stock and reduces the Modified Golden Rule rate of return. I
present concluding remarks in Section 5.

1 The Aggregate Production Possibilities Fron-
tier

Consider the aggregate production possibilities frontier relating aggregate
consumption in period ¢, C;, and the aggregate capital stock carried into
period t + 1, K;1. Specifically, consider

Ct - J(Kt7Kt+17AtNt> (1)

where K is the aggregate capital stock at the beginning of period ¢, N; is
both the number of people and the aggregate amount of labor used in produc-
tion in period t, and A; is an index of labor-augmenting technical progress.
As in Lucas (1967)3, assume that J (K;, K11, A;N;) is twice differentiable,

3Equation (1) is a discrete-time adaptation of the continuous-time specification in Lucas
(1967).




homogeneous of degree one in its three arguments K;, K; 1, and A;N;, and is
(weakly) concave in these arguments. Assume that limg, .o J1 (K, Kiy1, AlNV;) =
00, limg, oo J1 (K¢, Kiy1, AtNy) < 0 and J3 (K4, Kyp1, AyNy) > 0, where

Ji (K, Ky, Ay INy) is the partial derivative of J (Ky, K11, A¢N;) with respect

to its ¢« — th argument.

In the absence of convex adjustment costs, Jo (K, K11, AtN;) = —1 be-
cause K1 can be increased by one unit simply by reducing current consump-
tion by one unit. To illustrate the impact of convex adjustment costs on
Jo (K, Ky11, Ay Ny), consider the widely-used case in which adjustment costs
are independent of labor and are additively separable from the production
function*

J (Kta Kio1, ANy) = F (Kt,AtNt) - [Kt+1 — (1 —0) Ky + ¥ (K4, Kt+1)} (2)

where the production function F' (K, A;N;) is (weakly) increasing, (weakly)
concave, and linearly homogeneous in K; and A;N;. Convex adjustment
costs are represented by W (Ky, K;.1) > 0, which is twice differentiable and
linearly homogeneous in K; and K1, convex in K; 1, and attains its mini-
mum value of zero when K,;,; = ¢K; for some positive constant ¢.

Figure 1 illustrates a convex adjustment cost function for a given value
of K;. In formulations in which the convex adjustment cost function takes
on its minimum value of zero when gross investment is zero, the parameter ¢
equals 1 — 8, where 0 < § < 1 is the depreciation rate of capital per period.’
In formulations in which the convex adjustment cost takes on its minimum
value of zero when net investment is zero, the parameter ¢ equals 1.5 In

4Abel and Blanchard (1983), Baxter and Crucini (1993), Baxter and Jermann (1999),
Blanchard and Fischer (1989), Gould (1968), Jermann (1998), and Treadway (1969) as-
sume that the adjustment cost function is additively separable from the production func-
tion.

SGould (1968) specifies the adjustment cost as a function of gross investment, and the
adjustment cost equals zero when gross investment is zero. However, Gould’s adjustment
cost function is not linearly homogeneous in K; and K;11. Abel and Blanchard (1983)
specify a convex adjustment cost function that is linearly homogenous in investment and
the capital stock in continuous time (and thus would be linearly homogeneous in K; and
K11 in a discrete-time version). In that specification, the adjustment cost is zero when
gross investment is zero.

STreadway (1969) specifies the adjustment cost as a function of net investment, and this
function attains its minimum value when net investment is zero. However, Treadway’s
adjustment cost function is not linearly homogeneous in K; and K;;;. Blanchard and
Fischer (1989, p. 59) specify a convex adjustment cost function that is linearly homoge-



some formulations, ¢ > 1. For instance, Baxter and Crucini (1993), Baxter
and Jermann (1999), and Jermann (1998) assume that ¢ = Gk, where Gk
is the gross growth rate of capital, Kft;gl, along a balanced growth path. In
a growing economy, ¢ = G > 1.

