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ABSTRACT

Much recent work has documented evidence for predictability of asset returns. We show how such
predictability can affect the portfolio choices of long-lived investors who value wealth not for its own sake but for
the consumption their wealth can support. We develop an approximate solution method for the optimal
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demand for stocks. The role of nominal bonds in long-term portfolios depends on the importance of real interest
rate risk relative to other sources of risk. We extend the analysis to consider long-term inflation-indexed bonds and
find that these bonds greatly increase the utility of conservative investors, who should hold large positions when
they are available.
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1 Introduction

Academic finance has had a remarkable impact on many participants in the financial
services industry, from mutual fund managers to corporate risk managers. Curiously,
however, financial planners offering portfolio advice to long-term investors have re-
ceived little guidance from academic financial economists.

The mean-variance analysis of Markowitz (1952) has provided a basic paradigm,
and has usefully emphasized the ability of diversification to reduce risk, but this
model ignores several critically important factors. Most notably, the analysis is
static; it assumes that investors care only about risks to wealth one period ahead. In
reality, however, many investors–both individuals and institutions such as charitable
foundations or universities–seek to finance a stream of consumption over a long
lifetime.

Financial economists have understood at least since the work of Samuelson (1969)
and Merton (1969, 1971, 1973) that the solution to a multi-period portfolio choice
problem can be very different from the solution to a static portfolio choice problem. In
particular, if investment opportunities are varying over time, then long-term investors
care about shocks to investment opportunities–the productivity of wealth–as well
as shocks to wealth itself. They may seek to hedge their exposures to wealth pro-
ductivity shocks, and this gives rise to intertemporal hedging demands for financial
assets. Brennan, Schwartz, and Lagnado (1997) have coined the phrase “strate-
gic asset allocation” to describe this far-sighted response to time-varying investment
opportunities.

Unfortunately Merton’s intertemporal model is hard to solve in closed form. For
many years solutions to the model were only available in those trivial cases where
it reduces to the static model. Therefore the Merton model has not become a us-
able empirical paradigm, has not displaced the Markowitz model, and has had little
influence on financial planners and their clients.

Recently this situation has begun to change as a result of several related develop-
ments. First, computing power and numerical methods have advanced to the point
at which realistic multi-period portfolio choice problems can be solved numerically
using discrete-state approximations. Balduzzi and Lynch (1999), Barberis (1999),
Brennan, Schwartz, and Lagnado (1997, 1999), Cocco, Gomes, and Maenhout (1998),
and Lynch (2001) are important examples of this style of work. Second, financial the-
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orists have discovered some new closed-form solutions to the Merton model. In a
continuous-time model with a constant riskless interest rate and a single risky asset
whose expected return follows a mean-reverting (Ornstein-Uhlenbeck) process, for
example, the model can be solved if long-lived investors have power utility defined
over terminal wealth (Kim and Omberg 1996), or if investors have power utility de-
fined over consumption and the innovation to the expected asset return is perfectly
correlated with the innovation to the unexpected return, making the asset market
effectively complete (Wachter 2002), or if the investor has Epstein-Zin utility with
intertemporal elasticity of substitution equal to one (Campbell and Viceira 1999,
Schroder and Skiadas 1999). Similar results are available in affine models of the term
structure (Brennan and Xia 2001, Campbell and Viceira 2001, Liu 1998, Wachter
2000). Third, approximate analytical solutions to the Merton model have been devel-
oped (Campbell and Viceira 1999, 2001). These solutions are based on perturbations
of the known exact solutions for intertemporal elasticity of substitution equal to one,
so they are accurate provided that the intertemporal elasticity is not too far from
one. They offer analytical insights into investor behavior in models that fall outside
the still limited class that can be solved exactly.

Despite this encouraging progress, it remains extremely hard to solve realistically
complex cases of the Merton model. Discrete-state numerical algorithms become slow
and unreliable in the presence of many assets and state variables, and approximate
analytical methods seem to require a daunting quantity of algebra. Neither approach
has been developed to the point at which one can specify a general vector autore-
gression (VAR) for asset returns and hope to solve the associated portfolio choice
problem.

The purpose of this paper is to remedy this situation by extending the approximate
analytical approach of Campbell and Viceira (1999, 2001). Specifically, we show that
if asset returns are described by a VAR, if the investor is infinitely lived with Epstein-
Zin utility, and if there are no borrowing or short-sales constraints on asset allocations,
then the Campbell-Viceira approach implies a system of linear-quadratic equations
for portfolio weights and consumption as functions of state variables. These equations
are generally too cumbersome to solve analytically, but can be solved very rapidly by
simple numerical methods. As the time interval of the model shrinks, the solutions
become exact if the elasticity of intertemporal substitution equals one. They are
accurate approximations for short time intervals and elasticities close to one.

We apply our method to a VAR for short-term real interest rates, excess stock
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returns, and excess bond returns. We also include variables that have been identified
as return predictors by past empirical research: the short-term interest rate (Fama and
Schwert 1977, Campbell 1987, Glosten, Jagannathan, and Runkle 1993); the dividend-
price ratio (Campbell and Shiller 1988, Fama and French 1988a); and the yield spread
between long-term and short-term bonds (Shiller, Campbell, and Schoenholtz 1983,
Fama 1984, Fama and French 1989, Campbell and Shiller 1991). In a variant of
the basic approach we construct data on hypothetical inflation-indexed bond returns,
following the approach of Campbell and Shiller (1996), and study the allocation to
stocks, inflation-indexed bonds, nominal bonds, and bills.

Two closely related papers are by Brennan, Schwartz, and Lagnado (1999) and
Lynch (2001). Brennan, Schwartz, and Lagnado consider asset allocation among
stocks, nominal bonds, bills, and interest-rate futures, using short- and long-term
nominal interest rates and the dividend-price ratio as state variables. The investor is
assumed to have power utility defined over wealth at a given horizon, and the stochas-
tic optimization problem is solved using numerical dynamic programming imposing
borrowing and short-sales constraints. Lynch considers asset allocation among port-
folios of stocks sorted by size and book-to-market ratios, using the long-short yield
spread and the dividend-price ratio as state variables, and assuming power utility
defined over consumption. He solves the optimization problem with and without
short-sales constraints, again using numerical dynamic programming. Our paper,
by contrast, assumes recursive Epstein-Zin utility defined over an infinite stream of
consumption and does not impose any portfolio constraints. The simplicity of our
solution method allows us to consider an unrestricted VAR in which lagged returns
are state variables along with the short-term nominal interest rate, dividend-price
ratio, and yield spread. Our method also allows us to break intertemporal hedging
demands into components associated with individual state variables.

The organization of the paper is as follows. Section 2 explains our basic setup, and
Section 3 describes our approximate solution method. Section 4 presents empirical
results for the case where stocks, nominal bonds, and bills are available. Section 5
considers portfolio allocation in the presence of inflation-indexed bonds. Section 6
concludes.
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2 The Model

Our model is set in discrete time. We assume an infinitely-lived investor with Epstein-
Zin (1989, 1991) recursive preferences defined over a stream of consumption. This
contrasts with papers such as Brennan, Schwartz and Lagnado (1997, 1999), Kim and
Omberg (1996), and Barberis (2000) that consider finite-horizon models with power
utility defined over terminal wealth. We allow an arbitrary set of traded assets and
state variables. Thus we do not make the assumption of Wachter (2000, 2002) that
markets are complete, and we substantially extend the work of Campbell and Viceira
(1999) in which there is a single risky asset with a single state variable.

2.1 Securities

There are n assets available for investment. The investor allocates her after-consumption
wealth among these assets. The real return on her portfolio Rp,t+1 is given by

Rp,t+1 =
nX
i=2

αi,t (Ri,t+1 −R1,t+1) +R1,t+1, (1)

where αi,t is the portfolio weight on asset i. The first asset is a short-term instrument
whose real return is R1,t+1. Although we use the short-term return as a benchmark
and measure other returns relative to it, we do not assume that this return is riskless.
In practice we use a nominal bill as the short-term asset; the nominal return on a
nominal bill is riskless, but the real return is not because it is subject to short-term
inflation risk. In most of our empirical analysis we consider two other assets: stocks
and long-term nominal bonds. In Section 5 we also consider long-term inflation-
indexed bonds.

2.2 Dynamics of state variables

We postulate that the dynamics of the relevant state variables are well captured
by a first-order vector autoregressive process or VAR(1). This type of dynamic
specification has been used by Kandel and Stambaugh (1987), Campbell (1991, 1996),
Hodrick (1992), and Barberis (2000), among others. In principle the use of a VAR(1)
is not restrictive since any vector autoregression can be rewritten as a VAR(1) through
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an expansion of the vector of state variables. For parsimony, however, in our empirical
work we avoid additional lags that would require an expanded state vector with
additional parameters to estimate. Specifically, we define

xt+1 ≡


r2,t+1 − r1,t+1
r3,t+1 − r1,t+1

...
rn,t+1 − r1,t+1

 , (2)

where ri,t+1 ≡ log (Ri,t+1) for all i, and xt+1 is the vector of log excess returns. In
our empirical application, r1,t+1 is the real short rate, r2,t+1 refers to the real stock
return and r3,t+1 to the real return on nominal bonds.

We allow the system to include other state variables st+1, such as the dividend-
price ratio. Stacking r1,t+1,xt+1, st+1 into an m× 1 vector zt+1, we have

zt+1 ≡
 r1,t+1xt+1
st+1

 . (3)

We will call zt+1 the state vector and we assume a first order vector autoregression
for zt+1:

zt+1 = Φ0 +Φ1zt + vt+1, (4)

whereΦ0 is them×1 vector of intercepts, Φ1 is them×m matrix of slope coefficients,
and vt+1 are the shocks to the state variables satisfying the following distributional
assumptions:

vt+1
i.i.d.∼ N (0,Σv) ,

Σv ≡ Vart (vt+1) =

 σ21 σ01x σ01s
σ1x Σxx Σ0xs
σ1s Σxs Σss

 . (5)

Thus, we allow the shocks to be cross-sectionally correlated, but assume that they
are homoskedastic and independently distributed over time. The VAR framework
conveniently captures the dependence of expected returns of various assets on their
past histories as well as on other predictive variables. The stochastic evolution of
these other state variables st+1 is also determined by the system.

The assumption of homoskedasticity is of course restrictive. It rules out the
possibility that the state variables predict changes in risk; they can affect portfolio
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choice only by predicting changes in expected returns. Authors such as Campbell
(1987), Harvey (1989, 1991), and Glosten, Jagannathan, and Runkle (1993) have
explored the ability of the state variables used here to predict risk and have found
only modest effects that seem to be dominated by the effects of the state variables
on expected returns. Chacko and Viceira (1999) show how to include changing risk
in a long-term portfolio choice problem, using a continuous-time extension of the
methodology of Campbell and Viceira (1999); they find that changes in equity risk
are not persistent enough to have large effects on the intertemporal hedging demand
for equities. Aït-Sahalia and Brandt (2001) adopt a semiparametric methodology
that accommodates both changing expected returns and changing risk.

Given our homoskedastic VAR formulation, the unconditional distribution of zt
is easily derived. The state vector zt inherits the normality of the shocks vt+1.
Appendix A gives expressions for the unconditional mean and variance-covariance
matrix of zt.

2.3 Preferences and optimality conditions

We assume that the investor has Epstein-Zin (1989, 1991) recursive preferences. This
preference specification has the desirable property that the notion of risk aversion is
separated from that of the elasticity of intertemporal substitution. Following Epstein-
Zin, we let

U (Ct,Et (Ut+1)) =
h
(1− δ)C

1−γ
θ

t + δ
¡
Et
¡
U1−γt+1

¢¢ 1
θ

i θ
1−γ
, (6)

where Ct is consumption at time t, γ > 0 is the relative risk aversion coefficient, ψ > 0
is the elasticity of intertemporal substitution, 0 < δ < 1 is the time discount factor,
θ ≡ (1− γ)/(1− ψ−1), and Et (·) is the conditional expectation operator.
Epstein-Zin recursive utility nests as a special case the standard, time-separable

power utility specification. Figure 1 shows graphically the relation between Epstein-
Zin utility and power utility. The horizontal axis in the figure shows the intertemporal
elasticity of substitution ψ, while the vertical axis shows the coefficient of relative risk
aversion γ. The set of points with unit elasticity of intertemporal substitution is drawn
as a vertical line, while the set of points with unit relative risk aversion is drawn as
a horizontal line. For time-separable power utility, γ = ψ−1 and hence θ = 1. This
corresponds to the hyperbola γ = ψ−1 plotted in the figure. Log utility obtains when
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we impose the additional restriction γ = ψ−1 = 1. This is the point in the figure
where all three lines cross.

At time t, the investor uses all relevant information to make optimal consumption
and portfolio decisions. She faces the intertemporal budget constraint

Wt+1 = (Wt − Ct)Rp,t+1, (7)

where Ct is consumption and Wt is wealth at time t.

Epstein and Zin (1989, 1991) have shown that with this budget constraint, the
Euler equation for consumption is

Et

(δµCt+1
Ct

¶− 1
ψ

)θ
R
−(1−θ)
p,t+1 Ri,t+1

 = 1, (8)

for any asset i, including the portfolio p itself. This first-order condition reduces to
the standard one in the power utility case where γ = ψ−1 and θ = 1.

The investor’s optimal consumption and portfolio policies must satisfy the Euler
equation (8). When investment opportunities are constant, the optimal policies imply
a constant consumption-wealth ratio and a myopic portfolio rule–that is, the investor
chooses her portfolio as if her investment horizon was only one period. However, when
investment opportunities are time-varying, there are no known exact analytical so-
lutions to this equation except for some specific values of γ and ψ. Giovannini and
Weil (1989) have shown that with γ = 1, it is optimal for the investor to follow a
myopic portfolio rule. This case corresponds to the horizontal line plotted in Fig-
ure 1. They also show that with ψ = 1, the investor optimally chooses a constant
consumption-wealth ratio equal to (1 − δ). This corresponds to the vertical line in
Figure 1. However, with γ = 1, the optimal consumption-wealth ratio is not constant
unless ψ = 1 and, conversely, with ψ = 1 the optimal portfolio rule is not myopic
unless γ = 1. This corresponds to the point where the vertical and horizontal lines
in Figure 1 cross–i.e., the log utility case. To solve for the optimal rules in all other
cases, we extend the approximate analytical solution method in Campbell and Viceira
(1999, 2001) to a multivariate framework.

Epstein and Zin (1989, 1991) have derived one other useful result. They show
that the value function–the maximized utility function (6)–per unit of wealth can
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be written as a power function of the optimal consumption-wealth ratio:

Vt ≡ Ut
Wt

= (1− δ)− ψ
1−ψ

µ
Ct
Wt

¶ 1
1−ψ

. (9)

We have already noted that the ratio Ct/Wt approaches (1− δ) as ψ approaches one.
This allows the value function (9) to have a finite limit as ψ approaches one.

3 Solution Methodology

3.1 An approximate framework

The return on the portfolio in (1) is expressed in terms of the simple returns on the
assets. Since it is more convenient to work with log returns in our framework, we
first derive an expression for the log return on the portfolio. Following Campbell
and Viceira (1999, 2001), we approximate the log return on the portfolio as

rp,t+1 = r1,t+1 +α
0
txt+1 +

1

2
α0t
¡
σ2x −Σxxαt

¢
, (10)

where σ2x ≡ diag(Σxx) is the vector consisting of the diagonal elements of Σxx, the
variances of excess returns. This approximation holds exactly in continuous time and
is highly accurate for short time intervals. Just as in a continuous-time model, (10)
prevents bankruptcy even when asset positions are leveraged; Campbell and Viceira
(2001) discuss the relation of this approach with continuous-time modelling. When
there is only one risky asset, (10) collapses to the approximation derived in Campbell
and Viceira (1999). Detailed derivations for this and other results in this section are
provided in Appendix A.

