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ABSTRACT

We derive an intertemporal capital asset pricing model with multiple assets and heterogeneous

investors, and explore its implications for the behavior of trading volume and asset returns. Assets contain

two types of risks: market risk and the risk of changing market conditions. We show that investors trade

only in two portfolios: the market portfolio, and a hedging portfolio, which allows them to hedge the

dynamic risk. This implies that trading volume of individual assets exhibit a two-factor structure, and

their factor loadings depend on their weights in the hedging portfolio. This allows us to empirically

identify the hedging portfolio using volume data. We then test the two properties of the hedging portfolio:

its return provides the best predictor of future market returns and its return together with the return of the

market portfolio are the two risk factors determining the cross-section of asset returns.
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1 Introduction

Fundamental shocks to the economy drive both the supply and demand of financial assets

and their prices. Thus, any asset-pricing model that attempts to establish a structural

link between asset prices and underlying economic factors also establishes links between

prices and quantities such as trading volume. In fact, asset-pricing models link the the

joint behavior of prices and quantities with economic fundamentals such as the preferences

of investors and the future payoffs of the assets. Therefore, the construction and empirical

implementation of any asset-pricing model should involve both price and quantities as its key

elements. Even from a purely empirical perspective, the joint behavior of price and quantities

reveals more information about the relation between asset prices and economic factors than

prices alone. Yet the asset-pricing literature has centered more on prices and much less on

quantities. For example, empirical investigations of well-known asset-pricing models such as

the Capital Asset Pricing Model (CAPM) and its intertemporal extensions (ICAPM) have

focused exclusively on prices and returns, completely ignoring the information contained in

quantities. In this paper, we hope to show that even if our main interest is in the behavior

of prices, valuable information about price dynamics can be gleaned from trading volume.

We begin by developing an intertemporal capital asset pricing model of multiple assets

in the spirit of Merton’s ICAPM. We explicitly model investors’ asset demands and derive

equilibrium asset prices and asset holdings. In our model, assets are exposed to two sources

of risks: market risk and the risk of changes in market conditions.1 As a result, investors

wish to hold two distinct portfolios of risky assets: the market portfolio and a hedging

portfolio. The market portfolio allows them to adjust their exposure to market risk, and the

hedging portfolio allows them hedge the risk of changes in market conditions. In equilibrium,

investors trade in only these two portfolios, and expected asset returns are determined by

their exposure to these two risks, i.e., a two-factor linear pricing model holds, where the two

factors are the returns on the market portfolio and the hedging portfolio, respectively.

We then explore the implications of this model on the joint behavior of volume and

returns. Since investors hold only two portfolios—the market portfolio and the hedging

1One example of changes in market conditions is changes in the investment opportunity set considered
by Merton (1973).
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portfolio—they trade in only these portfolios. This implies that trading volume also exhibits

a two-factor structure: the first factor arises from their trades in the market portfolio and

the second factor arises from their trades in the hedging portfolio. More importantly, we

show that the factor loading of each asset’s trading volume on the hedging-portfolio factor is

identical to that asset’s portfolio weight in the hedging portfolio. This remarkable property

of the trading volume of individual assets suggests a way to identify the hedging portfolio

from a rather unexpected source: volume data. Moreover, after arriving at such a portfolio,

we have the means to verify that it is indeed the hedging portfolio: its returns should be the

best predictor of future returns on the market portfolio. Collectively, these results provide

concrete economic foundations for determining risk factors beyond the market portfolio for

dynamic equilibrium asset-pricing models.

Using the weekly returns and volume data on NYSE and AMEX stocks from 1962 to

1996, we implement the model empirically. From the trading volume of individual stocks,

we construct the hedging portfolio and its returns. We find that the hedging-portfolio returns

consistently outperforms other factors in predicting future returns to the market portfolio.

We then use the returns to the hedging and market portfolios as two risk factors in a cross-

sectional test along the lines of Fama and MacBeth (1973), and find that the hedging portfolio

is comparable to other factors in explaining the cross-sectional variation of expected returns.

In Section 2, we present our intertemporal equilibrium model of asset-pricing and trading

volume. In Section 3, we explore the model’s implications for volume and returns. Section

4 describes the data used in our empirical implementation of the model, and outlines the

construction of the hedging portfolio. In Section 5, we compare the forecast power of the

hedging portfolio with other factors, and we perform cross-sectional tests of the hedging

portfolio as a risk factor in Section 6. We conclude in Secton 7.

2 The Model

In this section, we develop an intertemporal equilibrium model of stock trading and pricing

with multiple assets and heterogeneous investors. Since our purpose is to draw its qualitative

implications on the joint behavior of return and volume, the model is kept as parsimonious

as possible. Several generalizations of the model are discussed in Section 2.2.
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2.1 The Economy

We consider an economy defined on a set of discrete dates: t = 0, 1, 2, . . .. There are J risky

assets in the economy, which we call stocks. Each stock pays a stream of dividends over time.

Let Djt denote the dividend of stock j at date t, j = 1, · · · , J , and Dt ≡ (D1t; · · · ;DJt)

denote the column vector of dividends.2 Without loss of generality, in this section we assume

that the total number of shares outstanding is one for each stock.

A stock portfolio can be expressed in terms of its shares of each stock, denoted by

S ≡ (S1; . . . ;SJ), where Sj is the number of stock j shares in the portfolio (j = 1, . . . , J). A

portfolio of particular importance is the market portfolio, denoted by SM , which is given by

SM = ι (1)

where ι is a vector of 1’s with rank J . DMt ≡ ι′Dt gives the dividend of the market portfolio,

which is the aggregate dividend.

In addition to the stocks, there is also a risk-free bond that yields a constant, positive

interest r per time period.

There are I investors in the economy. Each investor is endowed with equal shares of the

stocks and no bond. Every period, investor i, i = 1, . . . , I, maximizes his expected utility of

the following form:

Et

[
−e−W i

t+1−(λXXt+λY Y i
t )DMt+1−λZ(1+Zi

t)Xt+1

]
(2)

where W i
t+1 is investor i’s wealth next period, Xt, Y

i
t , Z

i
t are three one-dimensional state

variables, and λX, λY , λZ are non-negative constants. Apparently, the utility function in (2)

is state-dependent. We further assume

I∑
i=1

Y i
t =

I∑
i=1

Zi
t = 0 (3)

where t = 0, 1, . . ..

For simplicity, we assume that all the exogenous shocks, Dt, Xt, {Y i
t , Z

i
t , i = 1, . . . , I},

are IID over time with zero means. For tractability, we further assume that Dt and Xt are

2Throughout this paper, we follow the following convention: For a set of elements, e1, . . . , en, (e1; . . . ; en)
denotes the column vector and (e1, . . . , en) denotes the row vector from these elements.
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jointly normally distributed:

ut ≡
(

Dt

Xt

)
d∼ N (·, σ) where σ =

(
σDD σDX

σXD σXX

)
. (4)

Without loss of generality, σDD is assumed to be positive definite.

2.2 Discussion

Our model has several features that might seem unusual. Most importantly, investors are

assumed to have a myopic, but state-dependent utility function in (2). The purpose for using

this utility function is to capture the dynamic nature of the investment problem without ex-

plicitly solving a dynamic optimization problem. This utility function should be interpreted

as the equivalent of a value function from an appropriately specified dynamic optimization

problem (see, for example, Wang, 1994 and Lo and Wang, 2000b). In an earlier draft of the

paper, we did specify a canonical dynamic optimization problem for the investors, in which

they have state-independent utility over their lifetime consumption. It was shown that the

resulting value function, as a function of wealth and the state variables, has the form as the

state-dependent utility function in (2). For simplicity in exposition, we directly start with

(2).

The state dependence of the utility function has the following properties. The marginal

utility of wealth depends on the dividend of the market portfolio (the aggregate dividend),

as reflected in the second term in the exponential of the utility function. When the aggregate

dividend goes up, the marginal utility of wealth goes down. There are many ways to motivate

this type of utility function. For example, the utility can be derived from wealth in reference

to the market, not the level of wealth itself (see, for example, Abel, 1990, and Campbell

and Cochrane, 1999). Alternatively, if in addition to their stock investments, investors are

also exposed to other risks that are correlated to the market (see, for example, Wang, 1994).

The marginal utility of wealth also depends on future state variables, in particular Xt+1, as

reflected in the third term in the exponential of the utility function. The motivation for al-

lowing such a dependence is as follows. Since the state variables determine the stock returns

in equilibrium, the value function (indirect utility function) of an investor who optimizes

dynamically would depend on these state variables. Without modelling the dynamic opti-
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mization problem explicitly, we explicitly impose such a dependence on the (myopic) utility

function. This dependence introduces dynamic hedging motives in the investors’ portfolio

choices (see Merton, 1971, for a discussion on dynamic hedging).

Another simplification in the model is the IID assumption for the state variables. This

might leave the impression that the model is effectively static. This impression, however, is

false since the state-dependence of investors’ utility function introduces important dynamics

over time. We can allow richer dynamics for the state variables without changing the main

properties of the model.

The particular form of the utility function and the normality of distribution for the state

variables are assumed for tractability. These assumptions are restrictive. But we hope with

some confidence that the qualitative predictions of the model that we explore in this paper

are not sensitive to these assumptions.

In the model, we also assumed an exogenous interest rate for the bond without requiring

the bond market to clear. This is a modelling choice we have made in order to simplify

our analysis and to focus on the stock market. As will become clear later, changes in the

interest rate is not important for the issues we examine in this paper. From an empirical

point of view, at the frequency we are interested in (weekly), changes in interest rate are

usually small.

2.3 Equilibrium

Let Pt ≡ (P1t; . . . ;PJt) and Si
t ≡ (Si

1t; . . . ;S
i
Jt) be the (column) vectors of (ex-dividend)

stock prices and investor i’s stock holdings respectively. We now derive the equilibrium of

the economy.

Definition 1 An equilibrium is given by a price process {Pt : t = 0, 1, . . .} and the investors
stock positions {Si

t : i = 1, . . . , I; t = 0, 1, . . .} such that:

1. Si
t solves investor i’s optimization problem:

Si
t = arg max E

[
−e−W i

t+1−(λXXt+λY Y i
t )DMt+1−λZ(1+Zi

t)Xt+1

]
(5)

s. t. W i
t+1 = W i

t + Si
t
′ [Dt+1 + Pt+1 − (1+r)Pt]
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2. stock market clears:

i∑
i=1

Si
t = ι. (6)

The above definition of equilibrium is standard, except that the bond market does not clear

here. As discussed earlier, the interest rate is given exogenously and there is an elastic supply

of bonds at that rate.

For t = 0, 1, . . ., let Qt+1 denote the vector of excess dollar returns on the stocks:

Qt+1 ≡ Dt+1 + Pt+1 − (1+r)Pt. (7)

Thus, Qjt+1 = Djt+1 + Pjt+1 − (1 + r)Pjt gives the dollar return on one share of stock j

in excess of its financing cost for period t + 1. For the remainder of the paper, we simply

refer to Qjt+1 as the dollar return of stock j, omitting the qualifier “excess”. Dollar return

Qjt+1 differs from the conventional (excess) return measure Rjt+1 which is the dollar return

normalized by the share price: Rjt+1 ≡ Qjt+1/Pjt. We refer to Rjt+1 simply as the return on

stock j in period t+ 1.

We can now state the solution to the equilibrium in the following theorem:

Theorem 1 The economy defined above has a unique linear equilibrium in which

Pt = −a− bXt (8)

and

Si
t =

(
I−1−λY Y

i
t

)
ι− [

λY (b
′ι)Y i

t + λZZ
i
t

]
(σQQ)

−1 σQX (9)

where

σQQ = σDD − (b σXD + σDXb
′) + σ2

Xb b
′

σQX = σDX − σ2
Xb

a =
1

r

(
ᾱσQQι+ λZσQX

)
b = λX

[
(1+r)+λZσXDι)

]−1
σDDι

and ᾱ = 1/I.
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The nature of the equilibrium is intuitive. In our model, an investor’s utility function

depends not only on his wealth, but also on the stock payoffs directly. In other words, even

he holds no stocks, his utility fluctuates with the payoff of the stocks. Such a “market spirit”

affects his demand for the stocks, in addition to the usual factors such as the stocks’ expected

returns. The market spirit of investor i is measured by (λXXt+λY Y
i
t ). When (λXXt+λZY

i
t )

is positive, investor i extracts positive utility when the aggregate stock payoff is high. Such

a positive “attachment” to the market makes holding stocks less attractive to him. When

(λXXt+λY Y
i
t ) is negative, he has a negative attachment to the market, which makes holding

stocks more attractive. Such a market spirit at the aggregate level, which is captured by

Xt, affects the aggregate stock demand, which in turn affects their equilibrium prices. Given

the particular form of the utility function, Xt affects the equilibrium stock prices linearly.

The idiosyncratic differences among investors in their market spirit, which are captured by

Y i
t , offset each other at the aggregate level, thus do not affect the equilibrium stock prices.

However, they do affect individual investors’ stock holdings. As the first term of (9) shows,

investors with positive Y i
t ’s hold less stocks (they are already happy by just “watching” the

stocks paying off).

Since the aggregate utility variable Xt is driving the stock prices, it is also driving the

stock returns. In fact, the expected returns on the stocks are changing with Xt (see the dis-

cussion in the next section). The form of the utility function further states that the investors

utility function directly depends on Xt, which fully characterizes the market conditions in-

vestors face, in particular, the investment opportunities. Such a dependence endogenously

arises when investors optimize dynamically. In our setting, however, we assume that in-

vestors optimize myopically but insert such a dependence directly into the utility function.

This dependence induces investors to care about future market conditions when choose their

portfolios. In particular, they prefer those portfolios whose returns can help them to smooth

fluctuations in their utility due to changes in market conditions. Such a preference gives rise

to the hedging component in their asset demand, which is captured by the second term in

(9).

7



3 The Behavior of Returns and Volume

Given the intertemporal CAPM defined above, we can derive its implications on the behavior

of return and volume. For the stocks, their dollar return vector can be re-expressed as follows:

Qt+1 = ra+ (1+r) bXt + Q̃t+1 (10)

where Q̃t+1 ≡ Dt+1 − bZt+1 denotes the vector of unexpected dollar returns on the stocks,

which are IID over time with zero mean. Equation (10) shows that the expected returns on

the stocks change over time. In particular, they are driven by a single state variable Xt.

The investors stock holdings can be expressed in the following form:

Si
t = hi

Mtι+ hi
HtSH ∀ i = 1, 2, . . . , I (11)

where hi
Mt ≡ I−1 − λY Y

i
t , h

i
Ht ≡ λY (b

′ι)Y i
t − λZZ

i
t , and

SH ≡ (σQQ)
−1 σQX. (12)

Equation (11) simply states that two-fund separation holds for the investors’ stock invest-

ments. That is, the stock investments of all investors can be viewed as investments in two

common funds: the market portfolio ι and the hedging portfolio SH.
3 In our current model,

these two portfolios, expressed in terms of stock shares, are constant over time.