WK K1)

¢‘K K,
t

Figure 1: Adjustment Cost Function

As shown in Figure 1, the parameter ¢ separates values of ;{“ for which

the marginal adjustment cost, Wy (K}, K;41), is negative from values for which
the marginal adjustment cost is positive. Specfically, if @ < ¢, then the

marginal adjustment cost is negative; if Kt“ > ¢, then the marglnal adjust-

ment cost is positive. A feature of the Baxter Crucini-Jermann assumption

that ¢ = Gk is that if Gx > 1, then ¢ > 1 and the marginal adjustment

cost, Wy, is negative for small positive rates of net investment satisfying
1< Bt
K: :

Let g; be the price of capital to be carried into period ¢ + 1, measured

as the number of units of consumption that must be given up in period ¢ to

nous in investment and the capital stock in continuous time (and thus would be linearly
homogeneous in K; and K41 in a discrete-time version). In that specification, the convex
adjustment cost is zero when net investment is zero. (In their framework, the depreciation
rate is zero, so net and gross investment are equal. In terms of the notation in the current
paper, that specification has ¢ = 1.)



increase K;,1 by one unit. Equation (1) implies that
@ = —J2 (K, Kiy1, AcNy) (3)

The gross rate of return on capital carried from period ¢ to period t + 1,
Ry 1, is the ratio of the marginal product of capital (inclusive of any marginal
effect of capital on adjustment costs) in period t+1, Jy (K11, Kiio, Air1Nii1),
to the price of a unit of capital at the end of period ¢, ¢;. Thus,

S (Ko, Koo, AvaNewn) 1 (B, Ko, A Ne) (@)
4t J2 (Kta Kt+17 AtNt) .

R =

2 Constant Growth Paths

I will analyze paths of the economy in which the effective amount of labor,

Ay Ny, grows at a constant rate. Let Gy = N]‘if—tl > 1 be the constant gross

growth rate of labor and let G4 = Ag—tl > 1 be the constant gross growth
rate of the index of labor-augmenting technical progress, A;.
I will focus attention on two types of growth paths, which I now define.

Definition 1 A constant growth path is a sequence {Cyy;, Kt+j};io such that

ot = % = Gk, where G is a positive constant.
t+j t+j

Definition 2 A neoclassical balanced growth path is a sequence {Cyy;, Kyt j, Ay j Ny };‘;0

. . . Cyas .
such that consumption per effective unit of labor, ci; = AHT\;H‘, and capital
J J
. . _ Kt+ ]
er effective unit of labor, kir; = I— are constant.
p ﬁ f » ttyg Aty iNpys?

Because A;N; grows at a constant rate, all neoclassical balanced growth
paths are constant growth paths. However, I will examine a class of constant
growth paths that are not neoclassical balanced growth paths. In particular,
in subsection 4.2, I will study constant growth paths in AK models, where
J3 =0.

Lemma 1 J; (K, K1, AiNy), i = 1,2,3, are constant along constant growth
paths with J3 = 0 and along neoclassical balanced growth paths.



Proof. Since J (K, K11, A;Ny) is homogenous of degree one in Ky, K1,
and ANy, J; (K, K1, AiNy), © = 1,23, is homogeneous of degree zero in

Kta Kt+17 and AtNt- Thereforea JZ (KtaKH-laAtNt) = JZ (13 K[t{_-:la A;{_int)a

1 = 1,2,3, which is constant along constant growth paths with J3 = 0.
Alternatively, J; (K¢, Ky, AiN) = J; ( Ko K 1) = J;i (kt, GAG N1, 1),

AN, AN,
1 =1,2,3, which is constant along neoclassical balanced growth paths. =
Lemma 1, together with equations (3) and (4) immediately yields the
following corollary.

Corollary 1 ¢; and R;1 are constant along constant growth paths with J3 =
0 and along neoclassical balanced growth paths.

Now consider the relationship between aggregate consumption and the
return on capital. Because J (Ky, K; 1, A;N;) is homogenous of degree one
in K;, K;.1, and A;N;, Euler’s Theorem and Lemma 1 imply that along
constant growth paths with J3 = 0 and along neoclassical balanced growth
paths,

Cy= LK+ LKy + J3A N, (5)

where J; denotes the constant value of J; (K, Kyy1, AtIVy).

Let W, = J3A;N;. Since J; is the marginal product of a unit of ef-
fective labor, J3A;N; is the total wage income in a neoclassical competitive
economy.