The budget constraint in (7) is nonlinear. Following Campbell (1993, 1996), we
log-linearize around the unconditional mean of the log consumption-wealth ratio to
obtain

∆wt+1 ≈ rp,t+1 +
µ
1− 1

ρ

¶
(ct − wt) + k, (11)

where ∆ is the difference operator, ρ ≡ 1 − exp (E[ct − wt]) and k ≡ log (ρ) +
(1− ρ) log (1− ρ) /ρ. When consumption is chosen optimally by the investor, ρ de-
pends on the optimal level of ct relative to wt and in this sense is endogenous. This
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form of the budget constraint is exact if the elasticity of intertemporal substitution
ψ = 1, in which case ct − wt is constant and ρ = δ.
Next, we apply a second-order Taylor expansion to the Euler equation (8) around

the conditional means of ∆ct+1, rp,t+1, ri,t+1 to obtain

0 = θ log δ − θ

ψ
Et∆ct+1 − (1− θ) Et rp,t+1 + Et ri,t+1 (12)

+
1

2
Vart

·
− θ
ψ
∆ct+1 − (1− θ) rp,t+1 + ri,t+1

¸
.

This loglinearized Euler equation is exact if consumption and asset returns are
jointly lognormally distributed, which is the case when the elasticity of intertemporal
substitution ψ = 1. It can be usefully transformed as follows. Setting i = 1 in (12),
subtracting from the general form of (12), and noting that ∆ct+1 = ∆(ct+1−wt+1) +
∆wt+1, we obtain, for asset i = 2, ..., n,

Et(ri,t+1 − r1,t+1) + 1
2
Vart(ri,t+1 − r1,t+1) =

θ

ψ
(σi,c−w,t − σ1,c−w,t) (13)

+γ (σi,p,t − σ1,p,t)− (σi,1,t − σ1,1,t) ,

where σi,c−w,t = Covt(ri,t+1, ct+1 − wt+1), σ1,c−w,t = Covt(r1,t+1, ct+1 − wt+1), σi,p,t =
Covt(ri,t+1, rp,t+1), σ1,p,t = Covt(r1,t+1, rp,t+1), σi,1,t = Covt(ri,t+1, r1,t+1), and σ1,1,t =
Vart(r1,t+1). The left hand side of this equation is the risk premium on asset i over asset
1, adjusted for Jensen’s Inequality by adding one-half the variance of the excess return.
The equation relates asset i’s risk premium to its excess covariance with consumption
growth, its excess covariance with the portfolio return, and the covariance of its excess
return with the return on asset 1. (The last term drops out when asset 1 is riskless.)
Of course, consumption growth and the portfolio return are endogenous so this is a
first-order condition describing the optimal solution rather than a statement of the
solution itself.
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3.2 Solving the approximate model

To solve the model, we now guess that the optimal portfolio and consumption rules
take the form

αt = A0 +A1zt, (14)

ct − wt = b0 +B
0
1zt + z

0
tB2zt (15)

That is, the optimal portfolio rule is linear in the VAR state vector but the optimal
consumption rule is quadratic. A0,A1, b0,B1, and B2 are constant coefficient ma-
trices to be determined, with dimensions (n − 1)× 1, (n− 1)×m, 1× 1,m × 1, and
m×m, respectively. This is a multivariate generalization of the solution obtained by
Campbell and Viceira (1999).2

To verify this guess and solve for the parameters of the solution, we write the
conditional moments that appear in (13) as functions of the VAR parameters and the
unknown parameters of (14) and (15). We then solve for the parameters that satisfy
(13). Recalling that the vector of excess returns is written as xt, the conditional
expectation on the left hand side of (13) is

Et (xt+1) +
1

2
Vart (xt+1) = HxΦ0 +HxΦ1zt +

1

2
σ2x, (16)

where Hx is a selection matrix that selects the vector of excess returns from the full
state vector.

Appendix A shows that the three conditional covariances on the right hand side of
(13) can all be written as linear functions of the state variables. In matrix notation,

σc−w,t − σ1,c−w,tι ≡ [σi,c−w,t − σ1,c−w,t]i=2,...n = Λ0 +Λ1zt, (17)

σp,t − σ1,p,tι ≡ [σi,p,t − σ1,p,t]i=2,...n = Σxxαt + σ1x, (18)

σ1,t − σ1,1,tι ≡ [σi,1,t − σ1,1,t]i=2,...n = σ1x, (19)
2It is important to note that only m+(m2−m)/2 elements of B2 are determined. The diagonal

elements of B2 are unique, but the consumption-wealth ratio is determined by the sums of off-
diagonal elements b2,ij+b2,ji because zi,tzj,t = zj,tzi,t. Thus we can impose arbitrary normalizations
on B2 provided that we leave each sum b2,ij + b2,ji unrestricted. For example, we could restrict B2
to be symmetric, upper triangular, or lower triangular.
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where ι is a vector of ones.

3.3 Optimal portfolio choice

Solving the Euler equation (13) for the portfolio rule we have

αt =
1

γ
Σ−1xx

·
Et (xt+1) +

1

2
Vart (xt+1) + (1− γ)σ1x

¸
(20)

+
1

γ
Σ−1xx

·
− θ
ψ
(σc−w,t − σ1,c−w,tι)

¸
,

where Et (xt+1) + Vart (xt+1) /2 and σc−w,t − σ1,c−w,tι are the linear functions of zt
given in (16) and (17), respectively. This equation is a multiple-asset generalization
of Restoy (1992) and Campbell and Viceira (1999). It expresses the optimal portfolio
choice as the sum of two components.

The first term on the right hand side of (20) is the myopic component of asset
demand. When the benchmark asset 1 is riskless (σ1x = 0), then the myopic al-
location is the vector of Sharpe ratios on risky assets, scaled by the inverse of the
variance-covariance matrix of risky asset returns and the reciprocal of the coefficient
of relative risk aversion. Investors with γ 6= 1 adjust this allocation slightly by a
term (1− γ)σ1x when asset 1 is risky. Because of its myopic nature, this component
does not depend on ψ, the elasticity of intertemporal substitution.

The second term on the right hand side of (20) is the intertemporal hedging
demand. In our model, the investment opportunity set is time varying since expected
returns on various assets are state-dependent. Merton (1969, 1971) shows that
a rational investor who is more risk averse than a logarithmic investor will hedge
against adverse changes in investment opportunities. For a logarithmic investor, the
optimal portfolio rule is purely myopic and hence the hedging demand is identically
equal to zero. This can be easily seen from (20) since when γ = 1, θ = 0 and the
hedging component vanishes. Also, when investment opportunities are constant over
time, hedging demand is zero for any level of risk aversion. This case corresponds
to having only the intercept term in our VAR specification. It is straightforward
to verify that the coefficient matrices Λ0 and Λ1 in the hedging component are zero
matrices in this case and thus there is no hedging component of asset demand.
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Substituting (16) and (17) in (20) and rearranging the terms yields

αt ≡ A0 +A1zt, (21)

where

A0 =

µ
1

γ

¶
Σ−1xx

µ
HxΦ0 +

1

2
σ2x + (1− γ)σ1x

¶
+

µ
1− 1

γ

¶
Σ−1xx

µ −Λ0
1− ψ

¶
, (22)

A1 =

µ
1

γ

¶
Σ−1xxHxΦ1 +

µ
1− 1

γ

¶
Σ−1xx

µ −Λ1
1− ψ

¶
. (23)

Equation (21) verifies our initial guess for the form of the optimal portfolio rule and
expresses the coefficient matrices A0, A1 as functions of the underlying parameters
describing preferences and the dynamics of the state variables. A0 andA1 also depend
on the parameters in the consumption-wealth ratio equation, B1 and B2, through the
coefficient matrices Λ0 and Λ1. It is important to note that the terms in (1 − 1/γ)
in equations (22) and (23) reflect the effect of intertemporal hedging on optimal
portfolio choice. Thus intertemporal hedging considerations affect both the mean
optimal portfolio allocation to risky assets–through A0 and A1–and the sensitivity
of the optimal portfolio allocation to changes in the state variables–through A1.

Appendix A shows that, given the loglinearization parameter ρ, the coefficient
matrices −Λ0/(1 − ψ) and −Λ1/(1 − ψ) are independent of the intertemporal elas-
ticity of substitution ψ. This implies that the optimal portfolio rule is independent
of ψ given ρ. ψ only affects portfolio choice to the extent that it enters into the de-
termination of ρ. This property is a generalization to a model with multiple assets
and state variables of a similar result shown by Campbell and Viceira (1999) in the
context of a univariate model.

3.4 Optimal consumption

Next, we solve for the optimal consumption-wealth ratio. Setting i = p in (12) and
rearranging,

Et (∆ct+1) = ψ log δ + χp,t + ψ Et(rp,t+1), (24)

where

χp,t =
1

2

µ
θ

ψ

¶
Vart (∆ct+1 − ψrp,t+1) . (25)
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This equation relates expected consumption growth to preferences and investment
opportunities. A patient investor with high δ plans more rapid consumption growth.
Similarly, when the return on the portfolio is expected to be higher, the investor
increases planned consumption growth to take advantage of good investment oppor-
tunities. The sensitivity of planned consumption growth to both patience and returns
is measured by the elasticity of intertemporal substitution ψ.

The term χp,t arises from the precautionary savings motive. Randomness in future
consumption growth, relative to portfolio returns, increases precautionary savings and
lowers current consumption if θ > 0 (a condition satisfied by power utility for which
θ = 1), but reduces precautionary savings and increases current consumption if θ < 0.

We show in Appendix A that combining equation (24) and the log-linearized
budget constraint (11), we obtain a difference equation in ct − wt:

ct − wt = −ρψ log δ − ρχp,t + ρ(1− ψ) Et(rp,t+1) + ρk + ρEt(ct+1 − wt+1), (26)

where both Et (rp,t+1) and χp,t are quadratic functions of the VAR state variables.
Given our conjectured quadratic form for the optimal consumption-wealth ratio, both
sides of this equation are quadratic in the VAR state variables. This confirms our
initial conjecture on the form of the consumption-wealth ratio and gives us a set of
equations that solve for the coefficients of the optimal consumption policy, b0,B1 and
B2.

In a model with a single state variable, as in Campbell and Viceira (1999, 2001),
it is feasible to solve these equations to obtain approximate closed-form solutions for
consumption and portfolio choice given the parameter of loglinearization ρ. A simple
numerical recursion then obtains the value of ρ that is consistent with the derived
consumption rule. In the current model, with multiple state variables, we use a
numerical procedure to solve for consumption and portfolio choice given ρ. This
procedure, which is described in detail in Appendix B, converges much more rapidly
than the usual numerical procedures which approximate the model on a discrete grid.
In our empirical results we emphasize the case ψ = 1, for which the value of ρ is
known to equal the time discount factor δ; however it is straightforward to add a
numerical recursion for ρ when this is needed.
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3.5 Value function

Substitution of the optimal log consumption-wealth ratio into the expression for the
value function (9) gives

Vt = (1− δ)− ψ
1−ψ

µ
Ct
Wt

¶ 1
1−ψ

(27)

= exp

½
− ψ

1− ψ log (1− δ) +
b0

1− ψ +
B01
1− ψzt + z

0
t

B2
1− ψzt

¾
= exp {B0 + B01zt + z0tB2zt} ,

where the definitions of B0, B1 and B2 are obvious from the second equality.

Appendix A shows that B1, and B2 are independent of ψ given ρ. However, B0
does depend on ψ. Appendix A also derives an expression for B0 when ψ = 1. This
derivation uses the fact that Ct/Wt = 1 − δ when ψ = 1, which implies that ρ = δ.
Therefore, the value function (27) has a well defined finite limit in the case ψ = 1,
that obtains by setting ρ = δ in the expressions for B0, B1 and B2. Finally, Appendix
A derives an expression for the unconditional mean of the value function, E[Vt]. We
can use these results to calculate the utility of long-term investors who are offered
alternative menus of assets.

4 An Empirical Application: Stocks, Bonds, and
Bills

Section 3 provides a general theoretical framework for strategic asset allocation. In
this section, we use the framework to investigate how investors who differ in their
consumption preferences and risk aversion allocate their portfolios among three assets:
stocks, nominal bonds, and nominal Treasury bills. Investment opportunities are
described by a VAR system that includes short-term ex-post real interest rates, excess
stock returns, excess bond returns and variables that have been identified as return
predictors by empirical research: the short-term nominal interest rate, the dividend-
price ratio, and the yield spread between long-term bonds and Treasury bills.

The short-term nominal interest rate has been used to predict stock and bond
returns by authors such as Fama and Schwert (1977), Campbell (1987), and Glosten,

14



Jagannathan, and Runkle (1993). An alternative approach, suggested by Campbell
(1991) and Hodrick (1992), is to stochastically detrend the short-term rate by sub-
tracting a backwards moving average (usually measured over one year). For two
reasons we do not adopt this alternative here. First, one of our data sets is annual
and does not allow us to measure a one-year moving average of short rates. Second,
we want our model to capture inflation dynamics. If we include both the ex-post real
interest rate and the nominal interest rate in the VAR system, we can easily calculate
inflation by subtracting one from the other. This allows us to separate nominal from
real variables, so that we can extend our model to include a hypothetical inflation-
indexed bond in the menu of assets. We consider this extension in section 5.

We compute optimal portfolio rules for different values of γ, assuming ψ = 1 and
δ = 0.92 in annual terms. This case gives the exact solution of Giovannini and Weil
(1989), where the consumption-wealth ratio is constant and equal to 1 − δ. This
implies that the loglinearization parameter ρ ≡ 1− exp(E[ct − wt]) is equal to δ.3

Section 4.1 describes the quarterly and annual data used in this exercise, and
section 4.2 reports the estimates of the VAR system. The numerical procedure used
to calculate optimal asset allocations is described in detail in Appendix B. Section
4.3 discusses our findings on asset allocation.

4.1 Data description

Our calibration exercise is based on postwar quarterly and long-term annual data
for the US stock market. The quarterly data begin in 1952:2, shortly after the Fed-
Treasury Accord that fundamentally changed the stochastic process for nominal in-
terest rates, and end in 1999:4. We obtain our quarterly data from the Center for
Research in Security Prices (CRSP). We construct the ex post real Treasury bill rate
as the difference of the log return (or yield) on a 90-day bill and log inflation, and
the excess log stock return as the difference between the log return on a stock index
and the log return on the 90-day bill. We use the value-weighted return, including
dividends, on the NYSE, NASDAQ and AMEX markets. We construct the excess log
bond return in a similar way, using the 5-year bond return from the US Treasury and

3The choice of ψ = 1 is convenient but not necessary for our results. We have also calculated
optimal portfolios for the case ψ = 0.5 and δ = 0.92, and find very similar results to those reported
in the paper.

15



Inflation Series (CTI) file in CRSP. The source of the 90-day bill rate is the CRSP
Fama Risk-Free Rate file.

The nominal yield on Treasury bills is the log yield on a 90-day bill. To calculate
the dividend-price ratio, we first construct the dividend payout series using the value-
weighted return including dividends, and the price index series associated with the
value-weighted return excluding dividends. Following the standard convention in the
literature, we take the dividend series to be the sum of dividend payments over the
past year. The dividend-price ratio is then the log dividend less the log price index.
The yield spread is the difference between the 5-year zero-coupon bond yield from the
CRSP Fama-Bliss data file (the longest yield available in the file) and the bill rate.

The annual dataset covers over a century from 1890 to 1998. Its source is the
data used in Grossman and Shiller (1981), updated for the recent period by Campbell
(1999).4 This dataset contains data on prices and dividends on S&P 500 stocks as well
as data on inflation and short-term interest rates. The equity price index is the end-
of-December S&P 500 Index, and the price index is the Producer Price Index. The
short rate is the return on 6-month commercial paper bought in January and rolled
over July. We use this dataset to construct time series of short-term, nominal and
ex-post real interest rates, excess returns on equities, and dividend-yields. Finally, we
obtain data on long-term nominal bonds from the long yield series in Shiller (1989),
which we have updated using the Moody’s AAA corporate bond yield average. We
construct the long bond return from this series using the loglinear approximation
technique described in Chapter 10 of Campbell, Lo and MacKinlay (1997):

rn,t+1 ≈ Dn,tyn,t − (Dn,t − 1) yn−1,t+1,

where n is bond maturity, the bond yield is written Ynt, the log bond yield yn,t =
log (1 + Yn,t), and Dn,t is bond duration. We calculate duration at time t as

Dn,t ≈ 1− (1 + Yn,t)−n
1− (1 + Yn,t)−1

,

and we set n to 20 years. We also approximate yn−1,t+1 by yn,t+1.
4See the Data Appendix to Campbell (1999), available on the author’s website.
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4.2 VAR estimation

Table 1 gives the first and second sample moments of the data. Except for the
dividend-price ratio, the sample statistics are in annualized, percentage units. Mean
excess log returns are adjusted by one-half their variance to account for Jensen’s In-
equality. For the postwar quarterly dataset, Treasury bills offer a low average real
return (a mere 1.53% per year) along with low variability. Stocks have an excess re-
turn of 7.72% per year compared to 1.08% for the 5-year bond. Although volatility is
much higher for stocks than for bonds (16.23% vs. 5.63%), the Sharpe ratio is almost
three and a half times as high for stocks as for bonds. The average Treasury bill rate
and yield spread are 5.50% and 0.95%, respectively. Figure 2 plots the history of the
variables included in the quarterly VAR.