The particular structure of the returns and the investors’ portfolios lead to several inter-

esting predictions about the behavior of volume and returns. We present these predictions

through a set of propositions.

3.1 The Cross Section of Volume

Given the heterogeneity in their preferences which change over time, investors trade among

themselves to achieve their optimal stock holdings. The volume of trade can be measure by

the turnover ratio. Since we have normalized the total number of shares outstanding to be

3The investors’ total portfolios satisfy three-fund monetary separation: the risk-free bond and the two
stock funds. For our discussion here, we restrict our attention to their stock investments and always focus
on the two stock funds.
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one for all stocks, the turnover of a stock, say, stock j, is given by

τjt ≡ 1

2

I∑
i=1

∣∣ (
hi

Mt − hi
Mt−1

)
+

(
hi

Ht − hi
Ht−1

)
SHj

∣∣ ∀ j = 1, . . . , J. (13)

Let τt denote the vector of turnover for all stocks. We have the following proposition on

the cross-section of volume:

Proposition 1 When investors’ trading in the hedging portfolio is small relative to their

trading in the market portfolio, the two-fund separation in their stock holdings leads to an

approximate two-factor structure for stock turnover:

τt ≈ ιFMt + SHFHt (14)

where

FMt =
1

2

I∑
i=1

∣∣hi
Mt−hi

Mt−1

∣∣ and FHt =
1

2

I∑
i=1

(
hi

Ht−hi
Ht−1

)
sgn

(
hi

Ht−hi
Ht−1

)
.

In the special case when one-fund separation holds for stock holdings (when Xt = 0 ∀ t),

turnover would have an exact one-factor structure, τt = ιFMt. Moreover, the loading of

individual turnover on the common factor is identical. In other words, the turnover is

identical cross all stocks. This is not surprising. In the case of one-fund separation for stock

investments, investors trade in one stock portfolio, which has to be the market portfolio.

Thus, they trade all the stocks in same proportions (in shares). Consequently, the turnover

must be the same for all stocks.4

In the general case when two-fund separation holds for stock investments, turnover has an

approximate two-factor structure as given in (14). It is important to note that the loading of

stock j’s turnover on the second factor is proportional to its share weight in the hedging port-

folio. Thus, empirically if we can identify the two common factors, FMt and FHt, the stocks’

loadings on the second factor allow us to identify the hedging portfolio. In our empirical

analysis, we explore this information that the cross-section of volume conveys. As we discuss

below, the hedging portfolio has important properties that allow us to better understand the

behavior of returns. Merton (1971) has discussed the properties of hedging portfolios in a

4For a discussion on the implications of mutual fund separation on the cross-sectional behavior of volume,
see Lo and Wang (2000a). See also Tkac (1996).

9



continuous-time framework as a characterization of equilibrium. Our discussion here follows

Merton in spirit, but is in a discrete-time, equilibrium environment.

3.2 Time Series Implications for the Hedging Portfolio

By the definition of the hedging portfolio in (12), it is easy to show that its current return

gives the best forecast of future market return.

Let QMt+1 denote the dollar return on the market portfolio in period t + 1 and QHt+1

denote the dollar return on the hedging portfolio. Then,

QMt+1 = ι′Qt+1 and QHt+1 = S ′
HQt+1. (15)

For an arbitrary portfolio S, its dollar return in period t, which is Qt ≡ S ′Qt, can serve as

a predictor for the dollar of the market next period:

QMt+1 = δ0 + δ1Qt + εMt+1.

The predictive power of S is measured by the R2 of the above regression. We can solve for

the portfolio that maximizes the R2. The solution, up to a scaling constant, is the hedging

portfolio. Thus, we have the following result:

Proposition 2 Among the returns of all portfolios, the dollar return of the hedging portfolio,

SH, provides the best forecast for the future dollar return of the market.

In other words, if we regress the market dollar return on the lagged dollar return of any

portfolios, the hedging portfolio gives the highest R2.

3.3 Cross-Sectional Implications for the Hedging Portfolio

We now turn to examine the predictions of our model on the cross-section of returns. For

expositional simplicity, we introduce some additional notation. Let Qpt+1 be the dollar return

of a stock or a portfolio (of stocks). Q̃pt+1 ≡ Qpt+1 − Et[Qpt+1] then denotes its unexpected

dollar return and Q̄p its unconditional mean. Thus, Q̃Mt+1 and Q̃Ht+1 denote, respectively,

the unexpected dollar returns on the market portfolio and the hedging portfolio, and

σ2
M ≡ Var

[
Q̃Mt+1

]
, σ2

H ≡ Var
[
Q̃Ht+1

]
, σMH ≡ Cov

[
Q̃Mt+1, Q̃Ht+1

]

10



denote their conditional variances and covariances. It is easy to show that

σ2
M = ι′σQQι, σ2

H = σXQ(σQQ)
−1σQX, σMH = ι′σQX

where σQQ and σQX are given in Theorem 1. From Theorem 1, we have

Q̄ = ᾱσQQι+ λZσQX (16a)

Q̄M = ᾱσ2
M + λZσMH (16b)

Q̄H = ᾱσMH + λZσ
2
H. (16c)

Equation (16) characterizes the cross-sectional variation in the stocks’ expected dollar re-

turns.

In order to develop more intuition about (16), we first consider the special case when

Xt = 0 ∀ t. In this case, returns are IID over time. The risk of a stock is measured by its

co-variability with the market portfolio. We have the following result:

Proposition 3 When Xt = 0 ∀ t, we have

E
[
Q̃t+1|Q̃Mt+1

]
= βMQ̃Mt+1 (17)

where

βM ≡ Cov
[
Q̃t+1, Q̃Mt+1

]/
Var

[
Q̃Mt+1

]
= σDDι

/
(ι′σDDι)

is the vector of the stocks’ market betas. Moreover,

Q̄ = βMQ̄M (18)

where Q̄M = ᾱσ2
M ≥ 0.

Obviously in this case, the CAPM holds for the dollar returns. It can be shown that it also

holds for the returns.

In the general case when Xt changes over time, there is an additional risk due to changing

market conditions (dynamic risk). Moreover, this risk is represented by the dollar return of

the hedging portfolio, which is denoted by QHt ≡ S ′
HQt. In this case, the risk of a stock is

measured by its risk with respect to the market portfolio and its risk with respect to the

11



hedging portfolio. In other words, there are two risk factors, the (contemporaneous) market

risk and the (dynamic) risk of changing market conditions. The expected returns of the

stocks are then determined by their exposures to these two risks and the associated risk

premia. The result is summarized in the following proposition:

Proposition 4 When Xt changes over time, we have

E
[
Q̃t+1|Q̃Mt+1, Q̃Ht+1

]
= βMQ̃Mt+1 + βHQ̃Ht+1 (19)

where

(βM , βH) = Cov
[
Q̃t+1,

(
Q̃Mt+1, Q̃Ht+1

)] {
Var

[(
Q̃Mt+1, Q̃Ht+1

)]}−1

= (σQM , σQH)

(
σ2

M σMH

σMH σ2
H

)−1

is the vector of the stocks’ market betas and hedging betas. Moreover, The stocks’ expected

dollar returns satisfy

Q̄ = βMQ̄M + βHQ̄H (20)

where Q̄M = ᾱσ2
M + λZσMH and Q̄H = ᾱσMH + λZσ

2
H.

Thus, a stock’s risk is measured by its beta with respect to the market portfolio and its beta

with respect to the hedging portfolio. The expected dollar return on the market portfolio

gives the premium of the market risk and the expected dollar return on the hedging portfolio

gives the premium of the dynamic risk. (20) simply states that the premium on a stock is

then given by the sum of the product of its exposure to each risk and the associated premium.

Under constant market conditions (Xt = 0, ∀ t), the premium for the market risk,

Q̄, is always positive. However, under changing market conditions, the premium for the

market risk need not always be positive. In particular, when σMH is significantly negative

(λZ is assumed to be positive), Q̄ can become negative. This is simply because that the

premium is determined by the covariance between the market return and investors’ marginal

utility, which depends on both their wealth and the other state variables. The positive

covariance between the market return and investors’ wealth gives a positive premium to

the market portfolio. But the negative covariance between the market return and the state
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variable Xt that drives the utility function gives a negative premium. The total premium on

the market portfolio is the sum of these two components, which can be negative when the

second component dominates.

The pricing relation we obtain in Proposition 4 is in the spirit of Merton’s Intertemporal

CAPM in a continuous-time framework (Merton, 1971). However, it is important to note

that Merton’s result is a characterization of the pricing relation under a (class of) proposed

price processes and no equilibrium is provided to support these price processes. In contrast,

our pricing relation is derived from a dynamic equilibrium model. In this sense, we model

provides an particular equilibrium model for which Merton’s characterization holds.

If we can identify the hedging portfolio empirically, its return provides the second risk

factor. Differences in the stocks’ expected returns can then be fully explained by their

exposures to the two risks (market risk and dynamic risk), as measured by their market

betas and hedging betas.

4 An Empirical Implementation

Our empirical analysis of the implications of the model outlined in Sections 2 and 3 is

comprised of three parts. In the first part, we exploit the model’s cross-sectional implications

to construct the hedging portfolio from volume data. In the second part, we examine the

ability of the hedging portfolio to forecast future market-portfolio returns. And in the third

part, we investigate the role of the hedging-portfolio return as a risk factor in explaining the

cross-sectional variation of expected returns. We focus on the first part in this section, and

consider the second and third parts in Sections 5 and 6.

4.1 The Data

We use an extract of the CRSP Daily Master File called the “MiniCRSP Returns and

Turnover” database described in Lo and Wang (2000a). This extract consists of weekly

return and turnover series for individual stocks traded on NYSE and AMEX from July

1962 to December 1996 (1800 weeks). We choose weekly holding periods as a compromise

between maximizing the sample size and minimizing the impact of high-frequency return

and turnover fluctuations that are likely to be of less direct economic consequence. We also
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limit our focus to ordinary common shares (CRSP sharecodes 10 and 11 only).

As documented in Lo and Wang (2000a) and in many other studies, aggregate turnover

seems to be nonstationary, exhibiting a significant time trend and time-varying volatilities.

For example, the average weekly turnover in the period from 1962 to 1966 is 0.57%, but grows

to 1.31% in the period from 1992 to 1996, and the volatilities during these two periods were

0.07% and to 0.23%, respectively. Detrending has been advocated by several other authors

(e.g., Andersen, 1996 and Gallant, Rossi, and Tauchen 1992), and there is no doubt that such

procedures may help to induce more desirable time series properties for turnover. However,

Lo and Wang (2000a) show that the different types of detrending methods, e.g., linear,

logarithmic, or quadratic, yield detrended time series with markedly different statistical

properties. Since we do not have any specific priors or theoretical justification for the kinds

of nonstationarities in aggregate turnover, we use the raw data in our empirical analysis.

To address the issue of nonstationarities, we conduct our empirical analysis on five-year

subperiods only.5 For notational convenience, we shall sometimes refer to these subperiods

by the following numbering scheme:

Subperiod 1: July 1962 to December 1966
Subperiod 2: January 1967 to December 1971
Subperiod 3: January 1972 to December 1976
Subperiod 4: January 1977 to December 1981
Subperiod 5: January 1982 to December 1986
Subperiod 6: January 1987 to December 1991
Subperiod 7: January 1992 to December 1996

4.2 Construction of the Hedging Portfolio

Our first step in empirically implementing the intertemporal model of Sections 2 and 3 is

to construct the hedging portfolio from turnover data. From (14), we know that in the

two-factor model for turnover in Proposition 1, stock j’s loading on the second factor FHt

yields the number of shares (as a fraction of its total number of shares outstanding) of stock

j in the hedging portfolio. In principle, this identifies the hedging portfolio. However, we

face two challenges in practice. First, the exact two-factor specification (14) is, at best, an

5Obviously, from a purely statistical perspective, using shorter subperiods does not render a nonstationary
time series stationary. However, if the sources of nonstationarity are institutional changes and shifts in general
business conditions, confining our attention to shorter timespans does improve the quality of statistical
inference. See Lo and Wang (2000a) for further discussion.
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approximation for the true data-generating process of turnover. Second, the two common

factors are generally not observable. We address both of these problems in turn.

A more realistic starting point for modelling turnover is an approximate two-factor model:

τjt = FMt + θHjFHt + εjt, j = 1, . . . , J (21)

where FMt and FHt are the two factors that generate trading in the market portfolio and

the hedging portfolio, respectively, θHj is the percentage of shares of stock j in the hedging

portfolio (as a percentage of its total number of shares outstanding), and εjt is the error

term, which is assumed to be independent across stocks.

Cross-sectional independence of the errors is a restrictive assumption. If, for example,

there are other common factors in addition to FMt and FHt, then εjt is likely to be correlated

across stocks. The appropriateness of the independence assumption is an empirical matter,

and in Lo and Wang (2000a), we have found evidence supporting the two- factor structure.

In particular, the covariance matrices of turnover for a collection of turnover-beta-sorted

portfolios generally exhibit two large eigenvalues that dominate the rest. This provides

limited justification for assuming that εjt is independent across stocks.

Since we do not have any sufficient theoretical foundation to identify the two common

factors FMt and FHt, we use two turnover indexes as their proxies: the equally-weighted and

share-weighted turnover of the market. Specifically. let Nj denote the total number of shares

outstanding for stock j and N ≡ ∑
j Nj the total number of shares outstanding of all stocks.

The two turnover indexes are

τEW

t ≡ 1

J

J∑
j=1

τjt = FMt + nEWFHt + εEW

t (22a)

τSW

t ≡
J∑

j=1

Nj

N
τjt = FMt + nSWFHt + εSW

t (22b)

where

nEW =
1

J

J∑
j=1

θHj and nSW =
J∑

j=1

Nj

N
θHj

are the average percentage of shares of each stock in the hedging portfolio and the percentage

of all shares (of all stocks) in the hedging portfolio, respectively, and εEW
t and εSW

t are the
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error terms for the two indexes.6 Since the error terms in (21) are assumed to be independent

across stocks, the error terms of the two indexes, which are weighted averages of the error

terms of individual stocks, become negligible when the number of stocks is large. For the

remainder of our analysis, we shall ignore them.

Simple algebra then yields the following relation between individual turnover and the

two indexes:

τjt = βSW

τj τSW

t + βEW

τj τEW

t + εjt (23)

where

βEW

τj =
nEW − θHj

nEW − nSW
and βSW

τj =
θHj − nSW

nEW − nSW
.