Proposition 1 Along constant growth paths with J3 =0 and along neoclas-
sical balanced growth paths, Cy = Wy + (R — Gk) ¢K;.

Proof. Use the definition of W; and rewrite equation (5) as C; =
(—ﬂ — M) (—Jo) Ki+W, = (R — Gk) ¢K;+W; where the second equality

T K.
uses ¢ = —Jy and R = —J;/J5 from equations (3) and (4), respectively. m

Proposition 1 shows that along neoclassical balanced growth paths in
competitive economies, aggregate consumption exceeds aggregate wage in-
come by the product of the excess of the rate of return over the growth rate
of capital, R—G, and the value of the capital stock, ¢K;. Equivalently, con-
sumption equals wage income, W, plus capital income, RqK;, less GxqK,,
which is the value of resources needed to allow the capital stock to grow at
rate Gg.



3 Intertemporal Optimization and the Mod-
ified Golden Rule

Beginning in this section, I will focus on constant growth paths that arise
as the outcome of intertemporal optimization by a social planner. In the
absence of externalities, the intertemporal allocation of consumption and
capital accumulation chosen by a social planner is identical to the allocation
in a competitive economy with a representative consumer.”® Analysis of the
social planner’s problem allows direct examination of the Golden Rule and
Modified Golden Rule in the presence of convex adjustment costs.
Suppose that a social planner maximizes the social welfare function

U — 1 iﬁ] % o (6)
t_l—Oé NtJrj

j=0

where % is per capita consumption at time ¢, « > 0, and # > 0. The social
t
discount rate is p= 37 — 1.
To keep the sum in equation (6) finite along constant growth paths, as-

sume that the following condition holds.’
l1—a
oy .o - G
Condition 1 (Finite Utility) 3 (ﬁ) <1
To maximize the social welfare function in equation (6) subject to the

constraint imposed by the production possibilities frontier in equation (1),
substitute equation (1) into equation (6), differentiate with respect to K ;

"The equivalence of the allocation chosen by a social planner and the allocation in a
competitive equilibrium is a widely-used device. In the presence of convex adjustment
costs, Lucas and Prescott (1971) show that the equilibrium of a competitive industry is
equivalent to the maximization of a particular consumer surplus. In a general equilibrium
model with convex adjustment costs, Abel and Blanchard (1983) demonstrate that the
competitive allocation is equivalent to that chosen by a social planner to maximize the
utility of a representative consumer.

81 analyze AK models in subsection 4.2. Some AK models are based on externalities,
and the competitive outcome in those models is not identical to that chosen by a social
planner.

9 Along neoclassical balanced growth paths G = GaGy, so Condition 1 (Finite Util-
ity) can be expressed in terms of exogenous parameters as ﬁGi{o‘ < 1. In endogenous
growth models, the growth rate of the capital stock, G, is endogenous, and Condition 1
(Finite Utility) must be verified when the equilibrium value of G is determined.



for 7 > 0, set the derivative equal to zero, and evaluate the expression along
a constant growth path to obtain

Ciri\ % 1 Cipict ¢ 1
5( tﬂ) le_( s 1) Jo. (7)
Niyj Niyj Nitj Nitj
Along constant growth paths, the growth rate of aggregate consumption

equals the growth rate of the aggregate capital stock, Gx. Therefore, equa-
tion (7), along with the definition of R,y in equation (4), implies

Proposition 2 (Modified Golden Rule) Along constant growth paths that
mazimize (6), R = ﬁ_lG?{G}V_a, i the presence or absence of convexr costs
of adjustment.

Proof. Equation (7) implies 3 (g—g) G—1NJ1 = —Jy where G = %ﬁl
along a constant growth path. Since Go = Gk and R = —J;/J5, it follows
that R = 8 'G3GN . =

Proposition 2 is the familiar Modified Golden Rule, though in a somewhat
unfamiliar form. The following corollary, which uses the fact that Gx =

G oGy along neoclassical balanced growth paths, is an invariance result.

Corollary 2 Along neoclassical balanced growth paths that mazimize (6),
R = 37'G4Gy , in the presence or absence of costs of adjustment.