Covering a century of data, the annual dataset gives a different description of the
relative performance of each asset. The real return on short-term nominal debt is quite
volatile, due to greater volatility in both real interest rates and inflation before World
War II. Stocks offer a slightly lower excess return, and yet a higher standard deviation,
than the postwar quarterly data. The Depression period is largely responsible for this
result. The long-term bond also performs rather poorly, giving a Sharpe ratio of only
0.10 versus a Sharpe ratio of 0.37 for stocks. The bill rate has a lower mean in the
annual dataset, but the yield spread has a higher mean. Both bill rates and yield
spreads have higher standard deviations in the annual dataset.

Table 2 reports the estimation results for the VAR system in the quarterly dataset
(Panel A) and the annual dataset (Panel B). The top section of each panel reports
coefficient estimates (with t-statistics in parentheses) and the R2 statistic (with the
p-value of the F test of joint significance in parentheses) for each equation in the
system.5 The bottom section of each panel shows the covariance structure of the
innovations in VAR system. The entries above the main diagonal are correlation
statistics, and the entries on the main diagonal are standard deviations multiplied by
100. All variables in the VAR are measured in natural units, so standard deviations
are per quarter in panel A and per year in panel B.

The first row of each panel corresponds to the real bill rate equation. The lagged
5We estimate the VAR imposing the restriction that the unconditional means of the variables

implied by the VAR coefficient estimates equal their full-sample arithmetic counterparts. Standard,
unconstrained least-squares fits exactly the mean of the variables in the VAR excluding the first
observation. We use constrained least-squares to ensure that we fit the full-sample means.
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real bill rate and the lagged nominal bill rate have positive coefficients and t-statistics
above 2 in both sample periods. The yield spread also has a positive coefficient and a
t-statistic above 2 in the quarterly data. The rest of the variables are not significant
in predicting real bill rates one period ahead.

The second row corresponds to the equation for the excess stock return. Predicting
excess stock returns is difficult: This equation has the lowest R2 in both the quarterly
and the annual sample–8.6% and 5.0%, respectively. The dividend-price ratio, with
a positive coefficient, is the only variable with a t-statistic above 2 in both samples.
The coefficient on the lagged nominal short-term interest rate is also significant in
the quarterly sample, and it has a negative sign in both samples. The yield spread
has positive coefficients in both samples, but they are not statistically significant.

The third row is the equation for the excess bond return. In the quarterly postwar
data, excess stock returns and yield spreads help predict future excess bond returns.
In the long annual dataset, real Treasury bill rates also help predict future excess
bond returns. The fit of the equation in the annual sample, with an R2 of 39%, is
four times as large as the fit in the quarterly sample, where the R2 is only 9.6%. In
part, this difference in results may reflect approximation error in our procedure for
constructing annual bond returns; the possibility of such error should be kept in mind
when interpreting our annual results.

The last three rows report the estimation results for the remaining state variables,
each of which are fairly well described by a univariate AR(1) process. The nominal
bill rate in the fourth row is predicted by the lagged nominal yield, whose coefficient is
above 0.9 in both samples, implying extremely persistent dynamics. The log dividend-
price ratio in the fifth row also has persistent dynamics; the lagged dividend-price ratio
has a coefficient of 0.96 in the quarterly data and 0.84 in the annual data. The yield
spread in the sixth row also seems to follow an AR(1) process, but is considerably
less persistent than the other variables, especially in the quarterly sample.

The bottom section of each panel describes the covariance structure of the innova-
tions in the VAR system. Unexpected log excess stock returns are highly negatively
correlated with shocks to the log dividend-price ratio in both samples. This result is
consistent with previous empirical results in Campbell (1991), Campbell and Viceira
(1999), Stambaugh (1999) and others. Unexpected log excess bond returns are neg-
atively correlated with shocks to the nominal bill rate, but positively correlated with
the yield spread. This positive correlation is about 20% in the quarterly sample, and
26% in the annual sample.
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The signs of these correlations help to explain the contrasting results of recent
studies that apply Monte Carlo analysis to judge the statistical evidence for pre-
dictability in excess stock and bond returns. Stock-market studies typically find
that asymptotic tests overstate the evidence for predictability of excess stock returns
(Hodrick 1992, Goetzmann and Jorion 1993, Nelson and Kim 1993). Bond-market
studies, on the other hand, find that asymptotic procedures are actually conservative
and understate the evidence for predictability of excess bond returns (Bekaert, Ho-
drick, and Marshall 1997). The reason for the discrepancy is that the evidence for
stock market predictability comes from positive regression coefficients of stock returns
on the dividend-price ratio, while the evidence for bond market predictability comes
from positive regression coefficients of bond returns on the yield spread. Stambaugh
(1999) shows that the small-sample bias in such regressions has the opposite sign
to the sign of the correlation between innovations in returns and innovations in the
predictive variable. In the stock market the log dividend-price ratio is negatively
correlated with returns, leading to a positive small-sample bias which helps to ex-
plain some apparent predictability; in the bond market, on the other hand, the yield
spread is positively correlated with returns, leading to a negative small-sample bias
which cannot explain the positive regression coefficient found in the data.

Although finite-sample bias may well have some effect on the coefficients reported
in Table 2, bias corrections are complex in multivariate systems and we do not attempt
any corrections here. Instead we take the estimated VAR coefficients as given, and
known by investors, and explore their implications for optimal long-term portfolios.

4.3 Strategic allocations to stocks, bonds, and bills

We have shown in section 3.3 that the optimal portfolio rule is linear in the vector
of state variables. Thus the optimal portfolio allocation to stocks, bonds and bills
changes over time. One way to characterize this rule is to examine its mean and
volatility. To analyze level effects we compute the mean allocation to each asset as
well as the mean hedging portfolio demand for different specifications of the vector of
state variables. Specifically, we estimate a series of restricted VAR systems, in which
the number of explanatory variables increases sequentially, and use them to calculate
mean optimal portfolios for ψ = 1, δ = 0.92 at an annual frequency, and γ = 1, 2, 5
or 20.

The first VAR system only has a constant term in each regression, corresponding to
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the case in which risk premia are constant and realized returns on all assets, including
the short-term real interest rate, are i.i.d. The second system includes an intercept
term, the ex-post real bill rate and log excess returns on stocks and bonds. We then
add sequentially the nominal bill rate, the dividend yield and the yield spread. Thus
we estimate five VAR systems in total.

Table 3 reports the results of this experiment for values of the coefficient of relative
risk aversion γ equal to 1, 2, 5 and 20, with the intertemporal elasticity of substitution
ψ = 1. Panel A considers the quarterly dataset, while Panel B considers the annual
dataset. The entries in each column are mean portfolio demands in percentage points
when the explanatory variables in the VAR system include the state variable in the
column heading and those to the left of it. For instance, the “constant” column reports
mean portfolio allocations when the explanatory variables include only a constant
term, that is, when investment opportunities are constant. The right-hand “spread”
column gives the case where all state variables are included in the VAR.

Table 3 reports results only for selected values of risk aversion, but we have also
computed portfolio allocations for a continuum of values of risk aversion; Figure 3
plots these allocations and their myopic component using the quarterly VAR with all
state variables included. In this figure the horizontal axis shows risk tolerance 1/γ
rather than risk aversion γ, both in order to display the behavior of highly conservative
investors more compactly, and because myopic portfolio demands are linear in risk
tolerance. Infinitely conservative investors with 1/γ = 0 are plotted at the right edge
of the figure, so that as the eye moves from left to right we see the effects of increasing
risk aversion on asset allocation.

Table 3 enables us to analyze two effects on the level of portfolio demands. By
comparing numbers within any column, we can study how total asset allocation and
intertemporal hedging demand vary with risk aversion. By comparing numbers within
any row, we can examine the incremental effects of the state variables on asset al-
location. Here we explore the first topic and leave the second for the next section.
To simplify the discussion we focus only on the allocations implied by the full VAR,
shown in the right-hand column of the table.

The first set of numbers in Table 3 reports the mean portfolio allocation to stocks,
bonds and bills of a logarithmic investor. For this investor, the optimal portfolio rule
is purely myopic. Equation (20) evaluated at γ = 1 shows that asset allocation
depends only on the inverse of the variance-covariance matrix of unexpected excess
returns and the mean excess return on stocks and bonds. This myopic allocation
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is long in stocks and bonds in both the quarterly dataset and the annual dataset.
However, the ratio of stocks to bonds is about 1.8 in the quarterly dataset, and close
to one in the annual dataset. The preference for stocks in the quarterly dataset is
primarily due to the estimated large positive correlation between unexpected excess
returns on stocks and bonds in the quarterly dataset. This shifts the optimal myopic
allocation towards stocks–the asset with the largest Sharpe ratio. In the annual
dataset the correlation between excess bond and stock returns is very low, implying
that the optimal portfolio allocation to one asset is essentially independent of the
optimal allocation to the other.

Conservative investors, with risk aversion γ > 1, have an intertemporal hedging
demand for stocks. This demand is most easily understood by looking at Figure 3,
which is based on the quarterly dataset. In Figure 3, the total demand for stocks
is a concave function of risk tolerance 1/γ, while the myopic portfolio demand is a
linear function of 1/γ.6 Moreover, total stock demand is always larger than myopic
portfolio demand for all 1/γ < 1. This implies that intertemporal hedging demand
is a positive, hump-shaped function of 1/γ. We can verify this by looking at the
hedging demands reported in Table 3. In both datasets, the hedging demand for
stocks is always positive and exhibits a hump-shaped pattern as a function of 1/γ.

These patterns reflect the time-variation in expected stock returns, which is cap-
tured in our VAR model by the predictability of stock returns from the dividend-price
ratio. Because stocks have a large positive Sharpe ratio, investors are normally long
in the stock market. Hence an increase in expected stock returns represents an
improvement in the investment opportunity set. Our VAR model implies that ex-
pected stock returns increase when the dividend-price ratio increases; since stocks
are strongly negatively correlated with the dividend-price ratio, this means that poor
stock returns are correlated with an improvement in future investment opportunities.
Thus stocks can be used to hedge the variation in their own future returns, and this
increases the demand for stocks by conservative investors. The effect is strongest
at intermediate levels of risk aversion, because investors with γ = 1 do not wish to
hedge intertemporally, and extremely conservative investors have little interest in the
risky investment opportunities available in the stock market.

6We can see this formally by looking at equation (20). This equation implies that myopic demand
is a linear function of 1/γ with intercept given by −Σ−1xxσ1x. The intercept is zero only when shocks
to the real interest rate on nominal Treasury bills are uncorrelated with excess returns on all other
assets, that is, when σ1x is zero.
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These results are comparable to those reported by Campbell and Viceira (2000)
for a model with a single risky asset (stocks) and a single state variable (the dividend-
price ratio) over a slightly shorter postwar sample period.7 Although there is slightly
weaker predictability of stock returns in our longer postwar sample, which tends to
reduce intertemporal hedging demand, there is also more persistence in the dividend-
price ratio, which tends to increase intertemporal hedging demand. These two effects
roughly cancel.

Intertemporal hedging demands are just as striking for nominal bonds. Figure
3 and Table 3 show that the intertemporal hedging demand for nominal bonds is U-
shaped in risk aversion in the quarterly dataset. It is strongly negative at intermediate
coefficients of risk aversion, but turns positive for extremely conservative investors.
This effect is large enough to make the total demand for nominal bonds negative for
investors with intermediate risk aversion.

This pattern results from several features of bond returns in our quarterly VAR
model. First, there is a positive correlation between unexpected excess stock returns
and nominal bond returns in the quarterly dataset. Thus investors can offset the
short-term risk implied by their large positive intertemporal hedging demand for
stocks by taking short positions in long-term nominal bonds. This negative effect
on bond demand is largest at intermediate levels of risk aversion because the positive
intertemporal hedging demand for stocks is largest at these levels of risk aversion.

Second, the short-term nominal interest rate forecasts real interest rates positively,
but excess stock returns negatively in the quarterly dataset. A high real interest rate
is a good investment opportunity, but a low excess stock return is a poor invest-
ment opportunity. Thus there are opposing effects of short-term interest rates on the
investment opportunity set. An investor with intermediate risk aversion is most inter-
ested in the opportunities available in the stock market, and will consider an increase
in the short rate to be a deterioration in investment opportunities, but an extremely
conservative investor is most interested in real interest rates and will consider an in-
crease in the short nominal rate to be an improvement in investment opportunities.
Since nominal bond returns are highly negatively correlated with movements in the
short nominal interest rate, this generates negative intertemporal hedging demand by
investors with intermediate risk aversion but positive intertemporal hedging demand

7Campbell and Viceira (2000) correct an estimation error in Campbell and Viceira (1999) that
understated the predictability of postwar quarterly stock returns and the absolute value of the
correlation between innovations to stock returns and dividend yields.
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by extremely conservative investors.

Third, the yield spread forecasts real interest rates and excess bond returns pos-
itively in the quarterly dataset; thus an increase in the yield spread represents an
improvement in investment opportunities. Since innovations in the yield spread are
positively correlated with unexpected bond returns, this reduces the intertemporal
hedging demand for long-term bonds. We can see the importance of this effect in
Table 3 by noting the negative shift in average bond demand that occurs when the
yield spread is included in the VAR system.

Panel B of Table 3 shows that the intertemporal hedging demand for long-term
nominal bonds is always positive in the annual dataset. There are several reasons
for this difference in results. Bond and stock returns are uncorrelated rather than
positively correlated in the annual data, so the positive intertemporal hedging demand
for stocks does not reduce the demand for bonds. The nominal interest rate still
predicts the real interest rate positively but does not predict excess stock returns
negatively in the annual data, so an increase in the interest rate unambiguously
represents an improvement in investment opportunities that can be hedged by holding
bonds. Finally, the yield spread forecasts low rather than high real interest rates in
the annual data.8

The contrast in results between the postwar quarterly and long-term annual data
can also be understood by noting that real interest rate variation is more important
in the annual dataset. Row 2 of Table 1 shows that the standard deviation of ex post
real interest rates is almost six times higher in the annual dataset, while Table 2 shows
that the predictability of real interest rates is only modestly lower, implying that ex
ante real interest rates are much more variable in the long-term annual data. This
implies that a strategy of rolling over Treasury bills is highly risky at long horizons
because bills must be reinvested at unknown future real interest rates. This risk can
be hedged using long-term bonds, as emphasized by Campbell and Viceira (2001). In
the postwar data real interest rate variation is less important relative to other sources
of risk.

8The yield spread still predicts excess bond returns positively in the annual data. By itself this
would generate negative intertemporal hedging demand for bonds. A univariate model, not shown
here to save space, where short-term real interest rates are constant and yield spreads forecast only
excess bond returns, shows a negative intertemporal hedging demand for bonds. This negative
demand is a direct result of the positive regression coefficient of future bond excess returns on yield
spreads, and the positive correlation between shocks to yield spreads and unexpected bond excess
returns.