These expressions imply that the following relations for βEW
τj and βSW

τj must hold:

βEW

τj + βSW

τj = 1 ∀ j (24a)

1

J

J∑
j=1

βEW

τj = 1 . (24b)

These relations should come as no surprise since the two-factor specification for turnover,

(21), has only J parameters {θHj}, whereas the transformed two-factor model (23) has

two sets of parameters, {βEW
τj } and {βSW

τj }. The first relation, (24a), exactly reflects the

dependence between the parameters and the second relation, (24b), comes from the fact

that the coefficients in (23) are independent of the scale of {θHj}.
Using the MiniCRSP volume database, we can empirically estimate {βEW

τj } and {βSW
τj }

by estimating the following constrained regression:

τjt = βSW

τj τSW

t + βEW

τj τEW

t + εjt, j = 1, . . . , J (25a)

s.t. βEW

τj + βSW

τj = 1 (25b)

J∑
j=1

βEW

τj = J . (25c)

From the estimates {β̂EW
τj }, we can construct estimates of the portfolio weights of the hedging

6To avoid degeneracy, we need Nj = Nk for some j = k, which is surely valid empirically.
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portfolio in the following manner

θ̂Hj = (nEW − nSW )β̂EW

τj + nSW . (26)

However, there are two remaining parameters, nEW and nSW , that need to be estimated.

It should be emphasized that these two remaining degrees of freedom are inherent in the

model (21). When the two common factors are not observed, the parameters {θHj} are only

identified up to a scaling constant and a rotation. Clearly, (21) is invariant when FHt is

rescaled as long as {θHj} is also rescaled appropriately. In addition, when the two factors

are replaced by their linear combinations, (21) remains formally the same as long as {θHj}
is also adjusted with an additive constant.7 Since the hedging portfolio {θHj} is defined only

up to a scaling constant, we let

nSW = 1 (27a)

nEW − nSW = φ (27b)

where φ is a parameter that we calibrate to the data (see Section 5). This yields the final

expression for the J components of the hedging portfolio:

θ̂Hj = φ β̂EW

τj + 1. (28)

The normalization nSW = 1 sets the total number of shares in the portfolio to a positive value.

If φ = 0, the portfolio has equal percentage of all the shares of each company, implying that

it is the market portfolio. Nonzero values of φ represent deviations from the market portfolio.

To estimate {βEW
τj } and {βSW

τj }, we first construct the two turnover indexes. Figure 1 plots
their time series over the entire sample period from 1962 to 1996. We estimate (25a)–(25b)

for each of the seven five-year subperiods, ignoring the global constraint (25c).8 Therefore,

we estimate constrained linear regressions of the weekly turnover for each stock on equal-

7For example, for any a, we have ∀ j:

τjt = FMt + θHjFHt + εjt = (FMt + aFHt) + (θHj − a)FHt + εjt = F̃Mt + θ̃HjFHt + εjt

where F̃Mt = FMt + aFHt and θ̃Hj = θHj − a.
8We ignore this constraint for two reasons. First, given the large number of stocks in our sample, imposing

a global constraint like (25c) requires a large amount of computer memory, which was unavailable to us.
Second, because of the large number of individual regressions involved, neglecting the reduction of one
dimension should not significantly affect any of the final results.
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and share-weighted turnover indexes in each of the seven five-year subperiods of our sample.

Figure 2 plots the histogram of {β̂EW
τj } for each of the subperiods. There is clearly a wide

distribution of estimated coefficients, ranging from −2 to 10 in the first four subperiods and

−10 to 10 in the last three. Outliers in the raw turnover data are often the source of these

large estimates (see Lo and Wang, 2000a, for a more detailed discussion of outliers).

Table 1 reports summary statistics for these constrained regressions. To provide a clearer

sense of the dispersion of these regressions, we first sort them into deciles based on {β̂EW
τj },

and then compute the means and standard deviations of the estimated coefficients {β̂EW
τj }

and {β̂SW
τj }, their t-statistics, and the R̄2s within each decile. The t-statistics indicate that

the estimated coefficients are generally significant—even in the fifth and sixth deciles, the

average t-statistic for {β̂EW
τj } is 4.585 and 6.749, respectively (we would, of course, expect

significant t-statistics in the extreme deciles even if the true coefficients were zero, purely

from sampling variation). The R̄2s also look impressive, however, they must be interpreted

with some caution because of the imposition of the constraint (25b), which can yield R̄2

greater than unity and less than zero.9 Table 1 shows that negative R̄2s appear mainly

in the two extreme deciles, except in the last subperiod when they are negative for all the

deciles, presumably an indication that the constraint is not consistent with the data in this

last subperiod.

For comparison, we estimate the unconstrained version of (25a) and compute the same

summary statistics, reported in Table 2. Table 2 also reports the mean and standard devi-

ation within each decile of p-values corresponding to the statistic that (25b) holds. Except

for the last subperiod, the constraint seems to be reasonably consistent with the data, with

average p-values well above 5% for all but the extreme deciles in most subperiod. For exam-

ple, in the first subperiod, the average p-values range from a minimum of 4.0% in decile 1

to a maximum of 32.4% in decile 6, and with a value of 19.4% in decile 10. However, in the

last subperiod, the average p-value is less than 5% deciles 2–6, and close to significance for

most of the other deciles, which explains the negative R̄2s in Table 1.

Without the constraint, the R̄2s in Table 2 are well behaved, and of similar magnitude

to those in Table1 that are between 0% and 100%, ranging from 40% to 60%, even in the

9For example, a negative R̄2 arises when the variance of β̂EW
τj τEW

t + β̂SW
τj τSW

t exceeds the variance of the
dependent variable τjt, which can happen when the constraint (25b) is imposed.
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last subperiod. Clearly the two-factor model of turnover accounts for a significant amount

of variation in the weekly turnover of individual stocks.

5 The Forecast Power of the Hedging Portfolio

Having constructed the hedging portfolio up to a parameter φ to be determined, we can

examine its time-series properties as predicted by the model of Sections 2 and 3. In particular,

in this section we focus on the degree to which the the hedging portfolio can predict future

stock returns, especially the return on the market portfolio. We first construct the returns

of the hedging portfolio in Section 5.1 by calibrating φ, and then compare its forecast power

with other factors in Sections 5.2 and 5.3.

5.1 Hedging-Portfolio Returns

To construct the return on the hedging portfolio, we begin by calculating its dollar value

and dollar returns. Let k denote subperiod k, k = 2, . . . , 7, Vjt(k) denote the total market

capitalization of stock j at time period t (the end of week t) in subperiod k, Qjt(k) de-

note its dividend-adjusted excess dollar return for the same period, and Rjt(k) denote the

dividend-adjusted excess return, and θj(k) the estimated share (as fraction of its total shares

outstanding) in the hedging portfolio in subperiod k.

For stock j to be included in the hedging portfolio in subperiod k, which we shall refer to

as the “testing period”, we require it to have volume data for at least one third of the sample

in the previous subperiod (k−1), which we call the “estimation period”. Among the stocks

satisfying this criteria, we eliminate those ranked in the top and bottom 0.5% according to

their volume betas (or their share weights in the hedging portfolio) to limit the potential

impact of outliers.10 We let Jt(k) denote the set of stocks that survive these two filters and

that have price and return data for week t of subperiod k. The hedging portfolio in week t

of sub-period k is then given by:

θHjt(k) =




θ̂Hj, j ∈ Jt(k)

0, j /∈ Jt(k)

(29)

10See Lo and Wang (2000a) for the importance of outliers in volume data.
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The dollar return of the hedging portfolio for week t follows naturally:

QHt(k) ≡
∑

j

θHjt(k)Vjt Rjt. (30)

and the (rate of) return of the hedging portfolio is given by

RHt(k) ≡ QHjt(k)

VHt(k)
(31)

where

VHt(k) ≡
∑

j

θHjt(k)Vjt−1 (32)

is the value of the hedging portfolio at the beginning of the week.

The procedure outlined above yields the return and the dollar return of the hedging

portfolio up to the parameter φ, which must be calibrated. To do so, we exploit a key

property of the hedging portfolio: its return is the best forecaster of future market returns

(see Section 3). Therefore, for a given value of φ, we can estimate the following regression

RMt+1 = δ0 + δ1 {RHt or QHt}+ εMt+1 (33)

where the single regressor is either the return of the hedging portfolio RHt or its dollar return

for a given choice of φ, and then vary φ to maximize the R̄2.11

Figures 3 and 4 show how the R̄2 from the regression of RMt on the lagged return and

dollar-return, respectively, of the hedging portfolio varies with the value of φ in each of

the subperiods. In all cases, there is a unique global maximum, from which we obtain

φ. However, for some values of φ, the value of the hedging portfolio changes sign, and

in these cases, defining the return on the portfolio becomes problematic. Therefore, we

eliminate these values from consideration, and for all subperiods except subperiod 4 and 7

(i.e., subperiods 2, 3, 5, 6), the omitted values of φ do not seem to affect the choice of φ for

the maximum R2.

For subperiods 2 to 7, the values for φ that give the maximum R2 are 1.25, 4.75, 1.75,

47, 38, and 0.25, respectively, using RHt as the predictor. Using QHt, the values of φ are 1.5,

11This approach ignores the impact of statistical variation on the “optimal” φ, which is beyond the scope
of this paper but is explored further in related contexts by Foster, Smith, and Whaley (1997) and Lo and
MacKinlay (1997).
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4.25, 2, 20, 27, and 0.75, respectively. With these values of φ in hand, we have fully specified

the hedging portfolio, its return and dollar return. Table 3 reports the summary statistics

for the return and dollar return on the hedging portfolio.

5.2 Optimal Forecasting Portfolios (OFPs)

Having constructed the return of the hedging portfolio in Section 5.1, we wish to compare

its forecast power to those of other factors. According to Proposition 2, the returns of the

hedging portfolio should outperform the returns of any other portfolios in predicting future

market returns. Specifically, if we regress RMt on the lagged return of any arbitrary portfolio

p, the R̄2 should be less than that of (33).

It is impractical to compare (33) to all possible portfolios, and uninformative to compare

it to random portfolios. Instead, we need only make comparisons to “optimal forecast portfo-

lios”, portfolios that are optimal forecasters of RMt, since by construction, no other portfolios

can have higher levels of predictability than these. The following proposition shows how to

construct optimal forecasting portfolios (OFPs) (see Lo and Wang, 2001 for details):

Proposition 5 Let Γ0 and Γ1 denote the contemporaneous and first-order autocovariance

matrix of the vector of all returns. For any arbitrary target portfolio q with weights wq =

(wq1; . . . ;wqN), define A ≡ Γ0
−1Γ1wqwq

′Γ1
′. The optimal forecast portfolio of wq is given by

the normalized eigenvector of A corresponding to its largest eigenvalue.

Since Γ0 and Γ1 are unobservable, they must be estimated using historical data. Given

the large number of stocks in our sample (over 2,000 in each subperiod) and the relatively

short time series in each subperiod (261 weekly observations), the standard estimators for

Γ0 and Γ1 are not viable. However, it is possible to construct OFPs from a much smaller

number of “basis portfolios”, and then compare the predictive power of these OFPs to the

hedging portfolio. As long as the basis portfolios are not too specialized, the R̄2s are likely

to be similar to those obtained from the entire universe of all stocks.

We form several sets of basis portfolios by sorting all the J stocks into K groups of

equal numbers (K ≤ J) according to: market capitalization, market beta, and SIC codes,

and then construct value-weighted portfolios within each group.12 This procedure yields K

12It is important that we use value-weighted portfolios here so that the market portfolio, whose return
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basis portfolios for which the corresponding Γ0 and Γ1 can be estimated using the portfolios’

weekly returns within each subperiod. Based on the estimated autocovariance matrices, the

OFP can be computed easily according to Proposition 5.

In selecting the number of basis portfoliosK, we face the following trade-off: fewer portfo-

lios yields better sampling properties for the covariance matrix estimators, but less desirable

properties for the OFP since the predictive power of the OFP is obviously maximized when

when K=J . As a compromise, for the OFPs based market capitalization and market betas,

we choose K to be 10, 15, 20, and 25. For the OFP based on SIC codes, we choose 13

industry groupings, described in more detail below.

Specifically, for each five-year subperiod in which we wish to evaluate the forecast power

of the hedging portfolio (the testing period), we use the previous five-year subperiod (the

estimation period) to estimate the OFPs. For the OFP based on 10 market-capitalization-

sorted portfolios, which we call “CAP10”, we construct 10 value-weighted portfolios each

week, one for each market-capitalization decile. Market-capitalization deciles are recomputed

each week, and the time series of decile returns form the 10 basis portfolio returns of CAP10,

with which we can estimate Γ0 and Γ1. To compute the OFP, we also require the weights

ωq of the target portfolio, in this case the market portfolio. Since the testing period follows

the estimation period, we use the market capitalization of each group in the last week of the

estimation period to map the weights of the market portfolio into a 10×1-vector of weights

for the 10 basis portfolios. The weights of the OFP for the basis portfolios CAP10 follow

immediately from Proposition 5. The same procedure is used to form OFPs for CAP15,

CAP20, and CAP25 basis portfolios.

The OFPs of market-beta-sorted basis portfolios are constructed in a similar manner.

We first estimate the market betas of individual stocks in the estimation period, sort them

according to their estimated betas and then form small groups of basis portfolios, calculating

value-weighted returns for each group. We consider 10, 15, 20 and 25 groups, denoted by

“Beta10”, “Beta15”, and so on. The same procedure is then followed to construct the OFPs

for each of these sets of basis portfolios.

we wish to predict, is a portfolio of these basic portfolios (recall that the target portfolio ωq that we wish
to forecast is a linear combination of the vector of returns for which Γk is the k-th order autocovariance
matrix).
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Finally, the industry portfolios are based on SIC-code groupings. The first two digits

of the SIC code yield sixty to eighty industry categories, depending on the sample period,

and some of categories contain only one or two stocks. On the other, the first digit yields

only eight broad industry categories. As a compromise, we use a slightly more disaggregated

grouping of 13 industries, given by the following correspondence:13

# SIC Codes Description

1 1–14 Agriculture, forest, fishing, mining
2 15–19, 30, 32–34 Construction, basic materials (steel, glass, concrete, etc.)
3 20–21 Food and tobacco
4 22, 23, 25, 31, 39 Textiles, clothing, consumer products
5 24, 26–27 Logging, paper, printing, publishing
6 28 Chemicals
7 29 Petroleum
8 35–36, 38 Machinery and equipment supply, including computers
9 37, 40–47 Transportation-related
10 48–49 Utilities and telecommunications
11 50–59 Wholesale distributors, retail
12 60–69 Financial
13 70–89, 98–99 Recreation, entertainment, services, conglomerates, etc.

Each week, stocks are sorted according to their SIC codes into the 13 categories defined above,

and value-weighted returns are computed for each group, yielding the 13 basis portfolios

which we denote by “SIC13”. The autocovariance matrices are then estimated and the OFP

constructed according to Proposition 5.