Corollary 2 implies that the rate of return to capital along a neoclassical
balanced growth path that maximizes (6) is invariant to the introduction of
convex adjustment costs. Since the social planner’s allocation is equivalent
to a competitive allocation, this invariance result applies to competitive equi-
libria as well: the competitive rate of return along a neoclassical balanced
growth path is invariant to the introduction of convex adjustment costs.
Abel and Blanchard (1983, p. 678) suggested a need to adopt a ”modified
'modified golden rule’ ” in the presence of convex adjustments in neoclassi-
cal growth models because they focussed on the marginal product of capital
rather than on the rate of return on capital. However, Proposition 2 shows
that the characterization of the Modified Golden Rule in terms of the rate
of return is invariant to the introduction of convex adjustment costs.

Proposition 2 implies that along constant growth paths that maximize

©),
R—Gx = (5—1 (%) - 1) Gx. 8)

8



Equation (8) and Condition 1 lead to the following corollary to Proposi-
tion 2.

Corollary 3 Along constant growth paths that mazimize (6), R > Gk.

Corollary 2, along with the fact that the discount rate p equals 3! — 1,
leads to the following corollary to Proposition 1.

Corollary 4 If G4 = 1, then along neoclassical balanced growth paths that
mazimize (6), BR = Gx = Gn and Cy = Wi+ pGqKy, even in the presence
of convex costs of adjustment.

If the index of labor-augmenting technical progress, A;, is constant, then
a neoclassical balanced growth path is a steady state with constant values

of % and %, so that Gx = G. The Golden Rule is the steady state that

maximizes consumption per capita, % Formally, the Golden Rule can be

obtained from Corollary 4 by setting 8 = 1 and Gx = G to obtain'®

Corollary 5 If G4 = 1, then in the Golden Rule steady state of a neoclas-
sical growth model, R = Gx = Gy and C; = Wy, even in the presence of
convex costs of adjustment.

Corollary 5 generalizes to the case of convex adjustment costs the cel-
ebrated characterization of the Golden Rule derived by Phelps (1965), in
which the rate of return is equal to the growth rate. Although the inclusion
of adjustment costs does not alter this characterization of the Golden Rule,
the Golden Rule value of the capital-labor ratio k is generally altered by
adjustment costs, as [ show in Section 4.1. Corollary 5 also generalizes to
the case of convex adjustment costs the results of Phelps (1961, 1965) and
Swan (1964) who showed that in the Golden Rule steady state of a neoclas-
sical competitive economy, investment equals capital income; equivalently,
consumption equals wage income.

0Setting 8 = 1 and Gx = Gy violates Condition 1 (Finite Utility). The Golden Rule
can be derived directly by noting that in a steady state (with A; normalized to equal one)
% = J(k,Ggk,1). Maximizing % with respect to k yields J; + GgJs = 0. Therefore,
in the Golden Rule, R = —J;/Js = Gk.



4 The Effect of Convex Adjustment Costs on
Capital Accumulation

It is convenient to analyze the introduction of convex adjustment costs in
a framework in which the convex adjustment costs are additively separable
from the production function, as in equation (2). Because the adjustment
cost function W (K, K1) is linearly homogeneous in K; and K., equation
(2) can be rewritten as

K
S (Ko, Ko, ANy) = F (K, ANy = [Ku—l —(1-0) K+ Ky ( I?H)}
t
(9)
where 1) (M) =V (1 M) with the following properties: ¥ > 0, ¢ (¢) =

K ’ Kt
0, and " > 0.
Along constant growth paths with J3 = 0 and along neoclassical bal-
anced growth paths, Kft{—:l = Gk and (from Lemma 1) Jy (K, K1, AiVy)
and Jo (K, Kyy1, A;N;) are constant. Along these paths, with the additively

separable adjustment costs in equation (9),
Ji=Fg+1-6—-1(Gk) +Gx' (Gk) (10)

and
Jo=—-1—-9"(Gg) (11)

where F is the partial derivative of F' (K, A;IV;) with respect to K;. Recall
from equation (4) that
—RJy = J. (12)

Substituting equations (10) and (11) into equation (12) and rearranging
yields
R=Fr+1-6—-9(Gk) — (R—Gk)Y (Gk). (13)