23



We turn now to the analysis of the variability of asset demands. From equation
(20), we can express the optimal portfolio rule as

αi,t = α
m
i,t + α

h
i,t, (28)

where i denotes stocks or bonds, m denotes myopic and h denotes hedging. Thus,

Var (αi,t) = Var
¡
αmi,t
¢
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¡
αhi,t
¢
+ 2Cov

¡
αmi,t,α

h
i,t

¢
. (29)

Table 4 reports this variance decomposition for the case γ = 5 and ψ = 1.
Panel A refers to the quarterly sample, and panel B to the annual sample. The top
rows in each panel report the contribution of Var
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to the total variance of the demand for each asset. The variance of the hedging
component explains at most 22% of the total variation in stock and bond demand
in the quarterly dataset, and 14% in the annual dataset. Thus hedging portfolio
demand is much more stable than total portfolio demand. Kim and Omberg (1996)
and Campbell and Viceira (1999) give an intuitive explanation for this result, showing
that hedging demand can change sign only in extreme circumstances where investors
have replaced their normal long positions with short positions in risky assets. To a
first approximation, intertemporal hedging shifts the intercept of risky asset demand
rather than the slope with respect to state variables; put another way, long-term
investors should “time the market” just as aggressively as short-term investors.

Figure 4 illustrates the result graphically. The figure plots time series of total port-
folio allocations based on the quarterly dataset for γ = 5, along with the myopic and
hedging components of total portfolio demand. For all three assets, hedging demands
are considerably less volatile than myopic demands. The allocation to long-term
nominal bonds has the greatest short-term volatility, despite the low predictability in
bond excess returns. This can be understood by noting that the variability of myopic
allocations depends positively on the predictability of returns, but negatively on their
unpredictable volatility, which is relatively low for bonds.9

9In the case with only a single risky asset, the variability of the optimal myopic allocation is
proportional to R2/(σ2(1 − R2)), where R2 is the R-squared of the predictive regression for the
excess return on the asset and σ2 is the variance of the unexpected excess return. Thus we should
expect variable asset demand when this variance is low, even if there is only a modest degree of
predictability.
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4.4 Which state variables matter?

The analysis so far has focused on the shape of asset demands and their hedging com-
ponents. It is equally important to understand the effects of various state variables
on the level and variability of asset demands. To analyze the level effects of state
variables, we can compare average portfolio demands across rows in Table 3.

Panel A shows that there are important changes in the magnitude of hedging
demands as we consider new state variables in the investor information set. In the
case of stocks, hedging demand is very small when only lagged Treasury bill rates
(either real or nominal) and excess returns on bonds and stocks are included in the
VAR. It increases dramatically when the dividend-price ratio is introduced into the
VAR as a regressor. The inclusion of the yield spread has a negligible effect on the
hedging demand for stocks.

The correlation structure shown in Table 2 helps explain these results. In the full
annual VAR system, there is a strong negative correlation between unexpected excess
returns on stocks and shocks to the dividend-price ratio, while the magnitude of all
other correlations in the table is much smaller. These correlations are not sensitive
to the inclusion or exclusion of state variables in the VAR. The presence of the
dividend-price ratio in the investor information set increases the hedging demand for
stocks because negative shocks to the dividend-price ratio, which drive down expected
returns on stocks, tend to coincide with positive realized excess returns on stocks.
This negative correlation is even stronger in the quarterly dataset, which makes the
pattern for hedging demands more pronounced in this dataset.

The case of bonds is more complex, particularly in the quarterly dataset. As we
have noted in section 4.3, several different factors influence the demand for nominal
bonds. The positive correlation of bond and stock returns in the quarterly dataset
means that positive hedging demand for stocks tends to produce negative hedging
demand for bonds in that dataset. In the annual dataset, by contrast, the correlation
of bond and stock returns is very small, so that positive hedging demand for stocks has
little effect on the hedging demand for bonds. The VAR system also includes the ex-
post real bill rate, the nominal bill rate and the yield spread; these variables capture
the complex dynamics of real interest rates, inflation and excess bond returns. In
the quarterly dataset, these variables tend to create a negative intertemporal hedging
demand for bonds, while in the annual dataset they create a positive hedging demand
for bonds.
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We can analyze the importance of each state variable for the variability of asset
demands by looking at Table 4. The lower section of Table 4 report the contribution
of each state variable to total asset demand variation Var (αi,t). For each block,
the diagonal elements are the own variance components and the lower off-diagonal
elements are the covariance components, normalized to sum to 100%. The numbers
on the main diagonals indicate that in both samples the variance of the dividend-price
ratio is the dominant source of movements in stock demand, explaining about 84%
of the variance of stock demand. The dividend-price ratio explains almost 28% of
the variability of bond demand in the annual dataset, but less than 2% in the annual
dataset. The nominal bill rate and the yield spread are the most important variables
driving the variability of bond demand in the quarterly dataset, while the yield spread
alone is of dominant importance for bond demand in the annual dataset.

The numbers off the main diagonals in Table 4 indicate that shifts in asset demands
caused by innovations of some state variables are not independent of each other. The
covariance terms are particularly important in the quarterly dataset, where shifts in
stock and bond demands caused by innovations to the nominal bill rate are partially
offset by shifts of opposite sign caused by contemporaneous shocks to the dividend-
price ratio and the yield spread. These offsets reduce the overall variability of asset
demands. In the annual dataset, covariances are much less important.

In summary, our results indicate that the most important state variable deter-
mining the mean and volatility of stock demand is the dividend yield, while variables
that forecast real interest rates, inflation and excess bond returns determine the mean
and volatility of bond demand. Aït-Sahalia and Brandt (2001) also find that these
variables are important determinants of optimal portfolio choice.
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5 Strategic Asset Allocation with Inflation-Indexed
Bonds

We have found that the intertemporal hedging demand for long-term bonds is neg-
ative for investors with intermediate levels of risk aversion in the quarterly postwar
sample. This finding contrasts with conventional investment advice that conservative
long-term investors should hold bonds to obtain a stable stream of income, disregard-
ing short-run fluctuations in capital value. There are two possible reasons for the
discrepancy between our results and conventional wisdom. First, the conventional
wisdom disregards the distinction between nominal and inflation-indexed bonds. In
the presence of significant inflation risk, long-term nominal bonds are not suitable
assets for conservative long-term investors. Campbell and Viceira (2001) use a term
structure model with time-varying real interest rates and inflation rates, but constant
risk premia, and find that inflation uncertainty drastically reduces the intertempo-
ral hedging demand for long-term nominal bonds in the postwar period.10 Second,
our model has a general dynamic structure in which either stocks or bonds might
be good hedges for predictable variation in stock and bond returns. Conventional
investment advice may be based on the presumption that bonds are the best hedges
for predictable variation in returns on all risky assets; the model of Campbell and
Viceira (2001) explicitly assumes this.

To determine which of these explanations is correct, we now extend our model to
include an inflation-indexed perpetuity in the menu of available assets. This requires
us to construct hypothetical real bond returns, because inflation-indexed bonds were
first issued by the US Treasury in 1997 and thus very little direct evidence is available
about their returns. The VAR framework is well suited for this purpose, provided that
we make the assumption that expected real returns on real bonds of all maturities and
the expected real return on short-term nominal bills differ only by a constant. This
amounts to assuming that the inflation risk premium on nominal bills is constant.
We now briefly describe the construction procedure, which is adapted from the work
of Campbell and Shiller (1996). Appendix C provides full details.

We first use the estimates of the coefficient matrices in the VAR to construct
returns on hypothetical real perpetuities according to the procedure outlined in Ap-
10Campbell and Viceira also look at recent data since 1983, and find much smaller inflation

uncertainty. We do not examine this period here as our VAR system is not sufficiently parsimonious
for such a short sample period.
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pendix C. The procedure assumes a zero inflation risk premium. As noted in Campbell
and Shiller (1996), if the inflation risk premium is not zero but constant, the procedure
will miss the average level of the yield curve, but will still capture the dynamics of the
curve. This is important, because intertemporal hedging demand depends sensitively
on the dynamics of asset returns. With the correct dynamics in hand, we set the
mean excess return of the real perpetuity to zero. We deliberately choose this value
to be conservative about the appeal of this bond to a myopic investor.11 Finally, we
include the imputed excess return on real perpetuities in two new VAR systems. In
the first VAR we replace the excess return on nominal bonds with the excess return
on real perpetuities, while in the second system we include both variables. Appendix
D shows the estimation results.

Table 5 reports the resulting mean asset demands for values of γ equal to 1, 2,
5, 20 and 2000 and ψ = 1 in the quarterly dataset. We include the case γ = 2000
because we want to study asset demand for infinitely risk averse investors, which
we proxy using this large value of γ. We also report mean asset allocations under
constant investment opportunities. Appendix D shows results for the annual dataset.
Figures 5 and 6 plot the allocations implied by the full quarterly VAR for a continuum
of values of γ.

We start by looking at the optimal portfolio of a myopic logarithmic investor in
Table 5. This investor should hold long positions in both stocks and the inflation-
indexed perpetuity, and a short position in long-term nominal bonds when these assets
are available. The positive holdings of stocks result from the positive expected excess
return on stocks. The positive holdings of the real perpetuity result from a large
negative correlation (shown in Appendix D) between excess returns on stocks and on
the real perpetuity, which makes this asset good to hedge long positions in stocks.
The myopic demand for long-term nominal bonds is negative because there is a large
positive correlation between nominal bond returns and stock returns, and between
nominal bond returns and real consol returns. The first correlation makes it optimal
to use a short position in nominal bonds to offset a long position in stocks.. The
second correlation has the effect of strengthening the long and short positions on the
11In our model with multiple risky assets the assumption of a zero risk premium on the real

perpetuity does not necessarily imply a zero mean myopic allocation to this bond. The myopic mean
allocation can differ from zero if unexpected excess returns on the real perpetuity are correlated with
unexpected excess returns on other assets. We have also considered a positive mean excess return
on the perpetuity. In particular, we have considered a mean excess return such that the Sharpe
ratio of the real perpetuity is equal to the Sharpe ratio of nominal bonds. This choice increases the
myopic demand for the perpetuity but has only modest effects on intertemporal hedging demands.
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real perpetuity and nominal bonds determined by the correlations of these assets with
stock returns. By contrast, the correlation structure of excess returns in the annual
sample (shown in Appendix D) is markedly different: The excess return on stocks
is negatively correlated with the excess return on the real perpetuity, and almost
uncorrelated with the excess return on nominal bonds, while the excess returns on
the real perpetuity and nominal bonds are still positively correlated. This correlation
structure results in long positions in stocks and the nominal bond, and a short position
in the real perpetuity.

We can learn about the myopic allocations of non-logarithmic investors by looking
at the allocations under constant investment opportunities shown in the “constant”
column in Table 5. Investors with γ > 1 have a myopic demand for real perpetuities
that is larger than 1/γ times the optimal allocation of the logarithmic investor. This
is driven by the fact that the short-term bill is risky in real terms, so the portfolio
with the smallest short-term risk is a combination of the short-term bill and the real
perpetuity, with a short position in nominal bonds when they are available. The
myopic portfolio approaches this “minimum short-term variance” portfolio as risk
aversion γ increases.12

The “full VAR” column in Table 5 shows total portfolio demands with time-
varying investment opportunities. The total portfolio demand for the real perpetuity
is increasing in risk aversion, approaching 100% of the portfolio as the investor be-
comes infinitely conservative. By contrast, the total portfolio demand for stocks, the
nominal bill and the nominal bond are decreasing in γ, approaching 0% as the in-
vestor becomes infinitely conservative. Thus inflation-indexed bonds drive out cash
from the portfolios of conservative investors. In their model with time-varying in-
terest rates but constant risk premia, Campbell and Viceira (2001) show that an
infinitely risk-averse long-horizon investor with zero elasticity of intertemporal sub-
stitution would choose to be fully invested in a real perpetuity.13 Table 5 shows that
this result extends to a world in which both interest rates and expected excess returns
12Equation (20) shows that the myopic demand of non-logarithmic investors is not proportional

to 1/γ; instead it is a linear function of 1/γ whose intercept depends on the covariance between
shocks to the real interest rate on nominal bills and unexpected excess returns on all other assets
(σ1x). Appendix D shows that the correlation between shocks to the real interest rate on nominal
bills and unexpected excess returns on the real consol bond is negative and large (about −46% in
the quarterly dataset, and −85% in the annual dataset), which in turn translates into a substantial,
positive intercept for the real perpetuity.
13Wachter (2000) has extended this result to more general models with complete markets. See

also Brennan and Xia (2001).
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are time-varying.14

In this model the intertemporal hedging demand for long-term nominal bonds
is negative for all levels of risk aversion; it does not turn positive for extremely
conservative investors as in the model where only nominal bonds are available. We
have noted that the dynamic properties of bond returns imply a multiplicity of hedging
roles for these assets. The presence of inflation-indexed bonds in the menu of assets
allows investors to use long positions in inflation-indexed bonds to hedge real interest
rate risk, and short positions in nominal bonds to hedge their long positions in stocks
and the risk of time-variation in expected excess bond returns.

5.1 The utility benefits of inflation-indexation

Another way to judge the importance of an asset class is to compare the utility of an
investor who has access to that asset class, with the utility of an investor who does
not. In Table 6 we carry out this comparison. The table shows the mean value
function for values of γ equal to 1, 2, 5, 20 and 2000 and ψ = 1 in the quarterly
dataset. The value function is normalized so that a doubling from one asset menu
to another implies that an investor would require twice as much wealth to obtain
the same utility with the worse asset menu than with the better one. We report
results for a base case in which only nominal bills and stocks are available, and for
the three asset menus we have discussed earlier in the paper: nominal bills, long-term
nominal bonds, and stocks; nominal bills, real perpetuities, and stocks; and nominal
bills, long-term nominal bonds, real perpetuities, and stocks. To make these asset
menus fully comparable, we compute value functions for all of them based on the
same VAR, which includes the real perpetuity as an additional state variable. Thus
the value function numbers for bills, nominal bonds, and stocks do not correspond
exactly to the mean asset allocations reported in Table 3–although the numbers are
extremely close. Appendix D shows results for the annual dataset.

A comparison of the top panel of Table 6, in which no long-term bonds are avail-
able, with the lower panels shows that long-term bonds generate large welfare gains
14Note that the allocation to the real consol bond for an investor with an extremely large coefficient

of relative risk aversion does not equal 100% exactly. This is due primarily to the fact that the
investor we consider in Table 5 has unit, not zero, elasticity of intertemporal substitution. There is
also a small effect caused by the fact that the VAR system in Table 5 does not exactly capture the
information set we used to construct the long-term real bond yield.
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for all investors. Aggressive investors gain by having access to risky nominal bonds
with positive expected excess returns, and by the ability to use bonds to hedge long
positions in stocks. Conservative investors gain by having access to long-term in-
struments that hedge the risk of variation in real interest rates. A comparison of
the second panel of Table 6 with the bottom panel shows that the addition of real
perpetuities to an asset menu that already includes nominal bonds also creates large
gains for all investors by improving static and intertemporal hedging opportunities.
A comparison of the second panel of Table 6 with the third panel shows that ex-
tremely conservative investors would prefer to have real perpetuities available instead
of nominal bonds; however aggressive and moderately conservative investors prefer to
be able to invest in nominal bonds because of the risk premium they offer and their
ability to hedge stock positions. In interpreting this result, it is important to recall
that we have assumed that real perpetuities offer no risk premium. Also, results
are somewhat more favorable for real perpetuities in the annual dataset, where real
interest rate risk is more important. In that dataset even moderately conservative
investors prefer to have real perpetuities instead of nominal bonds in the asset menu.

6 Conclusion

This paper has explored the implications for long-term investors of the empirical ev-
idence on the predictability of asset returns. Dividend yields, interest rates, yield
spreads, inflation, and other variables that predict asset returns in previous empir-
ical research have substantial effects on optimal portfolio allocations among bills,
stocks, and nominal and inflation-indexed bonds. These effects are strategic, work-
ing through intertemporal hedging demands, rather than merely tactical effects on
myopic optimal portfolios.

Strategic effects on asset demands arise because shocks to the forecasting variables
are correlated with the unexpected returns on stocks and bonds. The correlation
is strongest for the dividend-price ratio, and thus we find that this variable is the
most important determinant of both the level and the variability of optimal portfolio
demands. Predictability of stock returns from the dividend-price ratio tilts the
optimal portfolio holdings of moderately conservative investors towards stocks and
away from bonds and cash.