5.3 Hedging Portfolio Return as A Predictor of Market Returns

Table 4 reports the results of the regressions of RMt on various lagged OFP returns and on

the hedging portfolios RHt and QHt. For completeness, we have also included four additional

regressions, with lagged value- and equal-weighted CRSP index returns, the logarithm of the

reciprocal of lagged market-capitalization, and the lagged three-month constant-maturity

Treasury bill return as predictors.14 Table 4 shows that the hedging portfolios outperforms

13We are grateful to Jonathan Lewellen for sharing his industry classification scheme.
14We also considered nine other interest-rate predictors (six-month and one-year Treasury bill rates,

three-month, six-month, and one-year off-the-run Treasury bill rates, one-month and three-month CD
and Eurodollar rates, and the Fed Funds rate (all obtained from the Federal Reserve Bank of St. Louis,
http://www.stls.frb.org/fred/data/wkly.html). Each of these variables produced results similar to those for
the three-month constant-maturity Treasury bill return, hence we omit those regressions from Table 4.
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all of the other competing portfolios in forecasting future market returns in three of the six

subperiods (subperiods 2, 4, and 6). In subperiod 3, only one OFP (Beta20) outperforms

the hedging portfolio, and in subperiod 5, Beta20 and SIC13’s OFPs outperform the hedging

portfolio, but only marginally. And in subperiod 7, the equal-weighted CRSP index return

outperforms the hedging portfolio.

However, several caveats should be kept in mind with regard to the three subperiods in

which the hedging portfolios were surpassed by one or two competing portfolios. First, in

these three subperiods, the hedging portfolio still outperforms most of the other competing

portfolios. Second, there is no consistent winner in these subperiods. Third, the performance

of the hedging portfolios are often close to the best performer. Moreover, the best performers

in these subperiods performed poorly in the other subperiods, raising the possibility that

their performance might be due to sampling variation. In contrast, the hedging portfolios

forecasted RMt consistently in every subperiod. Indeed, among all of the regressors, the hedg-

ing portfolios were the most consistent across all six subperiods, a remarkable confirmation

of the properties of the model of Sections 2 and 3.15

6 The Hedging-Portfolio Return as a Risk Factor

To evaluate the success of the hedging-portfolio return as a risk factor in the cross section

of expected returns, we implement a slightly modified version of the well-known regression

tests outlined in Fama and MacBeth (1973). The basic approach is the same: form portfolios

sorted by an estimated parameter such as market beta coefficients in one time period (the

“portfolio-formation period”), estimate betas for those same portfolios in a second non-

overlapping time period (the “estimation period”), and perform a cross-sectional regression

test for the explanatory power of those betas using the returns of a third non-overlapping

time period (the “testing period”). However, in contrast to Fama and MacBeth (1973), we

use weekly instead of monthly returns, and our portfolio-formation, estimation, and testing

15On the other hand, the results in Table 4 must be tempered by the fact that the OFPs are only as good
as the basis portfolios from which they are constructed. Increasing the number of basis portfolios should,
in principle, increase the predictive power of the OFP. However, as the number of basis portfolios increases,
the estimation errors in the autocovariance estimators γ̂0 and γ̂1 also increase for a fixed set of time series
observations, hence the impact on the predictive power of the OFP is not clear.
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periods are five years each.16

Specifically, we run the following bivariate regression for each security in the portfolio-

formation period, using only those securities that exist in all three periods:17

Rjt = αj + βM

j RMt + βH

j RHt + εit (34)

where RMt is the return on the CRSP value-weighted index and RHt is the return on the

hedging portfolio. Using the estimated coefficients {β̂M
i } and {β̂H

i }, we perform a double sort

among the individual securities in the estimation period, creating 100 portfolios correspond-

ing to the deciles of the estimated market and hedging-portfolio betas. We re-estimate the

two betas for each of these 100 portfolios in the estimation period, and use these estimated

betas as regressors in the testing period, for which we estimate the following cross-sectional

regression:

Rpt = γ0t + γ1tβ̂
M

p + γ2tβ̂
H

p + ηpt (35)

where Rpt is the equal-weighted portfolio return for securities in portfolio p, p = 1, . . . , 100,

constructed from the double-sorted rankings of the portfolio-estimation period, and β̂M
pt and

β̂H
pt are the market and hedging-portfolio returns, respectively, of portfolio p obtained from

the estimation period. This cross-sectional regression is estimated for each of the 261 weeks

in the five-year testing period, yielding a time series of coefficients {γ̂0t}, {γ̂1t}, and {γ̂2t}.
Summary statistics for these coefficients and their diagnostics are then reported, and this

entire procedure is repeated by incrementing the portfolio-formation, estimation, and testing

periods by five years. We then perform the same analysis for the hedge-portfolio dollar-return

series {QHt}.
Because we use weekly instead of monthly data, it may be difficult to compare our

results to other cross-sectional tests in the extant literature, e.g., Fama and French (1992).

Therefore, we apply our procedure to three other benchmark models: the standard CAPM in

16Our first portfolio-formation period, from 1962 to 1966, is only four and a half years because the CRSP
Daily Master file begins in July 1962. Fama and MacBeth’s (1973) original procedure used a seven-year
portfolio-formation period, a five-year estimation period, and a four-year testing period.

17This induces a certain degree of survivorship bias, but the effects may not be as severe given that we
apply the selection criterion three periods at a time. Moreover, while survivorship bias has a clear impact
on expected returns and on the size effect, its implications for the cross-sectional explanatory power of the
hedging portfolio is less obvious, hence we proceed cautiously with this selection criterion.
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which RMt is the only regressor in (34) and 100 market-beta-sorted portfolios constructed, a

two-factor model in which the hedging-portfolio return factor is replaced by a “small-minus-

big capitalization” or “SMB” portfolio return factor as in Fama and French (1993), and a

two-factor model in which the hedging-portfolio return factor is replaced by the OFP return

factor described in Section 5.2.18

Table 5 reports the the correlations between the different portfolio return factors, returns

on CRSP value- and equal-weighted portfolios, return and dollar return on the hedging

portfolio, returns on the SMB portfolio and, OFP, Beta20, and the two turnover indices.

Table 6 reports the summary statistics for the return betas from the five risk models on

returns: the single-factor market model and the four two-factors models.

Table 7 summarizes the results of all of these cross-sectional regression tests for each of

the five testing periods from 1972 to 1996. In the first subpanel, corresponding to the first

testing period from 1972 to 1976, there is little evidence in support of the CAPM or any

of the two-factor models estimated.19 For example, the first three rows show that the time-

series average of the market-beta coefficients, {γ̂1t}, is 0.000, with a t-statistic of 0.348 and

an average R̄2 of 10.0%.20 When the hedging-portfolio beta β̂H
t is added to the regression,

the R̄2 does increase to 14.3% but the average of the coefficients {γ̂2t} is −0.002 with a

t-statistic of −0.820. The average market-beta coefficient is still insignificant, but it has now

switched sign. The results for the two-factor model with the hedging-portfolio dollar-return

factor and the two-factor model with the SMB factor are similar.

In the second testing period, both specifications with the hedging-portfolio factor exhibit

statistically significant means for the hedging-portfolio betas, with average coefficients and

t-statistics of −0.012 and −3.712 for the hedging-portfolio return factor and −1.564 and

−4.140 for the hedging-portfolio dollar-return factor, respectively. In contrast, the market-

18Specifically, the SMB portfolio return is constructed by taking the difference of the value-weighted returns
of securities with market capitalization below and above the median market capitalization at the start of
the five-year subperiod.

19The two-factor model with OFP as the second factor is not estimated until the second testing period
because we use the 1962–1966 period to estimate the covariances from which the OFP returns in the 1967–
1971 period are constructed. Therefore, the OFP returns are not available in the first portfolio-formation
period.

20The t-statistic is computed under the assumption of independently and identically distributed coefficients
{γ1t}, which may not be appropriate. However, since this has become the standard method for reporting
the results of these cross-sectional regression tests, we follow this convention to make our results comparable
to those in the literature.
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beta coefficients are not significant in either of these specifications, and are also of the wrong

sign. The only other specification with a significant mean coefficient is the two-factor model

with SMB as the second factor, with an average coefficient of 0.299 for the SMB factor and

a t-statistic of 4.433.

For the three remaining test periods, the only specifications with any statistically sig-

nificant factors are the SMB and MPP two-factor models in the 1992–1996 testing period.

However, the R̄2s in the last two testing periods are substantially lower than in the earlier

periods, perhaps reflecting the greater volatility of equity returns in recent years.

Overall, the results do not provide overwhelming support for any factor in explaining the

cross-sectional variation of expected returns. There is, of course, the ubiquitous problem of

lack of power in these cross-sectional regression tests, hence we should not be surprised that

no single factor stands out.21 However, the point estimates of the cross-sectional regressions

show that the hedging-portfolio factor is comparable in magnitude and in performance to

other commonly proposed factors.

7 Conclusion

By deriving an explicit link between economic fundamentals and the dynamic properties of

asset returns and volume, we have shown that interactions between prices and quantities in

equilibrium yield a rich set of implications for any asset-pricing model. Indeed, by exploiting

the relation between prices and volume in our dynamic equilibrium model, we are able to

identify and construct the hedging portfolio that all investors use to hedge against changes

in market conditions. Moreover, our empirical analysis shows that this hedging portfolio has

considerable forecast power in predicting future returns of the market portfolio—a property of

the true hedging portfolio—and its abilities to explain cross-sectional variation in expected

returns is comparable to other popular risk factors such as market betas, the Fama and

French (1993) SMB factor, and optimal forecast portfolios.

Although our model is purposefully parsimonious so as to focus attention on the essential

features of risk-sharing and trading activity, it underscores the general point that quantities,

together with prices, should be an integral part of any analysis of asset markets, both the-

21See, for example, MacKinlay (1987, 1994).
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oretically and empirically. Our results provide compelling motivation for determining risk

factors from economic fundamentals rather than through statistical means. Although this

is an old theme that has its origins in Black (1972), Mayers (1973), and Merton (1973),

it has become less fashionable as competing approaches such as the statistical approach of

Roll and Ross (1980) and Chamberlain and Rothschild (1983) and the empirical approach

of Fama and French (1992) have become more popular. We hope to revive interest in the

lofty goal of identifying risk factors through the logic of equilibrium analysis in general, and

by exploiting the information contained in trading volume in particular.
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Appendix

A.1 Proof of Theorem 1

We prove Theorem 1 by first deriving the investors’ asset demand under the price function

(8) and then solves the coefficient vector a and b to clear the stock market.

For simplicity in notation, let ut ≡ (Dt;Xt), where (·; ·) denotes a column vector and

(·, ·) denotes a row vector. From (8), we have

Qt+1 = Q̄t + Q̃t+1

where

Q̄t = ra+ (1+r)bXt and Q̃t+1 = (1,−b)ut+1

where 1 is an (n× n) identity matrix. We also let λ1t ≡ λXXt + λY Y
i
t and λ2t ≡ λZ(1 +Zi

t).

We now consider investor i’s optimal portfolio choice. Let St be the vector of his stock

holding in period t. His wealth next period is Wt+1 = Wt + St
′Q̄t+1 + St

′(1,−b)ut+1, where

we have omitted superscript i for brevity. Then,

E
[
e−Wt+1−λ1tDMt+1−λ2tXt+1

]
= E

[
e−Wt−St

′Q̄t+
(

St+λ1tι;−b′St+λ2t

)′
ut+1

]

= E

[
e−Wt−St

′Q̄t+
1
2

(
St+λ1tι;−b′St+λ2t

)′
σ
(

St+λ1tι;−b′St+λ2t

)]
.

where σ is the covariance matrix for ut. Thus, the investor’s optimization problem is reduced

to

max
St

St
′Q̄t − 1

2

(
St + λ1tι;−b′St + λ2t

)′
σ
(
St + λ1tι;−b′St + λ2t

)
. (A.1)

The first order condition is

0 = Q̄t −
(
σDD − bσDX

′ − σDXb
′+ σXXbb

′)St −λ1t(σDD − bσDZ)ι−λ2t(σDX − bσXX). (A.2)

The solution gives the investor’s stock demand

St =
(
σDD −bσDX

′−σDXb
′+σXXbb

′)−1 [
Q̄t − λ1t(σDD − bσDZ)ι− λ2t(σDX − bσXX)

]
. (A.3)

Summing (A.2) over all investors and imposing the market clearing condition,
∑

i S
i
t = ι,
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we have

0 = I[ra+ (1 + r)bXt]− σQQι− λXIσQDιXt − λZIσQX. (A.4)

It follows that

ra = (1/I)σQQ ι+ λZσQX

(1 + r)b = λXσQD ι

which uniquely determine the equilibrium a and b. Substitute (A.4) into (A.3), we obtain

investor i’s equilibrium stock holding:

Si
t = (I−1 − λY Y

i
t )ι− [λY (b

′ι)Y i
t + λZZ

i
t ](σQQ)

−1σQZ

where is (9). Q.E.D.

A.2 Proofs of Propositions 1–4

Proof of Proposition 1

A proof of a more general version of Proposition 1 with multiple funds is given in Lo and

Wang (2000a). Q.E.D.

Proof of Proposition 2

Suppose we use the (dollar) return of portfolio S to predict future market return. The

resulting R2 is

R2 =
(
Cov[(S ′Qt)QMt+1]

)2
/
(
Var[S ′Qt]Var[QMt+1]

)
.

To choose the S to maximize R2, we solve the following problem

max
S

S ′σQX(b
′ι)

s.t. S ′σQQS = v.

Up to a scaling constant, the solution is SH = (σQQ)
−1σQX. Q.E.D.
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Proof of Proposition 3

When Xt = 0 ∀ t, Qt = ra + Q̃t = (1,−b)ut. Then, Cov[Q̃t, Q̃Mt] = Cov[Q̃t, ι
′Q̃t] = σDDι,

Var[Q̃Mt] = ι′σDDι and (17) follows. Since σQX = 0 in this case, σMH = 0 and Q̄M = (1/I)σ2
M .

Thus, Q̄ = βMQ̄M which is (18). Q.E.D.

Proof of Proposition 4

Equation (19) simply follows from the joint normality of Q̃t+1, Q̃Mt+1, and Q̃Ht+1. (20) can

be verified by substituting in the expressions for βM , βM , Q̄M and Q̄H, which gives (16c).