4.1 Neoclassical Growth Models

In a neoclassical growth model, the production function F (K, A;N;) is
strictly increasing, concave, and linearly homogeneous in capital, K;, and
effective labor, A;N;. This production function can be expressed in inten-
sive form as A;N,f (k;), where f* > 0 and f” < 0. The marginal product of
capital, Fx (K, ANy, is f' (ki) so equation (13) can be written as

10



fr(k)=R—-1+06+1¢(Gk)+ (R—-Gk){' (Gk). (14)

Along neoclassical balanced growth paths that maximize equation (6), the
rate of return R is invariant to the introduction of convex adjustment costs
(Corollary 2). Therefore, equation (14) implies the following proposition.

Proposition 3 If ¢ < GGy, then the introduction of convex adjustment
costs reduces k along neoclassical balanced growth paths that mazimize (6).

Proof. In the absence of adjustment costs, f' (k) = R—146. Corollary
3 implies R — Gg > 0. Since Gg = GGy, the assumption that ¢ <
GGy implies that ¢ < Gk and hence that ¢ (Gx) > 0 and ¢’ (Gx) > 0.
Therefore, ¥ (Gx) + (R — Gg) ' (Gk) > 0, and equation (14) implies that
the introduction of convex adjustment costs increases f’ (k). Since f'() is
strictly decreasing, the introduction of convex adjustment costs reduces k. m

Corollary 6 If ¢ = G4Gy, then the introduction of convex adjustment costs
does not affect the capital-labor ratio k along neoclassical balanced growth
paths that mazimize (6).

Proposition 3 states that, consistent with Abel and Blanchard (1983) in
which ¢ =1 — 6 < Gk, the introduction of convex adjustment costs reduces
the capital-labor ratio along neoclassical balanced growth paths. Indeed,
for any ¢ < Gk, the introduction of convex adjustment costs reduces the
capital-labor ratio along neoclassical balanced growth paths. However, if
¢ = Gk, as in Baxter and Crucini (1993), Baxter and Jermann (1999), and
Jermann (1998), then, according to Corollary 6, the capital-labor ratio along
the balanced growth path that maximixes (6) is invariant to the introduction
of convex adjustment costs. Indeed, it was this invariance that motivated
these papers to assume that ¢ = Gk

4.2 AK Models

In this subsection I introduce convex costs of adjustment into an endogenous
growth model of the AK variety. I demonstrate that the invariance of the
Modified Golden Rule rate of return to convex adjustment costs does not hold
in AK models. Although the Modified Golden Rule relationship between
R and Gk is invariant to convex adjustment costs, I show that introducing

11



convex adjustment costs in an AK model reduces the growth rate of the
capital stock and reduces the rate of return in the Modified Golden Rule.

Consider an AK model with additively separable convex costs of ad-
justment. In this case, the aggregate production function F' (K, A;N;) in
equation (9) is simply AK;, where A > 0 is a positive constant (so G4 = 1).
I want to retain the flexibility to accommodate two alternative interpreta-
tions of the AK model. In the first interpretation, the production func-
tion Y; = AK; is taken literally. With this literal interpretation, the social
marginal product of capital and the private marginal product of capital are
both equal to A. In addition, the marginal product of labor is zero, so that
the amount of labor, N;, does not affect the amount of output produced.
However, N, also represents the number of consumers and thus V; affects
consumption per capita, C;/N;. [ retain the flexibility to analyze a growing
population of consumers by allowing Gy to exceed one.

The second interpretation, which is both more common and more plau-
sible, is that the production function Y; = AK,; represents aggregate pro-
duction in an economy with externalities in production. The externalities
undermine the equivalence between the social planner’s problem and the
competitive equilibrium in an economy with a representative consumer. In
the presence of externalities, the social marginal product of capital is A, but
the private marginal product of capital is typically smaller than A. When I
refer to the marginal product of capital (or rate of return), I will mean the
social marginal product of capital (or social rate of return). Typically, AK
models based on production externalities have a constant number of workers,
so Gy would be equal to one.