We find that the intertemporal hedging demand for long-term nominal bonds is

31



negative for intermediate levels of risk aversion in postwar quarterly data, and positive
in long-term annual data covering the whole 20th Century. These contrasting results
reflect the importance of real interest rate risk in each period. In the annual dataset
real interest rates are much more variable than in the quarterly postwar dataset,
thus increasing the desire of conservative investors to use bonds to hedge real interest
rate risk. Also, nominal bonds have been positively correlated with stocks in the
postwar period, encouraging investors to use short bond positions to hedge long stock
positions; this correlation is much weaker in the long-term annual dataset. When we
add inflation-indexed bonds to the asset menu, we find that conservative investors use
these assets to hedge real interest rate risk; extremely conservative investors should
hold most of their wealth in inflation-indexed bonds when these assets are available.

Our research has several limitations that should be kept in mind when interpreting
the results. First, we consider a long-term investor who has financial wealth but no
labor income. We hope to remedy this serious omission in future work by extending
the approach of Viceira (2001). Second, we do not impose borrowing or short-sales
constraints; to do so would take us outside the tractable linear-quadratic approximate
framework and would require a fully numerical solution method of the sort used by
Brennan, Schwartz, and Lagnado (1997, 1999) and Lynch (2001). Third, our solu-
tions are approximate for investors with elasticity of intertemporal substitution not
equal to one. Campbell, Cocco, Gomes, Maenhout, and Viceira (1998) have checked
the accuracy of the approximation in the simpler model of Campbell and Viceira
(1999) with only one risky asset and one state variable, and have explored the effects
of portfolio constraints in that context, but further work is needed within the richer
dynamic framework used here. Fourth, we ignore the differential tax treatment of in-
terest or dividend income and capital gains. Dammon, Spatt, and Zhang (2001) have
recently argued that tax effects can be particularly important for long-term investors.
Fifth, we assume that a VAR system, estimated without corrections for small-sample
biases and without the use of Bayesian priors, is a reasonable description of the dy-
namic behavior of stock and bond returns. Finally, we assume that investors know
all the parameters of the model. We have found that these parameters, including not
only the means and covariances of asset returns but also the parameters governing
the dynamics of asset returns and state variables, can have enormous effects on opti-
mal portfolio demands. Given this, it is not surprising that parameter uncertainty
and learning can have a large effect on optimal long-term investment strategies as
shown by Barberis (2000), Brennan (1998), Xia (2001), and others. A challenging
task for future research will be to integrate all these effects into a single empirically
implementable framework.
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TABLE 1
Sample Statistics

Sample Moment 1952.Q2 - 1999.Q4 1890 - 1998

(1) E[r$1,t − πt] + σ2(r$1,t − πt)/2 1.528 2.101
(2) σ(r$1,t − πt) 1.354 8.806

(3) E[r$e,t − r$1,t] + σ2(r$e,t − r$1,t)/2 7.719 6.797
(4) σ(r$e,t − r$1,t) 16.231 18.192
(5) SR = (3)/(4) 0.476 0.374

(6) E[r$n,t − r$1,t] + σ2(r$n,t − r$1,t)/2 1.079 0.674
(7) σ(r$n,t − r$1,t) 5.631 6.543
(8) SR = (6)/(7) 0.192 0.103

(9) E[y$t ] 5.501 4.361
(10) σ(y$t ) 1.413 2.597

(11) E[dt − pt] -3.420 -3.101
(12) σ(dt − pt) 0.305 0.304

(13) E[y$n,t − y$1,t] 0.951 0.902
(14) σ(y$n,t − y$1,t) 0.507 1.450

Note: r$1,t = log return on T-bills, πt = log inflation rate, r$e,t = log return on equities, r$n,t = log

return on nominal bond, (d− p)t = log dividend-price ratio, rbt = relative bill rate, y$n,t = log yield on the

nominal bond, and y$1,t is the short yield. The bond is a 5-year nominal bond in the quarterly dataset and

a 20-year for the annual dataset.



TABLE 2

VAR Estimation Results

A: Quarterly Sample (1952.Q2 - 1999.Q4)

Dependent rtbt xrt xbt yt (d− p)t sprt R2

Variable (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbt+1 0.444 0.005 -0.012 0.255 -0.001 0.455 0.340
(6.557) (0.837) (-0.630) (3.374) (-0.975) (2.414) (0.000)

xrt+1 0.639 0.021 0.428 -2.108 0.047 0.408 0.086
(0.644) (0.257) (1.729) (-2.357) (2.213) (0.160) (0.006)

xbt+1 0.047 -0.055 -0.088 0.355 0.002 3.068 0.096
(0.143) (-2.728) (-0.779) (0.816) (0.320) (2.768) (0.003)

yt+1 -0.008 0.004 0.004 0.952 -0.000 0.115 0.868
(-0.200) (1.808) (0.341) (19.467) (-0.116) (1.075) (0.000)

(d− p)t+1 -0.848 -0.020 -0.402 1.412 0.963 -1.114 0.932
(-0.820) (-0.222) (-1.513) (1.508) (44.001) (-0.425) (0.000)

sprt+1 -0.000 -0.001 0.002 0.026 -0.000 0.747 0.539
(-0.004) (-0.329) (0.270) (0.857) (-0.254) (10.897) (0.000)

Cross-Correlation of Residuals

rtb xr xb y (d− p) spr

rtb 0.550 0.239 0.393 -0.389 -0.238 0.186
xr - 7.752 0.229 -0.171 -0.981 0.026
xb - - 2.674 -0.765 -0.246 0.198
y - - - 0.255 0.202 -0.777
(d− p) - - - - 7.932 -0.058
spr - - - - - 0.172

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xbt = excess bond return, (d− p)t =
log dividend-price ratio, yt = nominal T-bill yield, sprt = yield spread. The bond is a 5-year nominal bond

in the quarterly dataset and a 20-year for the annual dataset.



TABLE 2 (ctd.)

VAR Estimation Results

B: Annual Sample (1890 - 1998)

Dependent rtbt xrt xbt yt (d− p)t sprt R2

Variable (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbt+1 0.303 -0.052 0.122 0.701 -0.004 -0.776 0.240
(2.434) (-1.314) (0.902) (2.365) (-0.146) (-1.242) (0.000)

xrt+1 0.116 0.075 -0.091 -0.074 0.131 1.291 0.050
(0.438) (0.607) (-0.305) (-0.105) (2.320) (0.957) (0.399)

xbt+1 0.200 0.106 -0.197 -0.112 0.012 2.628 0.392
(3.072) (2.990) (-1.502) (-0.319) (0.614) (5.289) (0.000)

yt+1 -0.042 -0.012 0.037 0.921 -0.005 -0.017 0.776
(-1.922) (-1.784) (1.318) (12.307) (-1.119) (-0.136) (0.000)

(d− p)t+1 -0.567 -0.124 0.357 -0.597 0.842 -1.662 0.721
(-2.272) (-1.146) (1.115) (-0.941) (13.362) (-1.194) (0.000)

sprt+1 0.020 0.002 -0.013 0.085 0.004 0.820 0.540
(1.118) (0.409) (-0.667) (1.625) (1.153) (8.900) (0.000)

Cross-Correlation of Residuals

rtb xr xb y (d− p) spr

rtb 7.592 -0.167 -0.020 0.114 0.100 -0.155
xr - 17.498 -0.020 -0.135 -0.725 0.186
xb - - 5.102 -0.650 -0.055 0.264
y - - - 1.228 0.179 -0.894
(d− p) - - - - 16.067 -0.170
spr - - - - - 0.978

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xbt = excess bond return, (d− p)t =
log dividend-price ratio, yt = nominal T-bill yield, sprt = yield spread. The bond is a 5-year nominal bond

in the quarterly dataset and a 20-year for the annual dataset.



TABLE 3
Mean Asset Demands (ψ = 1 Case)

A: Quarterly Sample (1952.Q2 - 1999.Q4)

State Variables: Constant ARt yt (d− p)t sprt

γ = 1,ψ = 1, ρ = 0.921/4

Stock Total Demand 272.77 292.42 296.33 303.41 302.79
Hedging Demand 0.00 0.00 0.00 0.00 0.00

Bond Total Demand 172.93 162.73 160.07 160.67 171.01
Hedging Demand 0.00 0.00 0.00 0.00 0.00

Cash Total Demand -345.70 -355.15 -356.40 -364.08 -373.80
Hedging Demand 0.00 0.00 0.00 0.00 0.00

γ = 2,ψ = 1, ρ = 0.921/4

Stock Total Demand 135.52 146.02 149.62 246.07 246.61
Hedging Demand 0.00 0.20 1.95 94.91 95.77

Bond Total Demand 82.13 33.53 -7.22 6.25 -8.17
Hedging Demand 0.00 -43.86 -83.35 -70.18 -90.00

Cash Total Demand -117.65 -79.55 -42.39 -152.32 -138.44
Hedging Demand 0.00 43.66 81.41 -24.73 -5.77

γ = 5,ψ = 1, ρ = 0.921/4

Stock Total Demand 53.17 56.52 57.40 157.64 160.51
Hedging Demand 0.00 -1.34 -1.08 97.83 100.84

Bond Total Demand 27.65 -3.94 -15.70 -43.70 -94.24
Hedging Demand 0.00 -30.13 -41.47 -69.59 -122.57

Cash Total Demand 19.18 47.42 58.30 -13.94 33.73
Hedging Demand 0.00 31.47 42.55 -28.24 21.72

γ = 20,ψ = 1, ρ = 0.921/4

Stock Total Demand 12.00 12.01 11.47 59.37 59.54
Hedging Demand 0.00 -1.88 -2.41 45.23 45.46

Bond Total Demand 0.41 -11.28 3.61 -19.55 -39.95
Hedging Demand 0.00 -11.86 3.03 -20.17 -41.53

Cash Total Demand 87.59 99.27 84.92 60.18 80.41
Hedging Demand 0.00 13.74 -0.62 -25.06 -3.94

Note: ARt = real returns on T-Bills, excess return on stocks, and excess return on bonds; yt = nominal
yield on T-Bills; (d−p)t = log dividend-price ratio; sprt = yield spread. The bond is a 5-year nominal bond
in the quarterly dataset and a 20-year in the annual dataset.



TABLE 3 (Ctd.)
Mean Asset Demands (ψ = 1 Case)

B: Annual Sample (1890 - 1998)

State Variables: Constant ARt yt (d− p)t sprt

γ = 1,ψ = 1, ρ = 0.92

Stock Total Demand 192.33 207.77 209.27 215.20 219.34
Hedging Demand 0.00 0.00 0.00 0.00 0.00

Bond Total Demand 120.29 152.23 161.31 162.08 241.55
Hedging Demand 0.00 0.00 0.00 0.00 0.00

Cash Total Demand -212.62 -260.00 -270.57 -277.28 -360.89
Hedging Demand 0.00 0.00 0.00 0.00 0.00

γ = 2,ψ = 1, ρ = 0.92

Stock Total Demand 98.94 108.84 108.84 132.21 133.41
Hedging Demand 0.00 0.96 0.55 20.83 20.10

Bond Total Demand 65.44 89.60 96.87 83.16 142.25
Hedging Demand 0.00 6.99 11.53 -2.58 19.78

Cash Total Demand -64.38 -98.43 -105.71 -115.36 -175.67
Hedging Demand 0.00 -7.96 -12.08 -18.25 -39.88

γ = 5,ψ = 1, ρ = 0.92

Stock Total Demand 42.91 53.87 52.77 67.38 66.70
Hedging Demand 0.00 5.94 5.06 18.29 17.01

Bond Total Demand 32.53 52.31 63.87 53.76 90.99
Hedging Demand 0.00 11.48 24.12 13.84 39.95

Cash Total Demand 24.56 -6.19 -16.64 -21.14 -57.69
Hedging Demand 0.00 -17.42 -29.17 -32.13 -56.96

γ = 20,ψ = 1, ρ = 0.92

Stock Total Demand 14.89 27.61 25.82 29.25 29.32
Hedging Demand 0.00 9.64 8.40 11.31 11.44

Bond Total Demand 16.07 34.03 48.01 44.10 76.42
Hedging Demand 0.00 14.08 31.05 27.08 61.10

Cash Total Demand 69.03 38.36 26.17 26.65 -5.73
Hedging Demand 0.00 -23.73 -39.45 -38.39 -72.54

Note: ARt = real returns on T-Bills, excess return on stocks, and excess return on bonds; yt = nominal
yield on T-Bills; (d−p)t = log dividend-price ratio; sprt = yield spread. The bond is a 5-year nominal bond
in the quarterly dataset and a 20-year in the annual dataset.



TABLE 4
Variability of Asset Demands

A: Quarterly Sample (1952Q2 - 1999Q4)

γ = 5,ψ = 1, ρ = 0.921/4

Var(αm)/Var(α) (%) Var(αh)/Var(α) (%) Cov(αm,αh)/Var(α) (%)

Stock 52.00 14.31 16.84

Bond 60.49 21.44 9.03

Percentage of Total Variation Explained By:

Stocks

rtbt xrt xbt yt (d− p)t sprt

rtbt 1.22 0.00 0.00 0.00 0.00 0.00

xrt 0.58 1.56 0.00 0.00 0.00 0.00

xbt 2.94 1.93 13.88 0.00 0.00 0.00

yt -1.27 3.00 13.59 56.82 0.00 0.00

(d− p)t -0.32 -2.09 1.15 -64.93 83.73 0.00

sprt -1.09 -0.52 -4.07 -11.02 1.20 3.69

Bonds

rtbt 0.01 0.00 0.00 0.00 0.00 0.00

xrt 0.19 14.11 0.00 0.00 0.00 0.00

xbt 0.24 4.25 7.44 0.00 0.00 0.00

yt -0.15 9.82 10.82 67.20 0.00 0.00

(d− p)t -0.02 -3.58 0.48 -40.26 27.23 0.00

sprt -0.53 -6.94 -13.27 -53.47 3.06 73.38

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xbt = excess bond return, (d− p)t =
log dividend-price ratio, rbt = relative bill rate, sprt = yield spread. The bond is a 5-year nominal bond in

the monthly dataset and a 20-year in the annual dataset.



TABLE 4 (Ctd.)
Variability of Asset Demands

B: Annual Sample (1890-1998)

γ = 5,ψ = 1, ρ = 0.921/4

Var(αm)/Var(α) (%) Var(αh)/Var(α) (%) Cov(αm,αh)/Var(α) (%)

Stock 103.17 13.95 -8.56

Bond 96.54 0.40 1.53

Percentage of Total Variation Explained By:

Stocks

rtbt xrt xbt yt (d− p)t sprt

rtbt 0.51 0.00 0.00 0.00 0.00 0.00

xrt -0.91 13.01 0.00 0.00 0.00 0.00

xbt 0.22 -0.60 2.48 0.00 0.00 0.00

yt -0.68 1.77 -1.78 2.13 0.00 0.00

(d− p)t -1.01 -8.14 3.35 7.42 83.58 0.00

sprt -0.17 0.83 -1.11 0.62 -1.97 0.45

Bonds

rtbt 17.59 0.00 0.00 0.00 0.00 0.00

xrt -6.76 20.69 0.00 0.00 0.00 0.00

xbt 2.50 -1.46 9.21 0.00 0.00 0.00

yt -0.28 0.16 -0.24 0.01 0.00 0.00

(d− p)t -0.76 -1.31 0.82 0.07 1.35 0.00

sprt -13.90 14.86 -30.49 0.62 -3.57 90.88

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xbt = excess bond return, (d− p)t =
log dividend-price ratio, rbt = relative bill rate, sprt = yield spread. The bond is a 5-year nominal bond in

the monthly dataset and a 20-year in the annual dataset.