Q.E.D.
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Figure 1: Time series of equally- and share-weighted turnover indices from 1962 to 1997.
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Figure 2: Histogram of turnover betas on the equally-weighted turnover index for each of the 5-year
subperiod from 1962 to 1997.
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Figure 3: R2 of the return of the candidate hedging portfolio in predicting future market returns as a
function φ for the second to the seventh 5-year subperiods from 1962 to 1996.
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Figure 4: R2 of the dollar return of the candidate hedging portfolio in predicting future market returns as
a function φ for the second to the seventh 5-year subperiods from 1962 to 1996.
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Table 1

Summary statistics for the restricted volume betas using weekly returns and volume data for NYSE
and AMEX stocks from 1962 to 1996. Turnover over individual stocks is regressed on the equally-
weighted and share- weighted turnover indices, subject to the restriction that the two regression
coefficients, β̂EW

τ and β̂SW
τ , must add up to one. The stocks are then sorted into ten deciles by

β̂EW
τ . The summary statistics are then reported for each decile.

Decile
Sample

β̂EW
τ t(β̂EW

τ ) β̂SW
τ t(β̂SW

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

July 1962 to December 1966 (234 Weeks)

1 218 −0.906 0.119 −49.394 19.023 1.906 0.119 103.944 38.755−2520.4 27817.4
2 219 −0.657 0.069 −26.187 12.805 1.657 0.069 65.488 30.083 56.5 19.5
3 219 −0.432 0.064 −10.917 5.956 1.432 0.064 35.879 17.907 55.0 20.4
4 218 −0.188 0.082 −3.812 2.732 1.188 0.082 22.907 10.555 57.1 17.8
5 219 0.107 0.097 1.273 1.243 0.893 0.097 11.365 4.570 51.5 16.0
6 219 0.494 0.119 4.585 1.943 0.506 0.119 4.847 2.401 50.6 16.5
7 218 0.927 0.145 6.749 2.258 0.073 0.145 0.639 1.190 50.7 15.5
8 219 1.520 0.229 8.229 2.893 −0.520 0.229 −2.714 1.348 49.2 15.4
9 219 2.568 0.434 10.410 3.491 −1.568 0.434 −6.292 2.401 49.4 15.2
10 218 6.563 4.100 11.682 3.880 −5.563 4.100 −9.500 3.332 47.1 15.3

January 1967 to December 1971 (261 Weeks)

1 242 −0.783 0.134 −36.725 17.343 1.783 0.134 84.302 38.946 −175.3 976.2
2 243 −0.529 0.056 −18.772 8.459 1.529 0.056 53.969 22.871 58.2 16.1
3 242 −0.315 0.068 −7.905 4.099 1.315 0.068 32.431 13.771 56.4 16.3
4 243 −0.054 0.089 −1.139 1.845 1.054 0.089 18.479 7.855 55.2 14.3
5 242 0.264 0.087 3.269 1.482 0.736 0.087 9.228 3.260 54.1 13.2
6 243 0.623 0.126 6.035 2.217 0.377 0.126 3.723 1.871 53.5 13.4
7 243 1.110 0.154 8.367 2.719 −0.110 0.154 −0.735 1.178 54.4 13.0
8 242 1.782 0.205 10.314 3.151 −0.782 0.205 −4.477 1.630 53.2 13.2
9 243 2.661 0.330 12.249 3.120 −1.661 0.330 −7.609 2.149 54.6 11.0
10 242 5.410 2.540 13.019 4.172 −4.410 2.540 −10.260 3.383 52.6 14.2

January 1972 to December 1977 (261 Weeks)

1 262 −2.013 0.845 −13.276 4.901 3.013 0.845 20.755 8.319−1147.6 5034.9
2 263 −1.069 0.129 −10.986 3.890 2.069 0.129 21.239 7.045 25.4 44.6
3 263 −0.697 0.096 −6.014 2.466 1.697 0.096 14.600 5.619 44.3 27.1
4 263 −0.359 0.105 −2.825 1.444 1.359 0.105 10.608 4.044 50.3 22.8
5 263 0.015 0.114 0.062 0.765 0.985 0.114 6.620 2.466 53.0 19.2
6 263 0.485 0.156 2.577 1.159 0.515 0.156 2.792 1.354 52.8 15.4
7 263 1.084 0.187 4.684 1.801 −0.084 0.187 −0.322 0.870 51.4 14.5
8 263 1.888 0.289 6.827 2.426 −0.888 0.289 −3.180 1.421 52.8 14.2
9 263 3.161 0.501 8.894 3.311 −2.161 0.501 −6.060 2.431 52.5 14.0
10 262 7.770 4.940 11.202 4.447 −6.770 4.940 −9.480 3.965 52.3 13.8

January 1977 to December 1981 (261 Weeks)

1 242 −3.096 0.347 −22.164 4.591 4.096 0.347 29.341 5.815 −872.7 6958.8
2 243 −2.284 0.192 −15.799 4.883 3.284 0.192 22.701 6.846 32.7 23.6
3 243 −1.654 0.208 −10.524 4.628 2.654 0.208 16.861 7.167 48.9 20.8
4 243 −1.021 0.156 −5.505 2.335 2.021 0.156 10.884 4.304 54.1 18.4
5 243 −0.394 0.189 −1.833 1.180 1.394 0.189 6.387 2.655 55.6 17.1
6 243 0.355 0.250 1.277 1.045 0.645 0.250 2.472 1.438 55.5 16.5
7 243 1.330 0.308 3.864 1.519 −0.330 0.308 −0.894 0.971 53.6 15.7
8 243 2.599 0.457 6.198 2.242 −1.599 0.457 −3.782 1.560 54.5 15.7
9 243 4.913 0.809 8.860 2.983 −3.913 0.809 −7.038 2.487 55.3 14.5
10 242 10.090 4.231 11.202 3.618 −9.090 4.231 −9.980 3.311 55.2 13.4
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Table 1 (continued)

Decile
Sample

β̂EW
τ t(β̂EW

τ ) β̂SW
τ t(β̂SW

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1982 to December 1986 (261 Weeks)

1 227 −6.968 3.038 −5.636 2.328 7.968 3.038 6.525 2.577 46.6 15.9
2 228 −2.257 0.624 −3.249 1.604 3.257 0.624 4.724 2.199 52.7 20.2
3 228 −0.640 0.380 −1.223 0.967 1.640 0.380 3.180 1.667 45.5 136.9
4 227 0.501 0.283 1.166 0.841 0.499 0.283 1.177 0.903 55.4 22.4
5 228 1.357 0.231 3.540 1.655 −0.357 0.231 −0.954 0.786 41.3 90.7
6 228 2.077 0.201 5.319 2.159 −1.077 0.201 −2.758 1.216 −19.5 686.3
7 227 2.754 0.196 7.402 2.342 −1.754 0.196 −4.710 1.531 28.3 52.8
8 228 3.431 0.201 9.244 2.667 −2.431 0.201 −6.548 1.922 3.2 101.8
9 228 4.168 0.237 11.354 2.905 −3.168 0.237 −8.630 2.248 −163.1 1678.6
10 227 5.399 1.170 14.045 5.229 −4.399 1.170 −11.392 4.405 −348.1 1027.1

January 1987 to December 1991 (261 Weeks)

1 216 −8.487 7.040 −7.093 3.763 9.487 7.040 8.082 4.137 50.2 16.8
2 217 −2.866 0.725 −4.616 2.439 3.866 0.725 6.263 3.224 54.8 18.8
3 217 −0.843 0.494 −1.832 1.512 1.843 0.494 4.097 2.537 56.8 21.0
4 217 0.441 0.330 1.196 1.277 0.559 0.330 1.423 1.268 57.0 19.9
5 217 1.502 0.317 4.887 3.062 −0.502 0.317 −1.693 1.583 57.8 18.8
6 217 2.510 0.280 8.434 4.070 −1.510 0.280 −5.074 2.582 51.2 18.7
7 217 3.389 0.234 12.139 4.615 −2.389 0.234 −8.567 3.325 42.2 15.6
8 217 4.157 0.196 15.329 4.607 −3.157 0.196 −11.637 3.513 23.8 19.8
9 217 4.836 0.212 18.370 4.580 −3.836 0.212 −14.572 3.673 −27.0 66.1
10 217 5.743 0.402 21.430 5.101 −4.743 0.402 −17.682 4.229 −921.9 4682.1

January 1992 to December 1996 (261 Weeks)

1 241 −4.275 2.858 −2.409 1.092 5.275 2.858 3.097 1.342 −423.6 3336.7
2 241 −1.074 0.384 −1.277 0.741 2.074 0.384 2.538 1.369 −147.7 2631.2
3 242 −0.245 0.155 −0.371 0.301 1.245 0.155 1.944 0.899 −14.7 508.2
4 241 0.189 0.100 0.298 0.203 0.811 0.100 1.296 0.534 −135.1 899.3
5 241 0.520 0.098 0.779 0.313 0.480 0.098 0.729 0.330−1353.9 5755.2
6 242 0.865 0.106 1.226 0.414 0.135 0.106 0.196 0.177 −197.6 669.1
7 241 1.303 0.159 1.725 0.641 −0.303 0.159 −0.400 0.260 −130.3 931.7
8 242 2.022 0.254 2.391 0.824 −1.022 0.254 −1.202 0.480 −58.9 684.5
9 241 3.271 0.498 3.061 1.027 −2.271 0.498 −2.117 0.769 −24.9 225.8
10 241 8.234 9.836 3.844 1.360 −7.234 9.836 −3.237 1.190 −219.9 1145.7
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Table 3

Summary statistics for the returns and dollar returns of the hedging portfolio con-
structed from individual stocks’ volume data using weekly returns and volume data
for NYSE and AMEX stocks from 1962 to 1996.

Statistic
Sample Period

Entire 67–71 72–76 77–81 82–86 87–91 92–96

Hedging Portfolio Return RHt

Mean 0.013 0.001 0.005 0.007 0.011 0.052 0.003
S.D. 0.198 0.029 0.039 0.045 0.046 0.477 0.013
Skewness 24.092 0.557 0.542 −0.330 0.270 10.200 −0.214
Kurtosis 747.809 1.479 7.597 0.727 1.347 130.476 0.945
ρ1 0.017 0.199 0.141 0.196 0.125 0.004 −0.165
ρ2 −0.058 0.018 0.006 0.071 0.036 −0.070 −0.028
ρ3 0.104 −0.028 −0.036 −0.010 0.073 0.099 −0.003
ρ4 0.184 0.070 0.043 0.045 −0.113 0.182 −0.010
ρ5 −0.086 0.114 0.144 −0.026 −0.103 −0.099 −0.025
ρ6 0.079 −0.003 0.258 −0.089 −0.093 0.072 0.020
ρ7 0.217 0.037 0.083 −0.031 −0.173 0.218 0.098
ρ8 −0.098 0.002 −0.124 −0.008 0.006 −0.111 −0.130
ρ9 0.048 −0.002 −0.008 −0.060 0.011 0.041 0.006
ρ10 −0.044 −0.017 0.174 −0.037 −0.117 −0.055 0.035

Hedging Portfolio Dollar Return QHt

Mean 2.113 0.072 1.236 2.258 5.589 3.244 0.281
S.D. 16.836 3.639 11.059 21.495 25.423 20.906 1.845
Skewness 0.717 0.210 −0.144 −0.495 −0.080 2.086 0.215
Kurtosis 14.082 −0.085 0.500 2.286 6.537 13.286 2.048
ρ1 0.164 0.219 0.251 0.200 0.098 0.157 −0.122
ρ2 0.082 0.014 0.148 0.052 0.125 −0.015 −0.095
ρ3 0.039 0.003 0.077 0.010 0.071 −0.041 0.037
ρ4 0.021 0.061 0.084 0.127 −0.037 −0.066 0.014
ρ5 0.036 0.116 0.102 −0.002 0.051 −0.016 −0.027
ρ6 −0.010 −0.044 0.127 −0.094 −0.053 0.057 −0.014
ρ7 −0.006 0.034 0.013 −0.060 −0.014 0.010 0.107
ρ8 −0.046 0.005 −0.055 −0.028 −0.127 0.016 −0.075
ρ9 0.027 −0.016 0.045 −0.006 0.047 0.005 −0.006
ρ10 −0.001 −0.030 0.042 0.026 0.014 −0.082 0.031
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Table 5

Correlation matrix for weekly returns on the CRSP value-weighted index (RV Wt), the CRSP
equal-weighted index (REWt), the hedging-portfolio return (RHt), the hedging-portfolio dollar-
return (QHt), the return of the small-minus-big capitalization stocks portfolio (RSMBt), the return
return ROFPt of the optimal-forecast portfolio (OFP) for the set of 25 market-beta-sorted basis
portfolios, and the equal-weighted and share-weighted turnover indices (τEW

t and τSW
t ), using

CRSP weekly returns and volume data for NYSE and AMEX stocks from 1962 to 1996 and in
five-year subperiods.

RV Wt REWt RHt QHt RSMBt ROFPt τEW
t τSW

t

July 1962 to December 1996 (1,800 Weeks)

RV Wt 100.0 88.7 −13.2 15.6 14.0 −26.9 10.6 8.1
REWt 88.7 100.0 −15.8 4.6 53.5 −25.3 12.6 5.5

RHt −13.2 −15.8 100.0 40.3 −10.7 −11.0 14.9 16.8

QHt 15.6 4.6 40.3 100.0 −13.3 −6.7 7.5 9.9

RSMBt 14.0 53.5 −10.7 −13.3 100.0 −4.8 4.6 −5.8

ROFPt −26.9 −25.3 −11.0 −6.7 −4.8 100.0 −4.9 −2.4

τEW
t 10.6 12.6 14.9 7.5 4.6 −4.9 100.0 86.2

τSW
t 8.1 5.5 16.8 9.9 −5.8 −2.4 86.2 100.0

January 1967 to December 1971 (261 Weeks)

RV Wt 100.0 92.6 95.6 91.5 62.7 −76.2 19.1 26.3

REWt 92.6 100.0 92.3 88.4 84.5 −71.9 32.8 36.9

RHt 95.6 92.3 100.0 97.4 70.7 −65.0 22.0 29.6

QHt 91.5 88.4 97.4 100.0 69.8 −60.1 22.9 29.8

RSMBt 62.7 84.5 70.7 69.8 100.0 −46.6 39.7 38.2

ROFPt −76.2 −71.9 −65.0 −60.1 −46.6 100.0 −7.5 −10.4

τEW
t 19.1 32.8 22.0 22.9 39.7 −7.5 100.0 93.1

τSW
t 26.3 36.9 29.6 29.8 38.2 −10.4 93.1 100.0

January 1972 to December 1977 (261 Weeks)

RV Wt 100.0 84.5 13.3 14.2 −6.9 −59.5 19.0 27.6

REWt 84.5 100.0 −11.5 −18.2 44.1 −45.4 24.3 35.4

RHt 13.3 −11.5 100.0 86.6 −55.2 −8.3 −2.8 −1.9

QHt 14.2 −18.2 86.6 100.0 −70.4 −11.6 −4.1 −4.2

RSMBt −6.9 44.1 −55.2 −70.4 100.0 15.0 11.3 16.3

ROFPt −59.5 −45.4 −8.3 −11.6 15.0 100.0 −6.7 −12.4

τEW
t 19.0 24.3 −2.8 −4.1 11.3 −6.7 100.0 87.3

τSW
t 27.6 35.4 −1.9 −4.2 16.3 −12.4 87.3 100.0

January 1977 to December 1981 (261 Weeks)