To maintain the flexibility to accommodate both interpretations of the
AK model, I will focus on the social planner’s decision problem. The social
marginal product of capital equals A under both interpretations, and I will
let G represent the growth rate of the population and the labor force, with
the understanding that in the second interpretation (based on externalities),
G is typically equal to one. R

Now consider an AK model without convex adjustment costs. Let R be
the rate of return and G be the growth rate of the capital stock along a
constant growth path in an AK model in the absence of convex adjustment
costs. Since Fx = A in the AK model, the rate of return in the absence of
convex adjustment costs is

R=A+1-6. (15)

12



I will treat R as a parameter, and I will assume that R> Q.

To ensure that the sum in the social welfare function in equation (6) is
finite in the absence of adjustment costs and that 5;\( is greater than ¢ (see
Lemma 2 below), assume that the following condition holds.

« ~\ l—«
Condition 2 (Permissible Values of 3 in AK Model) (%) <p (%) <
1.

Provided that the exogenous value of the parameter R exceeds ¢, the range
-«

of permissible values for g3 (%) in Condition 2 is non-empty. For given

values of ﬁ, Gy, and «, Condition 2 can be satisfied by appropriate choice
of 3.

Proposition 2 describes the Modified Golden Rule relationship between
the rate of return and the growth rate of the capital stock along constant
growth paths that maximize (6). This relationship holds for the AK model,
and in the absence of convex adjustment costs it can be written as

R=p8"'Gg Gy (16)

Lemma 2 If Condition 2 (Permissible Values of B in AK Model) holds,
then along constant growth paths that maximize (6) in an AK model
(a) Condition 1 (Finite Utility) holds in the absence of adjustment costs,

—\ -«
i.e., 3 (%) <1
(b) ¢ < Gk < R.

—\ ~ —\ 1l—«
Proof. (a) Equation (16) implies that (g—§) = ﬁ% so that (3 (g—;) =

1—«a L

o =2 ~\1l-a\ «
06 (ﬁ%) * = <ﬁ <%> > < 1, where the inequality follows from Con-
dition 2. N R .
(b) If Cndition 2 holds, then equation (16) implies (%) < BRGG " =
K
— — ——\ -«
1s0o ¢ < Gg. Equation (16) implies %{ =7 <g—f§> < 1, where the in-
equality follows from part (a). Therefore (/}*; <R =
Along constant growth paths that maximize (6) in an AK model, the rate
of return, R, and the growth rate of capital, G, are endogenous variables

13



BTG L

Figure 2: R and Gk in the AK Model with Convex Adjustment Costs

that are jointly determined by the Modified Golden Rule relationship in
Proposition 2 and by the expression for the rate of return in equation (13).
The Modified Golden Rule relationship can be written as

R =2 (Gg) =B 'GLGN ™. (17)

The function z; (Gk) is strictly increasing and, since ¢ < é;,

2 (9) = 717G < (é}) - R (18)

Figure 2 shows z; (Gx) as an upward-sloping curve!! for ¢ < Gg < 6’;
In an AK model, equation (13) can be rewritten using Fx = A and the

UThe elasticity of 21 (Gx) with respect to G is constant and equal to a > 0. Figure
2 is drawn for a > 1, so z; (Gk) is a convex function of Gk.

14



definition of R in equation (15) to obtain

R — 4 (Gk) + Gx/ (Gx)
1+ Q/J/ (GK) ’

Observe that zy (¢) = R. Lemma 3 below states that 29 (G ) slopes down-
ward for ¢ < G < é}, as shown in Figure 2, provided that adjustment
costs are not too large. The following condition provides an upper bound
the size of adjustment costs.

R:ZQ (GK> =

(19)

Condition 3 (Adjustment Costs Not Too Large) 0 < 1) <é;> <R-— é;

Lemma 2 implies if Condition 2 (Permissible Values of § in AK Model)
holds, then R— 67; > 0 so that the range of admissible values for 1 <67;)

in Condition 3 is not vacuous.

Lemma 3 If Condition 2 (Permissible Values of B in AK Model) and Con-
dition 3 (Adjustment Costs Not Too Large) hold, then in the presence of
strictly convex adjustment costs (" > 0)

(a) zé(GK)<Ofor¢§GK§§;
(b)z2(é;)<ﬁf.