TABLE 5
Mean Asset Demands with Hypothetical Real Bonds

(Quarterly Sample: 1952.Q2 - 1999.Q4)

A: Nominal Bills, Stocks, and Real Consol Bond

State Variables: Constant Full VAR

γ = 1,ψ = 1, ρ = 0.92

Stocks 322.40 361.03
Real Consol Bond 741.86 813.66
Cash -964.26 -1074.70

γ = 2,ψ = 1, ρ = 0.92

Stocks 160.46 265.55
Real Consol Bond 379.69 262.14
Cash -440.16 -427.69

γ = 5,ψ = 1, ρ = 0.92

Stocks 63.31 155.59
Real Consol Bond 162.39 61.03
Cash -125.70 -116.66

γ = 20,ψ = 1, ρ = 0.92

Stocks 14.73 55.97
Real Consol Bond 53.74 58.12
Cash 31.53 -14.09

γ = 2000,ψ = 1, ρ = 0.92

Stocks -1.30 2.53
Real Consol Bond 17.88 97.10
Cash 83.42 0.37

Note: “Constant” column reports mean asset demands when the VAR system only has a constant in

each regression, corresponding to the case in which risk premia are constant and realized returns on all

assets, including the short-term real interest rate, are i.i.d. “Full VAR” column reports mean asset demands

when the VAR system includes all state variables. The nominal bond is a 5-year nominal bond in the

quarterly dataset and a 20-year in the annual dataset.



TABLE 5 (ctd.)
Mean Asset Demands with Hypothetical Real Bonds

(Quarterly Sample: 1952.Q2 - 1999.Q4)

B: Nominal Bills, Stocks, Real Consol Bond and Nominal Bond

State Variables: Constant Full VAR

γ = 1,ψ = 1, ρ = 0.92

Stocks 328.29 387.82
Real Consol Bond 802.07 1055.20
Nominal Bond -40.24 -149.07
Cash -990.13 -1193.96

γ = 2,ψ = 1, ρ = 0.92

Stocks 165.04 307.05
Real Consol Bond 426.36 599.77
Nominal Bond -31.18 -255.51
Cash -460.21 -551.31

γ = 5,ψ = 1, ρ = 0.92

Stocks 67.08 192.14
Real Consol Bond 200.93 310.10
Nominal Bond -25.75 -233.06
Cash -142.26 -169.18

γ = 20,ψ = 1, ρ = 0.92

Stocks 18.10 76.46
Real Consol Bond 88.21 156.03
Nominal Bond -23.04 -123.31
Cash 16.72 -9.18

γ = 2000,ψ = 1, ρ = 0.92

Stocks 1.94 2.68
Real Consol Bond 51.01 102.23
Nominal Bond -22.13 -2.76
Cash 69.18 -2.16

Note: “Constant” column reports mean asset demands when the VAR system only has a constant in

each regression, corresponding to the case in which risk premia are constant and realized returns on all

assets, including the short-term real interest rate, are i.i.d. “Full VAR” column reports mean asset demands

when the VAR system includes all state variables. The nominal bond is a 5-year nominal bond in the

quarterly dataset and a 20-year in the annual dataset.



TABLE 6
Mean Value Function (ψ = 1 Case)

(Quarterly Sample: 1952.Q2 - 1999.Q4)

γ E[Vt]

Nominal Bills and Stocks

1 0.803
2 0.158
5 0.043
20 0.015

2000 0.000

Nominal Bills, Stocks, and Nominal Bond

1 13.392
2 0.692
5 0.087
20 0.020

2000 0.001

Nominal Bills, Stocks, and Real Consol Bond

1 1.920
2 0.192
5 0.044
20 0.016

2000 0.009

Nominal Bills, Stocks, Nominal Bond, and Real Consol Bond

1 3456.715
2 4.762
5 0.174
20 0.023

2000 0.009
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A Appendix A: Derivation of Main Equations in
Text

We first summarize three results on matrix algebra that will be convenient in deriving the expressions
given in the text.

Result 1.

zt+1z
0
t+1 − Et

¡
zt+1z

0
t+1

¢
= (Φ0 +Φ1zt + vt+1) (Φ0 +Φ1zt + vt+1)
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0 + vt+1Φ

0
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0
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0
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0
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0
tΦ

0
1 +Φ0v

0
t+1 +Φ1ztv

0
t+1 + vt+1v

0
t+1 −Σv.

¥

Result 2.

ri,t+1 − Et (ri,t+1) = x
(i−1)
t+1 + r1,t+1 − Et

³
x
(i−1)
t+1 + r1,t+1

´
= v

(i)
t+1 + v

(1)
t+1

where x(i−1)t+1 denotes the (i− 1)th element of the excess return vector xt+1 and likewise with vt+1.¥

Result 3. Any quadratic form z0t+1Mzt+1 admits the following vector form representation:

z0t+1Mzt+1 = vec (M)
0 vec

¡
zt+1z

0
t+1

¢
,

where vec(·) is the vectorization operator.¥

Result 4. (Muirhead, 1982, pp.518)

Vart
¡
vec

¡
vt+1v

0
t+1

¢¢
=

Im2 +
mX
i,j

¡
Qij ⊗Q0

ij

¢ (Σv ⊗Σv) ,
where Qij is a m×m zero matrix except for the (i, j)th element which is equal to 1, and ⊗ is the
kronecker product operator.¥

Unconditional distribution of the state vector zt.

The linearity of the VAR system (4) implies that the state vector zt inherits the normality of
the shocks vt+1. It has unconditional mean µz and variance-covariance matrix Σzz given by

µz = (Im −Φ1)−1Φ0, (30)

vec(Σzz) = (Im2 −Φ1 ⊗Φ1)−1 vec (Σv) .

1



¥

Derivation of Equation (10)

The log return on the portfolio rp,t+1 is a discrete-time approximation to its continuous-time
counterpart. We begin by specifying the return processes for the short-term instrument Bt and
other risky assets Pt in continuous time:

dBt
Bt

= µb,tdt+ σbdWt, (31)

dPt
Pt

= µtdt+ σdWt, (32)

where µb,t and µt are the drifts, σb and σ are the diffusion, andWt is a m-dimensional standard
Brownian motion.15 We allow the drifts to depend on other state variables, but for notational
simplicity, we suppress this dependency and simply use the time subscript. Moreover, note that the
sameWt appears in the two equations.

We can obtain the log return on each asset using Ito’s Lemma:

d logBt =

µ
dBt
Bt

¶
− 1
2
(σbσ

0
b) dt, (33)

d logPi,t =

µ
dPi,t
Pi,t

¶
− 1
2
(σiσ

0
i) dt, (34)

where σi is the ith row of the diffusion matrix σ, and i = 1, .., n− 1.

Let Vt be the value of the portfolio at time t. We will use d logVt to approximate rp,t+1. By
Ito’s Lemma,

d logVt =

µ
dVt
Vt

¶
− 1
2

µ
dVt
Vt

¶2
. (35)

We will now derive these two terms in order:

dVt
Vt

= α0t

µ
dPt
Pt

¶
+ (1−α0tι)

dBt
Bt

= α0t

µ
d logPt +

1

2
[σiσ

0
i] dt

¶
+ (1−α0tι)

µ
d logBt +

1

2
(σbσ

0
b) dt

¶
= α0t (d logPt − d logBt · ι) + d logBt

+
1

2
α0t ([σiσ

0
i]− σbσ0b · ι) dt+

1

2
σbσ

0
bdt,

where ι is a n×1 vector of ones and the bracket [ · ] denotes a vector with σiσ0i the ith entry. Next,µ
dVt
Vt

¶2
= α0t (d logPt − d logBt · ι) (d logPt − d logBt · ι)0αt + (d logBt)2

+2α0t (d logPt − d logBt · ι) (d logBt) + o (dt) ,
15The dimensions of µb,µ,σb,σ are 1× 1, (n− 1)× 1, 1×m, (n− 1)×m, respectively.
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where the o(dt) terms vanish because they involve either (dt)2 or (dt) (dWt) .

Now, from equation (31)—(33) and ignoring dt terms,

d logPt − d logBt · ι = (σ − ι · σb) dWt.

Thus,

(d logPt − d logBt · ι) (d logPt − d logBt · ι)0 = (σ − ι · σb) (σ − ι · σb)0 ,
(d logPt − d logBt · ι) (d logBt) = (σ − ι · σ1) · σ0b.

Collecting these results and using our notation for excess returns: xt+1 = d logPt − d logBt · ι,
r1,t+1 = d log (Bt) and dt = 1,

rp,t+1 = d log Vt

= α0txt+1 + r1,t+1 +
1

2
α0t ([σiσ

0
i]− σbσ0b · ι)

−1
2

£
α0t (σ − ι · σb) (σ − ι · σb)0αt + 2α0t (σ − ι · σb)σ0b

¤
Using the notation in the VAR system with the Cholesky decomposition for Σv =GG

0, σi−σb
is equal to the ith row of G,Gi. Hence,

(σ − ι · σb) (σ − ι · σb)0 = G2:nG
0
2:n = Σxx,

σbσ
0
b = G1G

0
1 = σ

2
1,

σiσ
0
i = GiG

0
i + σbG

0
i +Giσ

0
b + σbσ

0
b,

[σiσ
0
i] = σ2x + 2σ1x + σ

2
1ι,

(σ − ι · σb)σ0b = G2:nG
0
1 = σ1x,

where G2:n denotes the submatrix formed by taking the 2nd to nth rows of G.

With these terms, the return on the portfolio is

rp,t+1 = α0txt+1 + r1,t+1 +
1

2
α0t
¡
σ2x + 2σ1x

¢− 1
2
α0tΣxxαt −α0tσ1x,

= α0txt+1 + r1,t+1 +
1

2
α0t
¡
σ2x −Σxxαt

¢
.

¥

Solving for the Optimal Portfolio Rule.

Subtracting the log Euler equation (12) with i = 1 from (12), we obtain

Et (ri,t+1 − r1,t+1) + 1
2
Vart (ri,t+1 − r1,t+1) = Covt

µ
θ

ψ
∆ct+1 + (1− θ) rp,t+1, ri,t+1

¶
(36)

−Covt
µ
θ

ψ
∆ct+1 + (1− θ) rp,t+1, r1,t+1

¶
−1
2
(Vart (ri,t+1)−Vart (r1,t+1)−Vart(ri,t+1 − r1,t+1)) .
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Using the budget constraint (11) and the trivial identity ∆ct+1 = (ct+1 −wt+1)−(ct −wt)+∆wt+1,
θ

ψ
∆ct+1 + (1− θ) rp,t+1 = θ

ψ
(ct+1 −wt+1) + γrp,t+1 + time t terms and constants.

Thus, equation (36) can be written as

Et (ri,t+1 − r1,t+1) + 1
2
Vart (ri,t+1 − r1,t+1) =

θ

ψ
[σi,c−w,t − σ1,c−w,t] + γ [σi,p,t − σ1,p,t]

−1
2
(Vart (ri,t+1)−Vart (r1,t+1)−Vart(ri,t+1 − r1,t+1)) .

We will derive these terms now.

Using the equation for log return on the portfolio and ignoring time t terms and constants,

σi,p,t = Covt (α0txt+1 + r1,t+1, ri,t+1)

= α0t
³
Σ(i−1)xx + σ1x

´
+ σ

(i−1)
1x + σ21,

σ1,p,t = Covt (α0txt+1 + r1,t+1, r1,t+1)
= α0tσ1x + σ

2
1.

To evaluate the conditional covariances σi,c−w,t and σ1,c−w,t, we use the conjectured policy rule for
the consumption-wealth ratio.

σi,c−w,t
= Covt (ct+1 −wt+1 − Et (ct+1 −wt+1) , ri,t+1 − Et(ri,t+1))
= Covt

³
B01vt+1 + (Φ0 +Φ1zt + vt+1)

0B2 (Φ0 +Φ1zt + vt+1) ,v
(i)
t+1 + v

(1)
t+1

´
= Covt

³
B01vt+1 +Φ

0
0B2vt+1 + z

0
tΦ

0
1B2vt+1 + v

0
t+1B2Φ0 + v

0
t+1B2Φ1zt,v

(i)
t+1 + v

(1)
t+1

´
= B01

³
Σ(i)v +Σ(1)v

´
+Φ00B2

³
Σ(i)v +Σ(1)v

´
+
³
Σ(i)v +Σ(1)v

´0
B2Φ0

+z0tΦ
0
1B2

³
Σ(i)v +Σ(1)v

´
+
³
Σ(i)v +Σ(1)v

´0
B2Φ1zt,

where the second equality follows from using Result 1 and 2, and Σ(i)v denotes the ith column of
Σv. Note that B2 is not necessarily symmetric, so that we cannot combine any of the terms in the
expression above. Similarly, for the return on the short-term bond we have

σ1,c−w,t = B01Σ
(1)
v +Φ00B2Σ

(1)
v +

³
Σ(1)v

´0
B2Φ0 + z

0
tΦ

0
1B2Σ

(1)
v +

³
Σ(1)v

´0
B2Φ1zt.

Therefore

σi,c−w,t − σ1,c−w,t = B01Σ
(i)
v + (Φ00B2 + z

0
tΦ

0
1B2)Σ

(i)
v +

³
Σ(i)v

´0
(B2Φ0 +B2Φ1zt)

= B01Σ
(i)
v + (Φ00 + z

0
tΦ

0
1) (B2 +B

0
2)Σ

(i)
v

=
³
Σ(i)v

´0
B1 +

³
Σ(i)v

´0
(B2 +B

0
2) (Φ0 +Φ1zt)
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Stacked, this equations give

σc−w,t − σ1,c−w,tι

=



Σ
(2)0
v

...
Σ
(n)0
v

B1 + 2

Σ
(2)0
v

...
Σ
(n)0
v

 (B2 +B02)Φ0
+



Σ
(2)0
v

...
Σ
(n)0
v

 (B2 +B02)Φ1
zt

=
h
(ΣvH

0
x)
0
B1 + (ΣvH

0
x) (B2 +B

0
2)Φ0

i
+
h
(ΣvH

0
x)
0
(B2 +B

0
2)Φ1

i
zt

= Λ0 + Λ1zt, (37)

as claimed in equation (17).¥

Solving for the Optimal Consumption Rule.

We derive first equation (26). To derive this equation, note that log consumption growth verifies
the following trivial identity: ∆ct+1 = (ct+1 −wt+1) − (ct −wt) + ∆wt+1. Substituting the log-
linearized budget constraint (11) into this equation and taking expectations we obtain

Et(∆ct+1) = Et (ct+1 −wt+1)− (ct −wt) + Et (∆wt+1) (38)

= Et (ct+1 −wt+1)− (ct −wt) + Et(rp,t+1) +
µ
1− 1

ρ

¶
(ct −wt) + k.

Combining the two equations (24) and (38), we obtain a difference equation in ct−wt, given in (26).

Next we show that both the expected log return on the wealth portfolio Etrp,t+1 and the variance
term χp,t in equation (24) for expected log consumption growth are quadratic functions of the vector
of state variables.

Taking conditional expectations of equation (10) and substituting the portfolio policy rule αt =
A0 +A1zt,

Et (rp,t+1) = α0tEt (xt+1) + Et (r1,t+1) +
1

2
α0t
¡
σ2x −Σxxαt

¢
= (A0

0 + z
0
tA

0
1)Hx (Φ0 +Φ1zt) +H1 (Φ0 +Φ1zt)

+
1

2
(A0

0 + z
0
tA

0
1)σ

2
x −

1

2
(A0

0 + z
0
tA

0
1)Σxx (A0 +A1zt)

= Γ0 + Γ1zt + Γ2vec (ztz0t) ,

where

Γ0 ≡ A0
0HxΦ0 +H1Φ0 +

1

2
A0
0σ
2
x −

1

2
A0
0ΣxxA0,

Γ1 ≡ Φ00H
0
xA1 +A

0
0HxΦ1 +H1Φ1 +

1

2
σ2xA1 −A0

0ΣxxA1,

Γ2 ≡ vec (A0
1HxΦ1)

0 − 1
2
vec (A0

1ΣxxA1)
0
,
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and H1 and Hx are selection matrices that select the short-term real interest rate and the vector of
excess returns from the full state vector.

We now evaluate the variance term

χp,t =
1

2

µ
θ

ψ

¶
Vart (∆ct+1 − ψrp,t+1) .