RV Wt 100.0 90.2 85.4 82.3 23.8 22.6 12.6 15.7

REWt 90.2 100.0 88.5 82.0 59.3 12.7 7.6 8.1

RHt 85.4 88.5 100.0 87.1 51.2 9.3 7.6 8.6

QHt 82.3 82.0 87.1 100.0 49.0 10.4 11.0 12.3

RSMBt 23.8 59.3 51.2 49.0 100.0 −16.7 −8.3 −12.7

ROFPt 22.6 12.7 9.3 10.4 −16.7 100.0 10.7 10.4

τEW
t 12.6 7.6 7.6 11.0 −8.3 10.7 100.0 94.9

τSW
t 15.7 8.1 8.6 12.3 −12.7 10.4 94.9 100.0
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Table 5 (continued)

RV Wt REWt RHt QHt RSMBt ROFPt τEW
t τSW

t

January 1982 to December 1986 (261 Weeks)

RV Wt 100.0 92.1 −17.0 6.1 −2.8 −23.5 27.1 28.6

REWt 92.1 100.0 −34.1 −10.2 30.6 −30.6 36.0 31.6

RHt −17.0 −34.1 100.0 73.3 −54.5 13.5 −12.2 −7.8

QHt 6.1 −10.2 73.3 100.0 −41.1 8.0 1.3 4.2

RSMBt −2.8 30.6 −54.5 −41.1 100.0 −15.9 19.9 6.5

ROFPt −23.5 −30.6 13.5 8.0 −15.9 100.0 −20.7 −17.9

τEW
t 27.1 36.0 −12.2 1.3 19.9 −20.7 100.0 93.2

τSW
t 28.6 31.6 −7.8 4.2 6.5 −17.9 93.2 100.0

January 1987 to December 1991 (261 Weeks)

RV Wt 100.0 91.2 −40.4 −36.0 8.1 18.9 −15.0 −17.0

REWt 91.2 100.0 −44.3 −46.5 44.6 36.3 −16.7 −20.9

RHt −40.4 −44.3 100.0 58.1 −23.8 −26.2 43.2 43.7

QHt −36.0 −46.5 58.1 100.0 −37.1 −32.8 25.3 24.0

RSMBt 8.1 44.6 −23.8 −37.1 100.0 45.1 −11.4 −16.9

ROFPt 18.9 36.3 −26.2 −32.8 45.1 100.0 −18.5 −19.7

τEW
t −15.0 −16.7 43.2 25.3 −11.4 −18.5 100.0 94.7

τSW
t −17.0 −20.9 43.7 24.0 −16.9 −19.7 94.7 100.0

January 1992 to December 1996 (261 Weeks)

RV Wt 100.0 84.3 95.5 66.5 −1.2 −13.1 15.5 10.4

REWt 84.3 100.0 73.2 40.5 46.1 −5.2 18.2 5.4

RHt 95.5 73.2 100.0 84.8 −19.7 −8.7 15.3 11.2

QHt 66.5 40.5 84.8 100.0 −41.6 0.2 12.0 9.2

RSMBt −1.2 46.1 −19.7 −41.6 100.0 11.3 3.0 −10.1

ROFPt −13.1 −5.2 −8.7 0.2 11.3 100.0 −3.0 −3.3

τEW
t 15.5 18.2 15.3 12.0 3.0 −3.0 100.0 92.7

τSW
t 10.4 5.4 11.2 9.2 −10.1 −3.3 92.7 100.0
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Table 6a

Summary statistics for market betas estimated with weekly returns data for NYSE and AMEX
stocks from July 1962 to December 1996 in five-year subperiods. Returns of individual stocks are
regressed on the returns of the CRSP value-weighted returns index, yielding the beta coefficient β̂M

j .
The betas are sorted into deciles and means and standard deviations of the estimated coefficients
are reported for each decile.

Decile
Sample

β̂M
τ t(β̂M

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D.

January 1967 to December 1971 (261 Weeks)

1 242 0.432 0.136 4.103 1.990 7.2 5.2
2 243 0.710 0.058 5.532 1.881 11.9 6.2
3 242 0.880 0.041 6.343 2.233 14.9 7.7
4 243 1.020 0.044 6.811 2.476 17.3 8.6
5 242 1.168 0.040 7.122 2.345 18.1 8.1
6 243 1.307 0.038 7.166 2.293 18.4 8.6
7 243 1.463 0.050 7.682 2.180 20.7 7.9
8 242 1.648 0.061 7.554 2.165 19.9 8.2
9 243 1.881 0.077 8.290 2.158 23.4 7.7
10 242 2.282 0.239 8.814 2.190 26.7 8.2

January 1972 to December 1977 (261 Weeks)

1 262 0.300 0.146 2.774 1.853 3.7 4.3
2 263 0.537 0.047 4.493 2.051 8.1 6.4
3 263 0.680 0.038 5.161 2.067 10.3 6.7
4 263 0.792 0.030 5.671 2.331 12.0 7.9
5 263 0.896 0.030 6.334 2.422 14.3 8.5
6 263 1.004 0.031 7.011 2.793 16.9 9.7
7 263 1.113 0.032 7.365 3.120 18.2 11.2
8 263 1.242 0.046 7.550 2.788 18.9 10.1
9 263 1.428 0.065 8.337 2.957 21.9 10.6
10 262 1.818 0.240 9.085 2.949 25.4 10.4

January 1977 to December 1981 (261 Weeks)

1 242 0.262 0.111 2.324 1.549 2.5 3.1
2 243 0.490 0.048 4.046 1.885 6.8 5.2
3 243 0.643 0.038 4.689 1.806 8.6 5.5
4 243 0.761 0.032 5.475 2.047 11.2 6.5
5 243 0.870 0.033 6.103 2.485 13.6 8.7
6 243 0.977 0.026 6.479 2.609 15.1 9.1
7 243 1.091 0.037 7.162 2.709 17.6 9.8
8 243 1.223 0.040 7.631 2.793 19.2 10.1
9 243 1.397 0.066 8.050 2.609 21.1 9.3
10 242 1.756 0.220 9.013 2.762 26.6 9.7

January 1982 to December 1986 (261 Weeks)

1 227 0.208 0.157 1.645 1.354 1.3 2.3
2 228 0.456 0.046 3.744 1.681 5.8 4.5
3 228 0.590 0.040 4.327 1.973 7.9 6.0
4 227 0.718 0.032 4.931 1.833 9.8 6.1
5 228 0.823 0.033 5.617 2.084 12.1 7.2
6 228 0.928 0.027 6.269 2.493 14.4 8.4
7 227 1.032 0.034 7.189 2.524 17.6 9.0
8 228 1.141 0.035 7.576 2.795 19.5 10.0
9 228 1.302 0.060 8.050 2.810 21.7 9.9
10 227 1.667 0.231 8.231 3.201 22.7 11.3
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Table 6a (continued)

Decile
Sample

β̂M
τ t(β̂M

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D.

January 1987 to December 1991 (261 Weeks)

1 216 0.268 0.219 3.368 2.845 6.2 7.5
2 217 0.540 0.061 4.659 2.807 9.6 8.8
3 217 0.701 0.036 5.479 2.726 12.3 9.4
4 217 0.839 0.040 6.750 3.427 16.7 11.8
5 217 0.956 0.032 7.920 3.860 21.5 13.6
6 217 1.056 0.025 8.350 4.121 23.1 14.3
7 217 1.151 0.031 8.979 4.061 25.0 14.5
8 217 1.264 0.033 9.001 4.202 25.6 15.0
9 217 1.418 0.054 9.490 4.345 27.7 15.0
10 217 1.737 0.217 8.926 4.058 27.7 14.5

January 1992 to December 1996 (261 Weeks)

1 241 −0.001 0.448 0.394 0.788 −0.2 0.6
2 241 0.368 0.050 2.301 1.312 2.3 2.6
3 242 0.515 0.033 2.990 1.614 3.9 3.9
4 241 0.636 0.037 3.337 1.652 4.8 4.2
5 241 0.763 0.040 3.972 1.837 6.7 5.4
6 242 0.881 0.030 4.676 2.134 8.9 6.3
7 241 1.000 0.035 4.959 2.187 9.9 6.8
8 242 1.139 0.045 5.651 2.620 12.5 9.0
9 241 1.336 0.076 5.591 2.484 12.3 8.5
10 241 1.820 0.340 5.760 2.794 13.8 9.3
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Table 6b

Summary statistics for market and hedging-portfolio return betas estimated with weekly returns
data for NYSE and AMEX stocks from July 1962 to December 1996 in five-year subperiods.
Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index
and the hedging-portfolio return index RHt, yielding two beta coefficients β̂M

j and β̂HR
j . The pairs

are sorted into deciles according to their market betas and means and standard deviations of the
estimated coefficients are reported for each decile.

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂HR
τ t(β̂HR

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1967 to December 1971 (261 Weeks)

1 242 −1.250 0.605 −1.451 0.755 2.027 0.640 3.571 1.514 22.4 12.9
2 243 −0.297 0.155 −0.405 0.248 1.196 0.436 2.347 0.939 17.9 11.0
3 242 0.147 0.101 0.233 0.207 0.806 0.419 1.611 0.796 15.9 9.6
4 243 0.420 0.070 0.744 0.350 0.553 0.358 1.224 0.758 16.8 9.5
5 242 0.648 0.060 1.192 0.578 0.391 0.359 0.777 0.834 16.7 8.7
6 243 0.852 0.057 1.639 0.711 0.213 0.373 0.339 0.913 17.1 9.1
7 243 1.053 0.061 2.234 0.908 0.056 0.336 −0.128 1.064 18.8 8.4
8 242 1.263 0.063 2.493 1.092 −0.049 0.345 −0.450 1.177 18.7 8.3
9 243 1.527 0.091 3.113 1.368 −0.227 0.331 −0.953 1.273 20.8 8.8
10 242 2.080 0.341 3.541 1.540 −0.496 0.367 −1.438 1.357 22.1 9.9

January 1972 to December 1977 (261 Weeks)

1 262 0.316 0.157 3.025 1.924 −0.099 0.134 −0.811 1.230 4.7 4.6
2 263 0.565 0.048 4.706 2.104 −0.110 0.151 −0.853 1.404 9.4 6.8
3 263 0.714 0.040 5.427 2.168 −0.129 0.159 −1.055 1.361 11.5 7.4
4 263 0.839 0.032 6.023 2.371 −0.166 0.154 −1.378 1.271 13.6 8.5
5 263 0.947 0.029 6.673 2.567 −0.171 0.171 −1.327 1.365 16.0 9.1
6 263 1.054 0.033 7.197 2.820 −0.187 0.188 −1.454 1.397 18.0 10.1
7 263 1.180 0.038 7.296 3.077 −0.247 0.212 −1.697 1.444 18.6 11.2
8 263 1.315 0.046 7.866 2.768 −0.265 0.213 −1.931 1.402 20.5 10.3
9 263 1.511 0.068 8.120 2.948 −0.312 0.211 −2.135 1.294 21.7 10.4
10 262 1.930 0.238 9.378 3.010 −0.439 0.297 −2.717 1.329 27.3 10.4

January 1977 to December 1981 (261 Weeks)

1 242 −0.244 0.295 −0.523 0.519 0.350 0.202 2.335 1.052 5.7 5.7
2 243 0.137 0.059 0.493 0.341 0.250 0.162 1.997 1.151 8.0 6.9
3 243 0.308 0.040 1.246 0.600 0.186 0.149 1.634 1.232 9.3 6.2
4 243 0.428 0.034 1.858 0.850 0.162 0.155 1.459 1.393 11.8 7.8
5 243 0.528 0.027 2.380 1.019 0.151 0.164 1.324 1.454 14.3 8.1
6 243 0.629 0.032 2.666 1.139 0.151 0.156 1.325 1.415 16.4 8.5
7 243 0.742 0.035 3.124 1.163 0.131 0.143 1.233 1.385 18.4 9.1
8 243 0.867 0.037 3.464 1.357 0.122 0.142 1.122 1.303 20.1 10.4
9 243 1.035 0.068 4.205 1.742 0.093 0.143 0.795 1.259 23.2 10.7
10 242 1.414 0.249 4.829 2.215 0.033 0.172 0.226 1.405 25.6 12.9

January 1982 to December 1986 (261 Weeks)

1 227 0.202 0.164 1.573 1.343 −0.079 0.164 −0.465 1.360 1.7 2.7
2 228 0.457 0.044 3.672 1.724 −0.049 0.160 −0.023 1.877 6.5 5.2
3 228 0.590 0.040 4.440 2.107 −0.049 0.182 0.040 2.123 9.4 7.6
4 227 0.714 0.032 4.864 1.793 −0.086 0.147 −0.671 1.578 10.4 6.3
5 228 0.818 0.031 5.598 2.078 −0.093 0.150 −0.821 1.510 12.8 7.4
6 228 0.923 0.028 6.362 2.448 −0.121 0.180 −1.006 1.772 15.9 8.3
7 227 1.028 0.033 7.141 2.651 −0.107 0.161 −1.017 1.570 18.8 9.5
8 228 1.136 0.036 7.454 2.830 −0.127 0.161 −1.218 1.470 19.9 10.1
9 228 1.299 0.059 8.007 2.886 −0.178 0.204 −1.765 1.910 23.3 10.5
10 227 1.660 0.235 8.147 3.360 −0.229 0.237 −1.913 2.052 24.4 12.5
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Table 6b (continued)

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂HR
τ t(β̂HR

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1987 to December 1991 (261 Weeks)

1 216 0.205 0.257 2.267 2.359 −0.082 0.174 −0.724 1.657 5.1 6.1
2 217 0.484 0.048 4.365 2.830 −0.048 0.116 −0.351 2.057 10.7 9.2
3 217 0.637 0.041 4.923 2.456 −0.063 0.092 −1.080 1.579 13.6 9.3
4 217 0.775 0.039 5.373 2.931 −0.075 0.098 −1.012 1.644 15.1 11.4
5 217 0.898 0.035 6.868 3.184 −0.064 0.106 −0.957 1.623 20.8 11.9
6 217 1.005 0.028 7.740 3.675 −0.063 0.112 −0.756 1.587 23.9 13.6
7 217 1.098 0.028 8.356 4.074 −0.059 0.086 −0.864 1.389 26.4 15.1
8 217 1.215 0.038 8.771 4.157 −0.068 0.103 −0.927 1.461 27.8 15.7
9 217 1.362 0.050 8.651 4.134 −0.064 0.108 −0.849 1.342 27.6 15.8
10 217 1.699 0.239 8.413 3.661 −0.119 0.207 −0.893 1.280 28.4 14.6

January 1992 to December 1996 (261 Weeks)

1 241 −1.526 1.776 −1.784 1.521 2.269 1.841 2.727 2.043 9.9 10.1
2 241 −0.031 0.209 −0.058 0.347 0.660 0.456 0.921 0.764 6.2 8.1
3 242 0.582 0.153 0.790 0.406 0.027 0.450 0.059 0.554 6.4 8.6
4 241 1.086 0.138 1.370 0.602 −0.469 0.440 −0.521 0.488 6.4 7.3
5 241 1.506 0.118 1.833 0.738 −0.799 0.413 −0.881 0.497 8.0 8.0
6 242 1.965 0.132 2.156 0.935 −1.279 0.507 −1.260 0.603 7.7 7.4
7 241 2.487 0.177 2.776 1.078 −1.737 0.452 −1.750 0.709 10.0 8.4
8 242 3.166 0.213 3.067 1.182 −2.344 0.521 −2.064 0.805 10.3 8.6
9 241 4.062 0.327 3.380 1.432 −3.300 0.673 −2.464 0.997 10.4 8.8
10 241 6.789 2.540 4.211 2.113 −6.058 2.827 −3.342 1.684 12.4 9.9
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Table 6c

Summary statistics for market and hedging-portfolio dollar-return betas estimated with weekly
returns data for NYSE and AMEX stocks from July 1962 to December 1996 in five-year subperiods.
Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index
and the hedging-portfolio dollar-return index QHt, yielding two beta coefficients β̂M

j and β̂HQ
j . The

pairs are sorted into deciles according to their market betas and means and standard deviations
of the estimated coefficients are reported for each decile.