Proof. (a) Differentiate z; (G ) defined in equation (19) to obtain 25, (Gx)

—% (ﬁ— Grg — ¢(GK)>. Condition 3 implies that R > é; +
K

P <67;) > G+ (Gg)>0for ¢ <G < 5; Therefore, 2, (Gk) < 0 for
o <Gk < é; (b) Use z3 (¢) = R\, P < é; (from Lemma 2), and part (a)
to conclude that z; é; <R m

Let G and R* be the values of Gi and R, respectively, along a constant
growth path that maximizes (6) in an AK model with convex adjustment
costs. Point £ in Figure 2 represents G} and R*. Inspection of Figure 2
proves the following proposition.!?

12The following features of Figure 2 are sufficient to prove that there exists a unique G
in ((]5, é;) such that z; (Gi) = 22 (Gk): For ¢ < Gx < Gk, z1 (Gk) is continuous and

increasing; z (Gx) is continuous and decreasing; 21 (¢) < 2 (¢) = R; and 2 (é}) =

Z§>22(§I\().
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Proposition 4 If Condition 2 (Permissible Values of B in AK Model) and
Condition 3 (Adjustment Costs Not Too Large) hold, then ¢ < G < Gk
and R* < R.

Proposition 4 indicates that the introduction of convex adjustment costs
in an AK model reduces the growth rate of capital and the rate of return
along constant growth paths that maximize (6). Though the invariance
of the Modified Golden Rule rate of return that holds in the neoclassical
growth model does not hold in the AK model, the Modified Golden Rule
relationship between G and R (which is represented in Figure 2 by 21 (Gk))
is invariant to the introduction of convex adjustment costs in the AK model,
as well as in the neoclassical growth model. In the neoclassical growth
model, however, G is invariant to the introduction of convex adjustment
costs, so the Modified Golden Rule relationship implies that R is invariant
to the introduction of convex adjustment costs. However, in an AK model,
the introduction of convex adjustment costs reduces Gi, and the Modified
Golden Rule relationship implies that R must move in the same direction as
Gk, when comparing balanced growth paths that maximize the social welfare
function in equation (6).

5 Conclusion

In this paper I have shown that the Modified Golden Rule relationship,
R = z (Gk) in equation (17), is invariant to the introduction of convex
adjustment costs. The economic factors underlying this invariance are very
powerful. A standard condition in intertemporal optimization, often called
the intertemporal Euler condition, is that the product of a (gross) rate of
return and the intertemporal marginal rate of substitution equals one. For
a social planner maximizing the social welfare function in equation (6), the
rate of return is % because a unit of aggregate consumption sacrificed today
will increase aggregate consumption in the subsequent period by R units, but

the consumption must be spread among G times as many people. The in-
—a

tertemporal marginal rate of substitution is 8 (%) , so the intertemporal
N

Euler condition is G—I?V I3 <g—§>7 = 1. Since G¢ = Gk along constant growth

paths, this Euler condition can be rewritten as R = 671G?(G}V’°‘, which is the
Modified Golden Rule relationship, R = z; (Gg). I have demonstrated that

16



this relationship is invariant to the introduction of convex adjustment costs.
More generally, it is independent of the entire production-cum-adjustment-
cost technology.

Though the Modified Golden Rule relationship, R = z (Gk), is inde-
pendent of the specification of technology, the Modified Golden Rule rate of
return is not necessarily independent of technology. By focussing on costs of
adjustment in this paper, I have demonstrated cases in which rate of return
invariance holds and cases in which it does not hold. In neoclassical growth
models, in which the long-run growth rates of capital and labor are exoge-
nous, the invariance of the Modified Golden Rule relationship, R = z; (Gk),
implies that the Modified Golden Rule rate of return, and, equivalently, the
long-run rate of return in a competitive economy, are invariant to the intro-
duction of adjustment costs. However, in endogenous growth models, convex
adjustment costs reduce the long-run growth rate of capital, and thus reduce
the Modified Golden Rule rate of return, R = 21 (Gk), though the function
21 (Gg) is invariant to adjustment costs.
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