Using the trivial identity for ∆ct+1 and the budget constraint (11), substituting the conjecture for
the consumption rule

ct −wt = b0 +B
0
1zt + z

0
tB2zt

= b0 +B
0
1zt + vec (B2)

0 vec (ztz0t)

and αt = A0 +A1zt, and ignoring time t terms and constants, we can write the argument of the
variance as:

∆ct+1 − ψrp,t+1
= [B01 +Φ

0
0 (B2 +B

0
2) + (1− ψ)A0

0Hx + (1− ψ)H1]vt+1

+z0t [Φ
0
1 (B2 +B

0
2) + (1− ψ)A0

1Hx]vt+1

+vec (B2)
0 vec

¡
vt+1v

0
t+1

¢
= [Π1 + z

0
tΠ2]vt+1 + vec (B2)

0 vec
¡
vt+1v

0
t+1

¢
,

where

Π1 ≡ B01 +Φ
0
0 (B2 +B

0
2) + (1− ψ)A0

0Hx + (1− ψ)H1,

Π2 ≡ Φ01 (B2 +B
0
2) + (1− ψ)A0

1Hx.

Since vt+1 is conditionally normally distributed, all third moments are zero. Thus,

Vart (∆ct+1 − ψrp,t+1)
= Π1ΣvΠ

0
1 + [2Π1ΣvΠ

0
2] zt + vec (Π2ΣvΠ

0
2)
0
vec (ztz

0
t)

+vec (B2)
0Vart

¡
vec

¡
vt+1v

0
t+1

¢¢
vec (B2) ,

and Vart
¡
vec

¡
vt+1v0t+1

¢¢
is given by the expression in Result 4 above. Putting these pieces together,

we have
χp,t = V0 +V1zt +V2vec (ztz0t) ,

where

V0 ≡ θ

2ψ

£
Π1ΣvΠ

0
1 + vec (B2)

0Vart
¡
vec

¡
vt+1v

0
t+1

¢¢
vec (B2)

¤
,

V1 ≡ θ

2ψ
[2Π1ΣvΠ

0
2] ,

V2 ≡ θ

2ψ

h
vec (Π2ΣvΠ

0
2)
0i
.
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We can now solve for the coefficients of the optimal consumption rule. Simple substitution of the
expressions for Etrp,t+1 and χp,t, and the expression for the conditional expectation of (ct+1 −wt+1)
into the RHS of (26) yields

ct −wt = Ξ0 + Ξ1zt + Ξ2vec (ztz0t) , (39)

where

Ξ0 ≡ ρ[−ψ log δ + k − V0 + (1− ψ)Γ0 + b0 +B01Φ0
+vec (B2)

0 vec(Φ0Φ00) + vec (B2)
0 vec(Σv)],

Ξ1 ≡ ρ [−V1 + (1− ψ)Γ1 +B01Φ1 + 2Φ00 (B02 +B2)Φ1] ,
Ξ2 ≡ ρ

h
−V2 + (1− ψ)Γ2 + vec (Φ01B2Φ1)0

i
.

Equation (39) confirms our initial conjecture on the form of the consumption-wealth ratio. Notice
that Ξ0,Ξ1,Ξ2 depend on b0,B1 and B2. Therefore, for the solution to be consistent, {b0,B1, B2}
must solve the following set of equations:

b0 = Ξ0, (40)

B1 = Ξ01,
vec (B2) = Ξ02.

The resulting set of values for b0,B1 and vec (B2) determines the optimal consumption rule.¥

Verification that the optimal portfolio rule is independent of ψ given ρ.

>From equations (22) and (23) in text, and equation (37) in the Appendix, we can write A0

and A1 as:

A0 =

µ
1

γ

¶
Σ−1xx

µ
HxΦ0 +

1

2
σ2x + (1− γ)σ1x

¶
+

µ
1− 1

γ

¶
Σ−1xx

−Λ0
1− ψ

=

µ
1

γ

¶
Σ−1xx

µ
HxΦ0 +

1

2
σ2x + (1− γ)Σσ1x

¶
−
µ
1− 1

γ

¶
Σ−1xx

·
(ΣvH

0
x)
0 B1
1− ψ + (ΣvH

0
x)

µ
B2 +B02
1− ψ

¶
Φ0

¸
A1 =

µ
1

γ

¶
Σ−1xxHxΦ1 +

µ
1− 1

γ

¶
Σ−1xx

−Λ1
1− ψ

=
1

γ
Σ−1xx (HxΦ1)−

µ
1− 1

γ

¶
Σ−1xx

·
(ΣvH

0
x)
0
µ
B2 +B02
1− ψ

¶
Φ1

¸
.

Thus, showing that the optimal portfolio rule is independent of ψ given ρ is equivalent to showing
that B1≡B1/(1− ψ) and B2 ≡ B2/(1− ψ) are independent of ψ given ρ.

First, consider B2. From (40), we have

(1− ψ) vec (B2) = ρ [−V0
2 + (1− ψ)Γ02 + (1− ψ) vec (Φ01B2Φ1)] . (41)
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Using the definition of V2, we have

−V0
2 =

1− γ
2(1− ψ) vec

h
(Φ01 (B2 +B

0
2) + (1− ψ)A0

1Hx)Σv (Φ
0
1 (B2 +B

0
2) + (1− ψ)A0

1Hx)
0i

=
1− γ
2(1− ψ) vec

h
(1− ψ)2 (Φ01 (B2 + B02) +A0

1Hx)Σv (Φ
0
1 (B2 + B02) +A0

1Hx)
0i

=
1− γ
2
(1− ψ) vec

h
(Φ01 (B2 + B02) +A0

1Hx)Σv (Φ
0
1 (B2 + B02) +A0

1Hx)
0i

≡ (1− ψ)V0
2,

which is independent of ψ, since A1 does not depend on ψ, given B2.

Similarly, using the definition of Γ2, we have:

(1− ψ)Γ02 = (1− ψ)
·
vec (A0

1HxΦ1)− 1
2
vec (A0

1ΣxxA1)

¸
,

which is also independent of ψ, since A1 does not depend on ψ, given B2.

Thus, (41) reduces to

vec (B2) = ρ
h
V
0
2 + Γ

0
2 + vec (Φ

0
1B2Φ1)

i
.

This is a quadratic equation in B2, whose coefficients do not depend on ψ, except for ρ. The loglin-
earization coefficient ρ ≡ 1− exp(Et[ct − wt]) does depend onψ indirectly, through the dependence
of Et[ct − wt] on b0, B1 and B2, which are functions of ψ. Consequently, the solution for B2 will
also be independent of ψ given ρ.

Using the same logic, we can show that B1 is independent of ψ. From (40) we have

(1− ψ)B1 = ρ [−V0
1 + (1− ψ)Γ01 + (1− ψ)Φ01B1 + (1− ψ)Φ01 (B2 + B02)Φ0] . (42)

Now,

−V0
1 =

1− γ
(1− ψ)

£¡
(1− ψ)Π1

¢
Σ0v (Φ

0
1 (B2 + B02) +A0

1Hx)
¤0

= (1− γ) (1− ψ) £Π1Σ0v (Φ01 (B2 + B02) +A0
1Hx)

¤0
≡ (1− ψ)V 01

where
Π1 ≡ B01 +Φ00 (B2 + B02) +A0

0Hx +H1.

Both V 1 and Π1 are also independent of ψ, since A0 and A1 do not depend on ψ, given B1 and B2.

Also, Γ1 is only a function of B1 and B2 via its dependence on A0 and A1, not of ψ. Therefore,
(42) becomes

B1 = ρ
h
V
0
1 + Γ

0
1 +Φ

0
1B1 +Φ01 (B2 + B02)Φ0

i
,
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which again implies that the solution for B1 does not depend on ψ given ρ This completes our
proof.¥

Value function when ψ = 1.

First, note that we have just proved that B1 and B2 do not depend on ψ given ρ. We now derive
an expression for the value function when ψ = 1. The value function is given by

Vt = (1− δ)− ψ
1−ψ

µ
Ct
Wt

¶ 1
1−ψ

= exp

½
− ψ

1− ψ log (1− δ) +
b0

1− ψ +
B01
1− ψzt +

vec (B2)
0

1− ψ vec (ztz
0
t)

¾
= exp

©B0 + B01zt + vec (B2)0 vec (ztz0t)ª ,
where B01, and vecB2 are independent of ψ given ρ, but B0 does depend on ψ.

We now find the limiting expression for B0 when ψ = 1:

B0 = − ψ

1− ψ log (1− δ) +
b0

1− ψ
= − ψ

1− ψ log (1− δ)

+
ρ

1− ρ
·
− ψ

1− ψ log δ +
k

1− ψ −
V0
1− ψ + Γ0 +

B01
1− ψΦ0 +

vec (B2)
0

1− ψ vec(Φ0Φ
0
0) +

vec (B2)
0

1− ψ vec(Σv)

¸
=

1

1− ψ
ρ

1− ρ
·
−1− ρ

ρ
ψ log (1− δ)− ψ log δ + k

¸
+

ρ

1− ρ
·
− V0
1− ψ + Γ0 +

B01
1− ψΦ0 +

vec (B2)
0

1− ψ vec(Φ0Φ
0
0) +

vec (B2)
0

1− ψ vec(Σv)

¸
.

Substituting k = log ρ+((1− ρ)/ρ) log(1− ρ) into the first term of the last equality, and noting
that ρ = δ when ψ = 1, we have

1

1− ψ
ρ

1− ρ
·
−1− ρ

ρ
ψ log (1− δ)− ψ log δ + k

¸
=

1

1− ψ
ρ

1− ρ
·
−1− ρ

ρ
ψ log (1− δ)− ψ log δ + log ρ+ 1− ρ

ρ
log (1− ρ)

¸
=

1

1− ψ
ρ

1− ρ
·
1− ρ
ρ

(1− ψ) log (1− δ) + (1− ψ) log δ
¸

= log (1− δ) + δ

1− δ log δ,

which is independent of ψ.
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>From previous results, we know that all the terms in the second term of the last equality are
independent of ψ given ρ, except for V0/(1− ψ). We now verify that this term is also independent
of ψ given ρ:

V0 ≡ V0
1− ψ

= −1− γ
2

"
Π1ΣvΠ

0
1

(1− ψ)2 +
vec (B2)

0

1− ψ Vart (.)
vec (B2)

0

1− ψ

#

= −1− γ
2

"
Π1ΣvΠ

0
1

(1− ψ)2 + vec (B2)
0Vart (.) vec (B2)

#
,

where the second term is independent of ψ given ρ, and the first one is also verifiably independent
of ψ:

Π1ΣvΠ01
(1− ψ)2 =

µ
B01

(1− ψ) +A
0
0Hx +H1 +Φ

0
0

B2 +B02
1− ψ

¶
Σv

µ
B1

(1− ψ) +H
0
xA0 +H

0
1 +

B2 +B2
0

(1− ψ) Φ0
¶

=
¡B01 +A0

0Hx +H1 +Φ
0
0

¡B2+B02¢¢Σv ¡B1 +H0
xA0 +H

0
1 +

¡B2+B02¢Φ0¢ ,
which does not depend on ψ given ρ.

Thus when ψ = 1 we have:

B0 = log (1− δ) + δ

1− δ log δ

+
δ

1− δ
£−V0 + Γ0 + B01Φ0 + vec (B2)0 vec(Φ0Φ00) + vec (B2)0 vec(Σv)¤ .

Now, since ρ is independent of ψ in the special case ψ = 1–because ρ = δ–, we conclude that
B0, B1 and B2 are independent of ψ when ψ = 1.

Derivation of E[Vt].

>From the previous section, we learn how to obtain the coefficient matrices B0,B1 and B2. Now
we want to evaluate explicitly

E(Vt) = E [exp (B0 + B01zt + z0tB2zt)]
where zt has a multivariate normal distribution

zt ∼ N (µz,Σzz) ,
with

µz = (Im −Φ1)−1Φ0,
vec (Σzz) = (Im2 −Φ1 ⊗Φ1)−1 vec (Σv) .
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First, consider a change of variable. Define

ht = zt −µz.
Then,

B0 + B01zt + z0tB2zt = C0 + C1ht + h0tC2ht,
where

C0 ≡ B0 + B01µz +µ0zB2µz, (43)

C1 ≡ B01 + 2µ0zB2, (44)

C2 ≡ B2. (45)

To calculate E (Vt),

E(Vt)

=

Z ∞

−∞
· · ·
Z ∞

−∞
exp (B0 + B01zt + z0tB2zt)

×
µ

1√
2π
|Σzz|−

1
2 exp

µ
−1
2
(zt −µz)0Σ−1zz (zt −µz)

¶¶
dz1t...dzmt

=

Z ∞

−∞
· · ·
Z ∞

−∞
exp (C0 + C1ht + h0tC2ht) ·

µ
1√
2π
|Σzz|−

1
2 exp

µ
−1
2
h0tΣ

−1
zz ht

¶¶
dh1t...dhmt

=
1√
2π
|Σzz|−

1
2 ·
Z ∞

−∞
· · ·
Z ∞

−∞
exp

µ
C0 + C1ht − 1

2
h0t
¡
Σ−1zz − 2C2

¢
ht

¶
dh1t...dhmt

=
|Σzz|−

1
2

√
2π

¯̄̄¡
Σ−1zz − 2C2

¢−1 ¯̄̄− 1
2

¯̄̄¡
Σ−1zz − 2C2

¢−1 ¯̄̄− 1
2

·
Z ∞

−∞
· · ·
Z ∞

−∞
exp

µ
C0 + C1ht − 1

2
h0t
¡
Σ−1zz − 2C2

¢
ht

¶
dh1t...dhmt

=
|Σzz|−

1
2¯̄¡

Σ−1zz − 2C2
¢¯̄ 1

2

× 1√
2π

¯̄̄¡
Σ−1zz − 2C2

¢−1 ¯̄̄−1
2

Z ∞

−∞
· · ·
Z ∞

−∞
exp

µ
C0 + C1ht − 1

2
h0t
¡
Σ−1zz − 2C2

¢
ht

¶
dh1t...dhmt

=
|Σzz|−

1
2¯̄¡

Σ−1zz − 2C2
¢¯̄ 1

2

· eE (exp (C0 + C1ht)) ,
where the expectation eE is taken as if ht is normally distributed with mean zero and covariance
matrix

¡
Σ−1zz − 2C2

¢−1
. Thus, we immediately have

E (Vt) =
|Σzz|−

1
2¯̄¡

Σ−1zz − 2C2
¢¯̄ 1

2

· exp
µ
C0 + 1

2
C1
¡
Σ−1zz − 2C2

¢−1 C01¶ . (46)

¥
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B Appendix B: Numerical Procedure

Equations (21) and (40) show that the coefficients {A0,A1} , {b0,B1, vec(B2)} in the optimal policy
rules are functions of the underlying parameters. When there is one state variable as in Campbell
and Viceira (1999), solving explicitly for these coefficients is manageable. However, with multiple
state variables, such an exercise is practically impossible. Therefore, we employ a simple numerical
procedure to find these coefficients instead.

To find the coefficients of the optimal portfolio rule for each value of γ, we use the fact that they
are independent of ψ given ρ. Thus, for each γ, we fix a value for ρ, choose an arbitrary value for ψ,
and start with some initial values for {B1, vec (B2)}–denote these by {B(1)1 ,vec (B2)

(1)}. Through
equation (21), this implies a set of values for {A0,A1}–denote these by {A(1)

0 ,A
(1)
1 }.

With ρ, {A(1)
0 ,A

(1)
1 }, {B(1)1 ,vec(B2)(1)}, we can compute the coefficients {Ξ1,Ξ2} in the c − w

difference equation (39). By equating these coefficients with the {B1, vec(B2)} in the conjectured
policy function, we have a new set of values for {B1, vec (B2)}–call them {B(2)1 ,vec(B2)(2)}. Since
the initial values are arbitrary, {B(2)1 ,vec(B2)(2)} will be different from {B(1)1 ,vec(B2)(1)} in general.
Thus, we recompute {A0,A1} using ρ,and {B(2)1 ,vec(B2)(2)} to get {A(2)

0 ,A
(2)
1 }. We obtain then a

new set of values for {Ξ1,Ξ2}. We continue until values of {B1, vec(B2)}, and hence {A0,A1},
converge.

The convergence criterion for {B1, vec (B2)} is rather stringent. We first calculate the maximum
of the squared deviations of all elements from 2 consecutive iterations. We then require for parameter
convergence that the sum of 20 such consecutive maxima be less than 0.00001.