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂HQ
τ t(β̂HQ

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1967 to December 1971 (261 Weeks)

1 242 −0.535 0.460 −0.707 0.541 0.011 0.004 2.699 1.171 15.7 11.0
2 243 0.142 0.101 0.270 0.237 0.006 0.003 1.838 0.984 14.7 9.9
3 242 0.440 0.073 0.916 0.409 0.005 0.003 1.406 0.982 16.2 9.8
4 243 0.652 0.054 1.580 0.761 0.003 0.003 0.799 1.106 16.7 8.6
5 242 0.831 0.049 2.049 0.913 0.002 0.003 0.352 1.105 16.9 8.8
6 243 1.007 0.051 2.331 0.959 0.001 0.003 0.133 1.091 18.1 8.2
7 243 1.187 0.053 2.835 1.204 0.000 0.003 −0.236 1.334 19.9 8.1
8 242 1.393 0.062 3.195 1.510 −0.001 0.003 −0.550 1.333 21.3 8.9
9 243 1.651 0.085 3.343 1.373 −0.001 0.003 −0.673 1.252 22.0 9.0
10 242 2.280 0.472 3.555 1.261 −0.003 0.003 −0.982 1.032 23.1 9.6

January 1972 to December 1977 (261 Weeks)

1 262 0.341 0.155 3.248 1.949 −0.001 0.001 −0.932 1.226 5.4 5.0
2 263 0.595 0.052 4.836 2.049 −0.001 0.001 −1.111 1.512 10.1 7.1
3 263 0.754 0.041 5.620 2.246 −0.001 0.001 −1.461 1.461 12.5 8.2
4 263 0.885 0.032 6.182 2.451 −0.001 0.001 −1.522 1.370 14.4 9.3
5 263 0.995 0.035 6.844 2.524 −0.001 0.001 −1.786 1.524 16.9 9.4
6 263 1.108 0.032 7.368 2.953 −0.001 0.001 −1.856 1.686 18.9 11.3
7 263 1.241 0.041 7.399 2.780 −0.002 0.001 −2.173 1.476 19.1 10.6
8 263 1.387 0.046 7.777 2.589 −0.002 0.001 −2.507 1.341 20.1 9.6
9 263 1.591 0.075 8.113 2.846 −0.002 0.001 −2.765 1.308 21.5 10.1
10 262 2.023 0.241 9.674 3.046 −0.003 0.001 −3.359 1.458 28.1 10.6

January 1977 to December 1981 (261 Weeks)

1 242 −0.289 0.362 −0.550 0.562 0.001 0.001 2.288 0.986 5.8 5.5
2 243 0.179 0.075 0.613 0.410 0.001 0.000 1.679 1.150 7.5 6.5
3 243 0.388 0.047 1.446 0.700 0.000 0.000 1.287 1.305 9.8 8.2
4 243 0.532 0.033 2.148 0.937 0.000 0.000 1.009 1.416 12.2 7.4
5 243 0.641 0.034 2.671 1.173 0.000 0.000 0.679 1.558 13.7 8.0
6 243 0.748 0.033 3.050 1.397 0.000 0.000 0.522 1.634 15.4 9.2
7 243 0.869 0.034 3.509 1.410 0.000 0.000 0.445 1.648 18.2 9.4
8 243 1.008 0.045 3.885 1.477 0.000 0.000 0.263 1.380 19.5 9.7
9 243 1.180 0.060 4.509 1.745 0.000 0.000 0.125 1.507 23.3 10.8
10 242 1.552 0.261 5.386 2.286 0.000 0.001 −0.747 1.582 25.6 11.9

January 1982 to December 1986 (261 Weeks)

1 227 0.215 0.159 1.734 1.437 0.000 0.001 −0.094 1.384 2.1 3.4
2 228 0.460 0.042 3.784 1.757 0.000 0.001 0.362 1.793 7.2 6.5
3 228 0.600 0.045 4.331 1.756 0.000 0.001 0.010 1.792 9.1 7.7
4 227 0.738 0.035 4.989 1.786 0.000 0.001 −0.401 1.350 10.5 6.5
5 228 0.844 0.033 5.618 2.363 0.000 0.001 −0.556 1.542 12.8 8.4
6 228 0.957 0.030 6.491 2.431 0.000 0.001 −0.801 1.466 15.8 8.9
7 227 1.063 0.033 6.964 2.727 0.000 0.000 −1.065 1.332 17.4 9.6
8 228 1.181 0.039 7.554 2.724 0.000 0.000 −1.309 1.255 19.6 9.9
9 228 1.359 0.067 8.092 2.949 0.000 0.001 −1.613 1.607 22.6 10.3
10 227 1.743 0.250 8.443 3.476 −0.001 0.001 −2.273 1.878 24.3 12.2
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Table 6c (continued)

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂HQ
τ t(β̂HQ

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1987 to December 1991 (261 Weeks)

1 216 0.225 0.226 2.499 2.477 −0.001 0.001 −0.378 1.768 5.1 6.3
2 217 0.501 0.053 4.629 2.998 0.000 0.001 −0.013 2.282 11.0 9.7
3 217 0.660 0.039 5.205 2.573 0.000 0.001 −0.845 1.507 12.9 8.9
4 217 0.794 0.039 6.035 3.358 0.000 0.001 −0.718 1.985 16.5 12.2
5 217 0.918 0.031 7.190 3.599 0.000 0.001 −0.843 1.638 20.5 12.9
6 217 1.017 0.028 7.886 3.813 0.000 0.001 −0.909 1.458 23.3 13.4
7 217 1.111 0.028 8.692 3.965 0.000 0.001 −1.058 1.384 26.3 14.3
8 217 1.222 0.034 9.086 4.338 −0.001 0.001 −1.153 1.438 27.9 15.8
9 217 1.364 0.050 9.211 4.311 −0.001 0.001 −1.390 1.264 28.7 15.7
10 217 1.701 0.233 8.494 3.768 −0.001 0.001 −1.302 1.310 28.0 14.5

January 1992 to December 1996 (261 Weeks)

1 241 −0.990 1.628 −0.866 0.807 0.013 0.016 1.839 1.487 5.7 8.1
2 241 0.169 0.122 0.378 0.368 0.003 0.003 0.871 0.855 6.2 7.5
3 242 0.526 0.092 1.026 0.504 0.000 0.003 0.140 0.709 5.7 7.6
4 241 0.846 0.099 1.609 0.750 −0.001 0.003 −0.212 0.641 7.7 8.2
5 241 1.177 0.088 2.072 0.883 −0.003 0.003 −0.714 0.586 7.5 7.6
6 242 1.509 0.100 2.499 1.100 −0.005 0.003 −1.118 0.619 8.5 8.3
7 241 1.877 0.124 2.985 1.229 −0.008 0.003 −1.559 0.721 9.3 7.3
8 242 2.365 0.160 3.276 1.458 −0.011 0.004 −1.815 0.828 10.8 9.3
9 241 3.101 0.250 3.724 1.624 −0.016 0.005 −2.343 1.033 11.4 8.6
10 241 5.284 2.356 3.925 1.876 −0.036 0.026 −2.855 1.246 11.1 8.8
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Table 6d

Summary statistics for market and SMB-portfolio return betas estimated with weekly returns data
for NYSE and AMEX stocks from July 1962 to December 1996 in five-year subperiods. Returns of
individual stocks are regressed on the returns of the CRSP value-weighted returns index and the
return to a portfolio of small-minus-big capitalization stocks RSMBt, yielding two beta coefficients
β̂M

j and β̂SMB
j . The pairs are sorted into deciles according to their market betas and means and

standard deviations of the estimated coefficients are reported for each decile.

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂SMB
τ t(β̂SMB

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1967 to December 1971 (261 Weeks)

1 242 0.124 0.213 0.699 0.914 1.311 0.874 2.937 1.402 9.1 6.0
2 243 0.423 0.049 2.398 1.224 0.927 0.802 2.339 1.689 12.4 5.5
3 242 0.572 0.041 3.017 1.373 0.909 0.832 2.221 1.835 15.0 5.9
4 243 0.708 0.037 3.715 1.560 0.871 0.862 2.075 1.829 17.7 6.2
5 242 0.824 0.032 3.951 1.573 0.848 0.769 2.027 1.793 18.8 6.8
6 243 0.926 0.028 4.498 1.834 0.860 0.768 2.030 1.711 21.3 6.7
7 243 1.039 0.034 4.865 1.880 0.834 0.782 1.916 1.805 22.5 6.6
8 242 1.178 0.046 5.444 2.198 0.881 0.785 1.981 1.789 26.1 7.0
9 243 1.369 0.065 5.697 2.066 0.868 0.752 1.893 1.710 26.9 7.7
10 242 1.717 0.207 6.248 1.855 0.952 0.704 2.038 1.474 31.4 8.0

January 1972 to December 1977 (261 Weeks)

1 262 0.317 0.168 3.059 2.073 0.873 0.711 3.374 1.434 8.7 5.9
2 263 0.564 0.048 4.884 2.163 0.889 0.557 3.563 1.426 13.2 6.6
3 263 0.713 0.040 5.686 2.201 0.913 0.576 3.457 1.693 15.5 7.0
4 263 0.830 0.030 6.254 2.429 0.970 0.630 3.439 1.933 17.6 7.8
5 263 0.933 0.031 6.687 2.548 1.016 0.689 3.476 2.133 19.3 8.4
6 263 1.040 0.034 7.548 2.847 0.929 0.741 3.056 2.209 21.9 9.2
7 263 1.157 0.036 7.600 3.020 1.120 0.766 3.427 2.396 22.5 10.3
8 263 1.287 0.043 8.095 2.965 1.138 0.836 3.316 2.536 24.3 10.0
9 263 1.471 0.065 8.326 2.893 1.235 0.800 3.451 2.180 25.2 9.6
10 262 1.857 0.221 9.475 2.904 1.364 0.947 3.533 1.946 29.5 9.3

January 1977 to December 1981 (261 Weeks)

1 242 0.183 0.123 1.503 1.310 0.676 0.665 2.053 1.335 4.0 3.2
2 243 0.411 0.046 3.313 1.603 0.636 0.549 2.159 1.533 8.2 4.6
3 243 0.548 0.038 4.052 1.717 0.703 0.549 2.393 1.582 11.0 5.3
4 243 0.661 0.032 4.529 1.767 0.779 0.534 2.588 1.422 12.9 5.8
5 243 0.765 0.028 4.834 1.906 0.865 0.583 2.611 1.480 14.2 6.3
6 243 0.871 0.031 5.958 2.352 0.792 0.652 2.456 1.822 18.1 7.6
7 243 0.982 0.035 6.551 2.577 0.773 0.620 2.331 1.782 20.1 8.3
8 243 1.108 0.039 7.148 2.594 0.844 0.622 2.548 1.910 22.9 8.7
9 243 1.288 0.060 8.094 2.751 0.718 0.668 2.049 2.221 25.8 8.9
10 242 1.638 0.219 8.809 2.915 0.785 0.641 2.089 1.790 30.2 9.6

January 1982 to December 1986 (261 Weeks)

1 227 0.215 0.157 1.690 1.373 0.672 0.797 1.519 1.326 2.7 3.0
2 228 0.463 0.045 3.872 1.687 0.510 0.557 1.389 1.612 7.4 4.5
3 228 0.599 0.041 4.429 1.988 0.568 0.628 1.370 1.884 9.6 6.5
4 227 0.727 0.032 4.952 1.881 0.765 0.677 1.905 1.508 11.5 6.3
5 228 0.831 0.034 5.857 2.103 0.705 0.675 1.870 1.827 14.5 7.4
6 228 0.938 0.027 6.513 2.604 0.796 0.726 1.964 1.881 16.9 8.6
7 227 1.040 0.033 7.154 2.593 0.722 0.764 1.781 1.876 19.1 8.9
8 228 1.150 0.035 7.769 2.697 0.662 0.700 1.747 1.822 21.3 9.7
9 228 1.317 0.060 8.188 2.903 0.842 0.794 2.014 1.878 23.8 10.0
10 227 1.681 0.226 8.286 3.262 1.117 0.872 2.302 1.690 24.4 11.5
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Table 6d (continued)

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂SMB
τ t(β̂SMB

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1987 to December 1991 (261 Weeks)

1 216 0.254 0.234 3.138 2.773 0.614 0.845 1.176 2.242 7.7 7.8
2 217 0.522 0.056 4.668 2.949 0.658 0.711 1.474 2.816 12.8 10.2
3 217 0.672 0.037 5.535 2.743 0.789 0.594 2.735 2.159 16.5 10.6
4 217 0.808 0.037 6.285 3.354 0.910 0.672 2.632 2.306 19.0 12.0
5 217 0.928 0.032 7.766 3.749 0.806 0.663 2.461 2.556 24.7 13.3
6 217 1.025 0.027 8.062 3.971 0.841 0.733 2.353 2.326 25.1 13.6
7 217 1.119 0.027 9.163 4.334 0.812 0.728 2.345 2.327 28.6 14.7
8 217 1.228 0.036 9.188 4.240 0.855 0.666 2.490 2.026 29.6 15.0
9 217 1.378 0.052 9.637 4.477 0.985 0.762 2.710 1.779 31.3 14.9
10 217 1.726 0.258 9.021 4.098 1.102 0.765 2.504 1.678 30.3 15.0

January 1992 to December 1996 (261 Weeks)

1 241 −0.002 0.442 0.400 0.794 0.790 1.087 1.307 1.222 0.8 1.7
2 241 0.368 0.049 2.310 1.338 0.445 0.657 0.934 1.902 3.7 3.7
3 242 0.514 0.032 2.983 1.688 0.480 0.743 0.757 2.492 5.9 5.7
4 241 0.634 0.036 3.432 1.692 0.547 0.674 1.273 2.213 7.0 5.7
5 241 0.763 0.040 3.937 1.858 0.618 0.673 1.495 1.824 8.1 5.9
6 242 0.881 0.030 4.761 2.149 0.597 0.615 1.560 1.975 11.0 6.6
7 241 1.000 0.035 5.035 2.168 0.670 0.666 1.696 1.872 11.9 6.9
8 242 1.139 0.046 5.704 2.653 0.634 0.685 1.522 2.029 14.3 9.0
9 241 1.336 0.074 5.651 2.501 0.946 0.787 2.365 1.519 14.6 8.5
10 241 1.820 0.343 5.955 2.850 1.462 1.490 2.671 1.667 17.1 9.9
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Table 6e

Summary statistics for market and optimal-forecast-portfolio return betas estimated with weekly
returns data for NYSE and AMEX stocks from July 1962 to December 1996 in five-year subperiods.
Returns of individual stocks are regressed on the returns of the CRSP value-weighted returns index
and the return ROFPt of the optimal-forecast portfolio (OFP) for the set of 25 market-beta-sorted
basis portfolios, yielding two beta coefficients β̂M

j and β̂OFP
j . The pairs are sorted into deciles

according to their market betas and means and standard deviations of the estimated coefficients
are reported for each decile.

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂OFP
τ t(β̂OFP

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1967 to December 1971 (261 Weeks)

1 242 0.161 0.146 0.932 0.904 −0.592 0.368 −2.771 1.784 12.0 8.3
2 243 0.551 0.081 2.543 0.975 −0.361 0.378 −1.126 0.941 11.6 7.3
3 242 0.777 0.051 3.464 1.350 −0.272 0.371 −0.748 0.930 14.9 8.4
4 243 0.945 0.050 3.968 1.409 −0.176 0.344 −0.434 0.923 16.3 8.0
5 242 1.107 0.044 4.333 1.512 −0.130 0.391 −0.227 1.030 17.6 8.0
6 243 1.261 0.046 4.668 1.711 −0.065 0.464 −0.041 1.141 18.9 8.8
7 243 1.450 0.056 5.035 1.709 0.032 0.429 0.197 1.082 20.1 8.4
8 242 1.649 0.071 5.241 1.841 0.029 0.422 0.219 1.139 21.4 8.4
9 243 1.952 0.104 5.636 1.612 0.220 0.452 0.533 0.989 22.6 8.4
10 242 2.629 0.414 6.970 1.899 0.777 0.625 1.570 1.258 28.0 8.4

January 1972 to December 1977 (261 Weeks)

1 262 0.310 0.163 2.392 1.681 −0.102 0.596 −0.083 1.153 4.5 5.6
2 263 0.572 0.044 3.795 1.657 0.014 0.512 0.156 1.054 8.5 6.1
3 263 0.712 0.038 4.402 1.743 0.075 0.497 0.218 1.122 11.0 7.4
4 263 0.840 0.036 4.968 1.900 0.107 0.517 0.273 1.130 13.1 8.6
5 263 0.955 0.029 5.573 2.078 0.213 0.551 0.533 1.136 15.2 9.3
6 263 1.067 0.038 6.260 2.496 0.182 0.582 0.446 1.275 18.6 11.4
7 263 1.187 0.032 6.049 2.153 0.279 0.566 0.583 1.174 17.3 9.8
8 263 1.317 0.045 6.317 2.415 0.374 0.651 0.673 1.131 18.7 11.0
9 263 1.502 0.068 6.882 2.338 0.357 0.653 0.629 1.225 21.3 11.0
10 262 1.910 0.301 7.252 2.322 0.595 0.923 0.844 1.262 23.4 10.7

January 1977 to December 1981 (261 Weeks)

1 242 0.267 0.122 2.338 1.633 0.004 0.567 −0.264 1.267 2.8 3.6
2 243 0.504 0.045 4.172 1.865 −0.125 0.471 −0.531 1.344 7.4 5.3
3 243 0.654 0.037 4.711 1.906 −0.119 0.458 −0.288 1.097 9.0 6.1
4 243 0.771 0.032 5.299 2.060 −0.095 0.533 −0.233 1.224 11.3 6.9
5 243 0.883 0.035 6.066 2.495 −0.141 0.427 −0.314 1.193 13.8 9.4
6 243 0.994 0.029 6.702 2.464 −0.180 0.480 −0.425 1.172 16.2 9.1
7 243 1.110 0.038 6.825 2.666 −0.219 0.503 −0.404 1.074 17.0 9.9
8 243 1.249 0.043 7.680 2.723 −0.262 0.491 −0.582 1.214 19.9 10.5
9 243 1.436 0.067 7.727 2.431 −0.456 0.595 −0.974 1.153 20.3 8.9
10 242 1.805 0.223 9.143 2.722 −0.540 0.596 −1.194 1.184 27.3 9.7

January 1982 to December 1986 (261 Weeks)

1 227 0.179 0.160 1.301 1.135 −0.392 0.716 −0.748 1.140 1.4 2.3
2 228 0.436 0.050 3.347 1.602 −0.287 0.524 −0.488 1.135 5.4 4.1
3 228 0.574 0.035 4.237 1.976 −0.175 0.623 −0.103 1.435 8.3 6.0
4 227 0.695 0.033 4.886 1.780 −0.267 0.504 −0.546 1.188 10.7 6.3
5 228 0.801 0.031 5.254 1.993 −0.306 0.580 −0.668 1.157 11.9 7.2
6 228 0.905 0.030 6.063 2.337 −0.228 0.657 −0.450 1.228 14.9 8.2
7 227 1.013 0.032 6.586 2.595 −0.215 0.605 −0.381 1.197 16.7 9.1
8 228 1.119 0.032 7.549 2.587 −0.199 0.513 −0.384 1.128 20.5 9.5
9 228 1.280 0.059 7.641 2.850 −0.243 0.669 −0.395 1.146 21.4 10.2
10 227 1.645 0.240 8.210 3.135 −0.173 0.751 −0.223 1.137 23.9 11.2
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Table 6e (continued)

Decile
Sample

β̂M
τ t(β̂M

τ ) β̂OFP
τ t(β̂OFP

τ ) R
2

(%)

Size
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1987 to December 1991 (261 Weeks)

1 216 0.231 0.247 2.664 2.457 0.663 1.210 1.187 1.077 5.6 6.6
2 217 0.500 0.060 4.482 2.731 0.588 0.746 1.261 1.194 10.9 8.7
3 217 0.657 0.035 5.034 2.403 0.663 0.727 1.511 1.267 13.0 8.9
4 217 0.793 0.041 6.255 3.263 0.627 0.707 1.299 1.478 17.2 11.5
5 217 0.919 0.033 7.248 3.555 0.536 0.688 1.162 1.498 21.2 12.8
6 217 1.018 0.028 7.919 3.734 0.591 0.679 1.189 1.511 23.4 13.0
7 217 1.114 0.028 8.658 4.462 0.512 0.736 0.954 1.603 25.8 15.6
8 217 1.218 0.034 9.028 4.089 0.539 0.643 1.169 1.353 27.9 14.7
9 217 1.366 0.055 9.412 4.311 0.719 0.683 1.506 1.404 29.7 15.3
10 217 1.694 0.220 8.709 4.024 0.541 0.838 0.987 1.228 28.5 15.0

January 1992 to December 1996 (261 Weeks)

1 241 0.006 0.439 0.424 0.810 0.066 0.971 0.146 1.134 − 0.1 1.1
2 241 0.384 0.052 2.278 1.372 0.135 0.517 0.708 1.769 2.9 4.5
3 242 0.530 0.032 3.100 1.858 0.132 0.611 1.001 2.203 5.4 6.6
4 241 0.648 0.037 3.542 1.780 0.165 0.483 0.800 1.874 6.0 6.0
5 241 0.769 0.037 4.105 1.971 0.080 0.468 0.335 1.668 7.6 6.7
6 242 0.883 0.031 4.629 2.057 0.052 0.446 0.090 1.323 9.0 6.4
7 241 1.002 0.034 5.077 2.225 −0.002 0.516 −0.068 1.414 10.6 7.5
8 242 1.141 0.045 5.363 2.594 −0.005 0.671 −0.017 1.437 12.2 9.0
9 241 1.337 0.077 5.627 2.418 0.037 0.549 0.069 1.260 12.7 8.5
10 241 1.823 0.341 5.754 2.820 0.079 0.795 0.228 1.058 13.8 9.5
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Table 7

Cross-sectional regression tests of various linear factor models along the lines of Fama and
MacBeth (1973) using weekly returns for NYSE and AMEX stocks from 1962 to 1996,
five-year subperiods for the portfolio-formation, estimation, and testing periods, and 100
portfolios in the cross-sectional regressions each week. The five linear-factor models are:
the standard CAPM (β̂M

p ), and four two-factor models in which the first factor is the
market beta and the second factors are, respectively, the hedging portfolio return beta
(β̂HR

p ), the hedging portfolio dollar-return beta (β̂HQ
p ), the beta of a small-minus-big cap

portfolio return (β̂SMB
p ), and the beta of the optimal forecast portfolio based on a set of 25

market-beta-sorted basis portfolios (β̂OFP
p ).

Model Statistic γ̂0t γ̂1t γ̂2t R
2
(%)

January 1972 to December 1976 (261 Weeks)

Rpt = γ0t + γ1tβ̂
M
p + εpt Mean: 0.002 0.000 10.0

S.D.: 0.015 0.021 10.9
t-Stat: 1.639 0.348

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HR
p + εpt Mean: 0.004 −0.002 −0.002 14.3

(φ = 1.25) S.D.: 0.035 0.035 0.037 10.9
t-Stat: 2.040 −1.047 −0.820

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HQ
p + εpt Mean: 0.004 −0.002 −0.104 15.5

(φ = 1.50) S.D.: 0.032 0.034 3.797 10.9
t-Stat: 2.162 −1.081 −0.442

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

SMB
p + εpt Mean: 0.001 0.000 0.063 12.1

S.D.: 0.014 0.024 1.142 10.8
t-Stat: 1.424 0.217 0.898

January 1977 to December 1981 (261 Weeks)

Rpt = γ0t + γ1tβ̂
M
p + εpt Mean: 0.001 0.003 11.7

S.D.: 0.011 0.022 12.8
t-Stat: 1.166 2.566

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HR
p + εpt Mean: 0.003 −0.001 −0.012 13.1

(φ = 4.75) S.D.: 0.014 0.020 0.051 12.4
t-Stat: 3.748 −0.902 −3.712

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HQ
p + εpt Mean: 0.003 −0.001 −1.564 12.5

(φ = 4.25) S.D.: 0.013 0.020 6.104 12.2
t-Stat: 3.910 −0.754 −4.140

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

SMB
p + εpt Mean: 0.001 0.000 0.299 14.9

S.D.: 0.011 0.017 1.088 13.4
t-Stat: 2.251 −0.164 4.433

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

OFP
p + εpt Mean: 0.003 0.001 0.001 14.1

S.D.: 0.018 0.023 0.036 11.6
t-Stat: 2.735 0.843 0.632
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Table 7 (continued)

Model Statistic γ̂0t γ̂1t γ̂2t R
2
(%)

January 1982 to December 1986 (261 Weeks)

Rpt = γ0t + γ1tβ̂
M
p + εpt Mean: 0.006 −0.001 9.4

S.D.: 0.011 0.019 11.1
t-Stat: 8.169 −1.044

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HR
p + εpt Mean: 0.006 −0.001 −0.006 9.6

(φ = 1.75) S.D.: 0.011 0.020 0.055 9.4
t-Stat: 8.390 −0.780 −1.732

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HQ
p + εpt Mean: 0.006 −0.002 −0.740 10.4

(φ = 2.00) S.D.: 0.011 0.019 19.874 9.5
t-Stat: 8.360 −1.297 −0.602

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

SMB
p + εpt Mean: 0.005 −0.002 0.038 10.0

S.D.: 0.012 0.019 1.154 8.4
t-Stat: 7.451 −1.264 0.531

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

OFP
p + εpt Mean: 0.005 −0.001 0.000 11.7

S.D.: 0.011 0.020 0.021 10.8
t-Stat: 7.545 −0.818 0.199

January 1987 to December 1991 (261 Weeks)

Rpt = γ0t + γ1tβ̂
M
p + εpt Mean: 0.002 0.000 5.9

S.D.: 0.013 0.023 8.7
t-Stat: 2.649 0.204

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HR
p + εpt Mean: 0.002 0.000 0.000 5.4

(φ = 47) S.D.: 0.016 0.019 0.060 6.1
t-Stat: 2.254 0.105 0.132

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HQ
p + εpt Mean: 0.002 0.000 0.189 6.0

(φ = 20) S.D.: 0.016 0.019 18.194 6.7
t-Stat: 2.434 −0.147 0.168

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

SMB
p + εpt Mean: 0.003 0.000 −0.075 7.8

S.D.: 0.014 0.020 1.235 8.2
t-Stat: 3.101 0.158 −0.979

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

OFP
p + εpt Mean: 0.003 −0.001 0.000 6.4

S.D.: 0.015 0.021 0.021 7.3
t-Stat: 2.731 −0.385 −0.234
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Table 7 (continued)

Model Statistic γ̂0t γ̂1t γ̂2t R
2
(%)

January 1992 to December 1996 (261 Weeks)

Rpt = γ0t + γ1tβ̂
M
p + εpt Mean: 0.002 0.001 5.7

S.D.: 0.013 0.020 7.7
t-Stat: 2.679 1.178

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HR
p + εpt Mean: 0.002 0.001 −0.004 6.9

(φ = 38) S.D.: 0.013 0.020 0.091 6.8
t-Stat: 2.785 1.164 −0.650

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

HQ
p + εpt Mean: 0.003 0.000 −1.584 6.2

(φ = 27) S.D.: 0.015 0.022 12.992 6.6
t-Stat: 3.279 −0.178 −1.970

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

SMB
p + εpt Mean: 0.002 0.001 0.154 6.7

S.D.: 0.015 0.019 1.157 7.0
t-Stat: 1.653 0.861 2.147

Rpt = γ0t + γ1tβ̂
M
p + γ2tβ̂

OFP
p + εpt Mean: 0.001 0.002 0.002 7.9

S.D.: 0.016 0.020 0.015 7.4
t-Stat: 0.895 1.236 2.407
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