Note once again that coefficients {A0,A1} are the same for all values of ψ given the loglin-
earization parameter ρ. In the special case ψ = 1, we also have that ρ = δ, so that the solution is
exact, and choosing a value for ρ is equivalent to choosing a value for δ. When ψ is not equal to one,
we implement a recursive procedure similar to the one described in Campbell and Viceira (1999,
2001). Given an initial value of ρ, we compute coefficients {A0,A1} , {b0,B1, vec(B2)} using the
procedure described above. From {b0,B1, vec(B2)}, we can compute Et[ct − wt], and a new value
of ρ. We iterate until convergence.
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C Appendix C: Construction of Hypothetical Real
Bonds

Recall that the first element of our VAR system is the ex post real bill return. Therefore, the ex
ante log real bill return at time t+ 1 is the first element of Et (zt+1) = Φ0 + Φ1zt. In other words,
the log real yield at time t is given by

by1t =H1 · Et (zt+1) ≡H1 · bzt,t+1,
where H1 ≡ (1, 0, ..., 0) and bzt,t+1 ≡Et (zt+1) .

The next step is to assume that the log expectations hypothesis holds for the real term structure;
that is,

yn,t =
1

n

n−1X
i=0

Et (y1,t+i) ,

where yn,t is the log yield on a real bond with maturity n. Note that we have implicitly assume
that inflation risk premium is zero. An estimate of yn,t can be easily constructed as follows:

byn,t = 1

n

n−1X
i=0

by1,t+i = 1

n

n−1X
i=0

H1 · bzt,t+i+1.
To compute bzt,t+i+1, we can iterate the VAR(1) system forward to get

bzt,t+k =
k−1X
j=0

Φj1

Φ0 +Φk1zt.
Using this result, log yield can be expressed as a function of current state variables:

byn,t =
1

n
H1

nX
i=1

bzt,t+i
=

1

n
H1

nX
i=1

i−1X
j=0

Φj1

Φ0 +Φi1zt


≡ 1

n
H1 (Qc +Qnzt)

where

Qn ≡
nX
i=1

Φi1 = Φ1 (Im −Φ1)−1 (Im −Φn1 ) ,

Qc ≡ (Im −Φ1)−1 (Im −Qn)Φ0,
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and Im is the identity matrix, m = dim(zt).

Finally, the 1-period return on a hypothetical real n-period bond is calculated as

rn,t+1 = nbyn,t − (n− 1) byn−1,t+1
≈ nbyn,t − (n− 1) byn,t+1

And the excess return on the hypothetical real n-period bond is

rn,t+1 − r1,t+1
= (nbyn,t − (n− 1) byn,t+1)− by1t
=

½
H1 (Qc +Qnzt)− n− 1

n
H1 (Qc +Qnzt+1)

¾
−H1 (Φ0 +Φ1zt) .

The next step is to construct a real perpetuity from these zero-coupon bonds. Campbell, Lo and
MacKinlay (1997) show how to use a loglinearization framework to construct real perpetuity returns.
Specifically,their equations (10.1.16) and (10.1.17) show that the log yield on a real perpetuity or
“consol” yc,∞,t is given by

yc,∞,t = (1− ρc)
∞X
i=0

ρicrc,∞,t+1+i,

where rc,∞,t+i is the one-period log return on a perpetuity at time t+ i and ρc = 1− exp (E[−pc,t]) ,
where pc,t is the log “cum-dividend” price of the perpetuity including its current coupon payout.

Taking conditional expectations at time t and imposing the expectations hypothesis,

yc,∞,t = (1− ρc)
∞X
i=0

ρicH1bzt,t+i+1
= H1 (1− ρc)

 ∞X
i=0

ρic

iX
j=0

Φj1

Φ0 +H1 (1− ρc)
Ã ∞X
i=0

ρicΦ
i+1
1

!
zt.

It is straightforward to show that

∞X
i=0

ρic

iX
j=0

Φj1 =
1

1− ρc
(Im − ρcΦ1)−1 ,

∞X
i=0

ρicΦ
i+1
1 = (Im − ρcΦ1)−1Φ1.

Thus, the log yield can be expressed as function of the VAR parameters, current state variables and
the loglinearization constant ρc:

yc,∞,t =H1 (Im − ρcΦ1)−1Φ0 +H1 (1− ρc) (Im − ρcΦ1)−1Φ1zt.
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TABLE A

VAR Estimation Results
Nominal Bills, Stocks and Real Consol Bond

A: Quarterly Sample (1952.Q2 - 1999.Q4)

Dependent rtbt xrt xrcbt yt (d− p)t sprt R2

Variable (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbt+1 0.435 0.005 0.015 0.270 -0.001 0.428 0.338
(6.154) (0.775) (0.359) (3.478) (-1.173) (2.261) (0.000)

(6.154) (0.775) (0.359) (3.478) (-1.173) (2.261) (0.000)

xrt+1 1.866 0.079 0.919 -2.341 0.050 0.201 0.084
(1.559) (0.953) (1.580) (-2.627) (2.404) (0.077) (0.008)

xrcbt+1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000)

yt+1 -0.001 0.004 -0.000 0.948 0.000 0.120 0.868
(-0.024) (1.505) (-0.009) (18.671) (0.002) (1.151) (0.000)

(d− p)t+1 -1.972 -0.072 -0.819 1.640 0.959 -0.955 0.932
(-1.615) (-0.803) (-1.333) (1.765) (44.168) (-0.355) (0.000)

sprt+1 0.009 -0.000 0.009 0.026 -0.000 0.743 0.540
(0.304) (-0.045) (0.586) (0.815) (-0.232) (10.996) (0.000)

Cross-Correlation of Residuals

rtb xr xrcb y (d− p) spr

rtb 0.551 0.228 -0.465 -0.390 -0.228 0.183
xr - 7.764 -0.351 -0.164 -0.981 0.023
xrcb - - 1.236 -0.408 0.333 0.111
y - - - 0.256 0.196 -0.776
(d− p) - - - - 7.946 -0.056
spr - - - - - 0.172

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xrcbt = excess real consol bond return,
(d − p)t = log dividend-price ratio, yt = nominal T-bill yield, sprt = yield spread. The bond is a 5-year

nominal bond in the quarterly dataset and a 20-year for the annual dataset.



TABLE A (Ctd.)

VAR Estimation Results
Nominal Bills, Stocks and Real Consol Bond

B: Annual Sample (1890 - 1998)

Dependent rtbt xrt xrcbt yt (d− p)t sprt R2

Variable (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbt+1 0.309 -0.056 0.000 0.604 -0.009 -0.548 0.235
(2.299) (-1.467) (0.004) (2.546) (-0.320) (-1.081) (0.000)

xrt+1 -0.096 0.078 -0.211 0.052 0.136 1.682 0.058
(-0.270) (0.650) (-1.100) (0.080) (2.385) (1.217) (0.314)

xrcbt+1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000)

yt+1 -0.058 -0.013 -0.017 0.897 -0.006 0.098 0.774
(-2.142) (-1.928) (-1.035) (11.157) (-1.343) (0.956) (0.000)

(d− p)t+1 -0.362 -0.136 0.192 -0.928 0.826 -1.505 0.719
(-1.202) (-1.310) (1.047) (-1.498) (12.505) (-1.113) (0.000)

sprt+1 0.030 0.003 0.011 0.093 0.004 0.767 0.541
(1.565) (0.500) (0.962) (1.672) (1.245) (9.785) (0.000)

Cross-Correlation of Residuals

rtb xr xrcb y (d− p) spr

rtb 7.619 -0.169 -0.839 0.126 0.109 -0.160
xr - 17.429 0.166 -0.149 -0.721 0.196
xrcb - - 12.416 -0.579 -0.026 0.617
y - - - 1.235 0.205 -0.892
(d− p) - - - - 16.104 -0.185
spr - - - - - 0.977

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xrcbt = excess real consol bond return,
(d − p)t = log dividend-price ratio, yt = nominal T-bill yield, sprt = yield spread. The bond is a 5-year

nominal bond in the quarterly dataset and a 20-year for the annual dataset.



TABLE B

VAR Estimation Results
Nominal Bills, Stocks, Real Consol Bond, and Nominal Bond

A: Quarterly Sample (1952.Q2 - 1999.Q4)

Dependent rtbt xrt xnbt xrcbt yt (d− p)t sprt R2

Variable (t) (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbt+1 0.593 0.012 -0.058 0.128 0.236 -0.001 0.409 0.352
(5.344) (1.984) (-1.929) (1.967) (3.129) (-0.721) (2.178) (0.000)

xrt+1 0.962 0.038 0.329 0.276 -2.148 0.047 0.310 0.087
(0.558) (0.394) (0.729) (0.261) (-2.286) (2.277) (0.119) (0.006)

xnbt+1 0.375 -0.038 -0.189 0.280 0.314 0.003 2.968 0.099
(0.727) (-1.473) (-1.128) (0.866) (0.731) (0.441) (2.700) (0.002)

xrcbt+1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000)

yt+1 -0.042 0.002 0.015 -0.029 0.957 -0.000 0.125 0.869
(-0.769) (0.816) (0.778) (-0.935) (19.692) (-0.260) (1.204) (0.000)

(d− p)t+1 -0.980 -0.027 -0.362 -0.112 1.428 0.962 -1.074 0.932
(-0.539) (-0.262) (-0.757) (-0.102) (1.457) (44.524) (-0.401) (0.000)

sprt+1 0.019 0.000 -0.004 0.017 0.024 -0.000 0.741 0.540
(0.506) (0.175) (-0.298) (0.802) (0.779) (-0.138) (10.975) (0.000)

Cross-Correlation of Residuals

rtb xr xnb xrcb y (d− p) spr

rtb 0.545 0.239 0.389 -0.462 -0.384 -0.240 0.181
xr - 7.751 0.228 -0.355 -0.170 -0.981 0.025
xnb - - 2.670 0.543 -0.764 -0.245 0.195
xrcb - - - 1.236 -0.414 0.337 0.112
y - - - - 0.255 0.202 -0.776
(d− p) - - - - - 7.932 -0.058
spr - - - - - - 0.172

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xrcbt = excess real consol bond return,
(d−p)t = log dividend-price ratio, yt = nominal T-bill yield, xnbt = excess nominal long bond return, sprt
= yield spread. The bond is a 5-year nominal bond in the quarterly dataset and a 20-year for the annual

dataset.



TABLE B (Ctd.)

VAR Estimation Results
Nominal Bills, Stocks, Real Consol Bond, and Nominal Bond

B: Annual Sample (1890 - 1998)

Dependent rtbt xrt xnbt xrcbt yt (d− p)t sprt R2

Variable (t) (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbt+1 0.305 -0.052 0.122 0.002 0.700 -0.004 -0.781 0.240
(2.258) (-1.314) (0.902) (0.026) (2.380) (-0.147) (-1.177) (0.000)

xrt+1 -0.093 0.074 -0.098 -0.212 -0.025 0.132 1.869 0.059
(-0.262) (0.616) (-0.332) (-1.114) (-0.036) (2.371) (1.251) (0.305)

xnbt+1 0.223 0.106 -0.196 0.023 -0.117 0.012 2.566 0.393
(1.890) (2.954) (-1.485) (0.274) (-0.333) (0.612) (5.118) (0.000)

xrcbt+1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000)

yt+1 -0.059 -0.012 0.036 -0.017 0.925 -0.005 0.029 0.779
(-2.239) (-1.746) (1.280) (-1.037) (12.568) (-1.115) (0.249) (0.000)

(d− p)t+1 -0.373 -0.124 0.363 0.197 -0.642 0.840 -2.198 0.723
(-1.260) (-1.174) (1.163) (1.103) (-0.992) (13.412) (-1.459) (0.000)

sprt+1 0.030 0.002 -0.013 0.011 0.083 0.004 0.791 0.543
(1.593) (0.415) (-0.649) (0.953) (1.557) (1.142) (8.432) (0.000)

Cross-Correlation of Residuals

rtb xr xnb xrcb y (d− p) spr

rtb 7.592 -0.168 -0.020 -0.842 0.115 0.101 -0.155
xr - 17.422 -0.017 0.166 -0.146 -0.723 0.195
xnb - - 5.099 0.257 -0.651 -0.059 0.262
xrcb - - - 12.416 -0.585 -0.026 0.618
y - - - - 1.221 0.191 -0.894
(d− p) - - - - - 15.996 -0.179
spr - - - - - - 0.975

Note: rtbt = ex post real T-Bill rate, xrt = excess stock return, xrcbt = excess real consol bond return,
(d−p)t = log dividend-price ratio, yt = nominal T-bill yield, xnbt = excess nominal long bond return, sprt
= yield spread. The bond is a 5-year nominal bond in the quarterly dataset and a 20-year for the annual

dataset.



TABLE C
Mean Asset Demands with Hypothetical Real Bonds

(Annual Sample: 1890 - 1998)

A: Nominal Bills, Stocks, and Real Consol Bond

State Variables: Constant Full VAR

γ = 1,ψ = 1, ρ = 0.92

Stocks 200.45 226.91
Real Consol Bond -54.43 -64.46
Cash -46.02 -62.45

γ = 2,ψ = 1, ρ = 0.92

Stocks 100.58 140.21
Real Consol Bond -1.02 -10.05
Cash 0.43 -30.16

γ = 5,ψ = 1, ρ = 0.92

Stocks 40.67 65.69
Real Consol Bond 31.03 44.67
Cash 28.30 -10.36

γ = 20,ψ = 1, ρ = 0.92

Stocks 10.71 17.40
Real Consol Bond 47.06 82.94
Cash 42.24 -0.34

γ = 2000,ψ = 1, ρ = 0.92

Stocks 0.82 -0.84
Real Consol Bond 52.34 97.86
Cash 46.84 2.98

Note: “Constant” column reports mean asset demands when the VAR system only has a constant in

each regression, corresponding to the case in which risk premia are constant and realized returns on all

assets, including the short-term real interest rate, are i.i.d. “Full VAR” column reports mean asset demands

when the VAR system includes all state variables. The nominal bond is a 5-year nominal bond in the

quarterly dataset and a 20-year in the annual dataset.



TABLE C (ctd.)
Mean Asset Demands with Hypothetical Real Bonds

(Annual Sample: 1890 - 1998)

B: Nominal Bills, Stocks, Real Consol Bond and Nominal Bond

State Variables: Constant Full VAR

γ = 1,ψ = 1, ρ = 0.92

Stocks 198.39 232.42
Real Consol Bond -68.22 -97.56
Nominal Bond 143.96 301.23
Cash -174.13 -336.09

γ = 2,ψ = 1, ρ = 0.92

Stocks 99.61 137.51
Real Consol Bond -7.54 -30.05
Nominal Bond 68.06 163.36
Cash -60.13 -170.81

γ = 5,ψ = 1, ρ = 0.92

Stocks 40.34 60.01
Real Consol Bond 28.87 39.15
Nominal Bond 22.51 64.02
Cash 8.27 -63.18

γ = 20,ψ = 1, ρ = 0.92

Stocks 10.71 15.95
Real Consol Bond 47.08 81.05
Nominal Bond -0.26 19.78
Cash 42.47 -16.79

γ = 2000,ψ = 1, ρ = 0.92

Stocks 0.93 0.61
Real Consol Bond 53.09 95.75
Nominal Bond -7.77 7.58
Cash 53.75 -3.94

Note: “Constant” column reports mean asset demands when the VAR system only has a constant in

each regression, corresponding to the case in which risk premia are constant and realized returns on all

assets, including the short-term real interest rate, are i.i.d. “Full VAR” column reports mean asset demands

when the VAR system includes all state variables. The nominal bond is a 5-year nominal bond in the

quarterly dataset and a 20-year in the annual dataset.



TABLE D
Mean Value Function (ψ = 1 Case)
(Annual Sample: 1890 - 1998)

γ E[Vt]

Nominal Bills and Stocks

1 0.164
2 0.088
5 0.050
20 0.015

2000 0.000

Nominal Bills, Stocks, and Nominal Bond

1 14.911
2 0.446
5 0.086
20 0.018

2000 0.000

Nominal Bills, Stocks, and Real Consol Bond

1 0.175
2 0.090
5 0.053
20 0.038

2000 0.014

Nominal Bills, Stocks, Nominal Bond, and Real Consol Bond

1 37.37
2 0.526
5 0.095
20 0.023

2000 0.014


