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ABSTRACT

This paper examines the equilibrium when negative stock market jumps (crashes) can occur, and

investors have heterogeneous attitudes towards crash risk.  The less crash-averse insure the more

crash-averse through the options markets that dynamically complete the economy.  The resulting

equilibrium is compared with various option pricing anomalies reported in the literature: the tendency of

stock index options to overpredict volatility and jump risk, the Jackwerth (2000) implicit pricing kernel

puzzle, and the stochastic evolution of option prices.  The specification of crash aversion is compatible

with the static option pricing puzzles, while heterogeneity partially explains the dynamic puzzles.

Heterogeneity also magnifies substantially the stock market impact of adverse news about fundamentals.
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Empirical option pricing research involving stock index options has revealed substantial divergences

between the “risk-neutral” distributions compatible with observed post-’87 option prices, and the

conditional distributions estimated from time series analyses of the underlying stock index.  Perhaps

the most important has been the substantial disparity between implicit standard deviations (ISD’s)

inferred from at-the-money options, and the subsequent realized volatility over the lifetime of the

option.  As illustrated below in Figure 1, ISD’s have generally been higher than realized volatility.

Furthermore, regressing realized volatility upon ISD’s almost invariably indicates that ISD’s are

informative but biased predictors of future volatility, with bias increasing in the ISD level.

While the level of at-the-money ISD’s is puzzling, the shape of the volatility surface across

strike prices and maturities also appears at odds with estimates of conditional distributions.  It is now

widely recognized that the “volatility smirk” implies substantial negative skewness in risk-neutral

distributions, and various correspondingly skewed models have been proposed: implied binomial

trees, stochastic volatility models with “leverage” effects, and jump-diffusions.  And although these

models can roughly match observed option prices, the associated implicit parameters do not appear

especially consistent with the absence of substantial negative skewness in post-’87 stock index

returns.  To paraphrase Samuelson, the option markets have predicted nine out of the past five

market corrections.  A further puzzle is that the predictions are somewhat countercyclical.  Within

the Bates (2000) jump-diffusion model, implicit jump risk was highest immediately after substantial

market drops, and was low during the bull market of 1992-96.

It is of course possible that the pronounced divergence between objective and risk-neutral

measures represents risk premia on the underlying risks.  The fundamental theorem of asset pricing

states that provided there exist no outright arbitrage opportunities, it is possible to construct a

“representative agent” whose preferences are compatible with any observed divergences between

the two distributions.  However, Jackwerth (2000) and Rosenberg and Engle (2000) have pointed

out that the preferences necessary to reconcile the two distributions appear rather oddly shaped, with

sections that are locally risk-loving rather than risk-averse.  Furthermore, the post-’87 Sharpe ratios

from writing put options or straddles seem extraordinarily high -- two to six times that of investing

directly in the stock market.
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1This is computed based upon the 1998 open interest for CBOE options on the S&P 100 and
S&P 500 indexes, and for CME options on S&P 500 futures.  It represents an upper limit in
assuming every option corresponds one-for-one to an underlying stock position.  Strategies
involving multiple options (vertical spreads, collars, straddles, etc.) would substantially reduce the
estimate of the stock positions being protected.

The overall industrial organization of the stock index option markets does not appear

especially compatible with the idealized construction of representative agents.  In that construction,

all individuals trade until at the margin they are indifferent to taking on more or less risk.  The

resultant risk-pooling of systematic risks across all agents permits the calibration of standard asset

pricing models from aggregate data sources: e.g., estimating the consumption CAPM based on

aggregate consumption data, or the CAPM based on proxies for the return on aggregate wealth.

However, most investors do not routinely use options to manage the underlying risks.  Although

stock index options are among the most actively traded options, the stock positions hedged by

exchange-traded options on the S&P index or futures represented at most 2.6% of the S&P 500

market capitalization in 1998.1

In stock index option markets, individual investors can easily buy options but face obstacles

at the broker level to writing naked puts or calls.  While hard data are not readily available,

anecdotal evidence suggests a fundamental post-’87 dichotomy between the buyers and sellers in

the stock index option market.  A broad array of individual and institutional investors buy options

as part of their overall risk management strategies, while a relatively concentrated group of option

market makers predominantly write them and delta-hedge their positions.  And although all investors

need not be rational for markets to be efficient, this broad and apparently persistent dichotomy

between buyers and sellers suggests closer scrutiny of option market making is warranted.

The objective of this paper is therefore to focus more carefully on the financial intermedia-

tion of crash risk through option markets.  A general equilibrium model is constructed in which

relatively crash-tolerant option market makers insure crash-averse investors.  Heterogeneity in

attitudes towards crash risk is modeled via heterogeneous state-dependent utility functions similar

to those in Ho, Perraudin and Sørensen (1996).  Crashes can occur in the model, given occasional

adverse jumps in news about fundamentals.  Derivatives are consequently not redundant in the
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2Basak and Cuoco (1998) make a similar point regarding calibrations of the consumption
CAPM when most investors don’t hold stock.

3Froot (2001, Figure 3) illustrates the strong, temporary impacts of Hurricane Andrew in
1992 and the Northbridge earthquake in 1994 upon the price of catastrophe insurance.

model and serve the important function of dynamically completing the market.  Given complete

markets, equilibrium can be derived using an equivalent central planner’s problem, and the

corresponding dynamic trading strategies and market equilibria are identified.

The view of options markets as an insurance market for crash risk may be able to explain

some of the option pricing anomalies -- especially if there exist barriers to entry.  If crash risk is

concentrated among option market makers, calibrations based upon the risk-taking capacity of all

investors can be misleading.2  Speculative opportunities such as writing straddles become

unappealing when the market makers are already overly involved in the business.  Furthermore, the

dynamic response of option prices to market drops resembles the price cycles observed in insurance

markets: an increase in the price of crash insurance caused by the contraction in market makers’

capital following losses.3

This paper therefore represents an initial exploration of the financial intermediation of crash

risk via the options markets.  Section 1 recapitulates the various stylized facts from empirical options

research that the various models will attempt to match.  Section 2 introduces the basic framework,

and identifies a benchmark homogeneous-agent equilibrium.  Section 3 explores the implications

of heterogeneity in agents.  Section 4 concludes.
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4The puzzle is slightly exacerbated by the fact that at-the-money ISD’s are in principle
downwardly biased predictors of the (risk-neutral) volatility over the lifetime of the options.

365
T jT

τ ' t%1 (∆ lnFτ )
2 ' .0160 % .756 ISDt % gt%T , R 2 ' .45

(.0142) (.102)
(1)

365
T j

T

τ ' t%1
(∆ lnFτ )

2 ' .0027 % .681 ISD 2
t % gt%T , R 2 ' .33

(.0033) (.161)
(2)

1. Empirical option pricing anomalies and stylized facts

Three categories of discrepancies between objective and risk-neutral measures will be kept in mind

in the theoretical section of the paper:  volatility, higher moments, and the implicit pricing kernel

that in principle reconciles the objective and risk-neutral probability measures.  Furthermore, each

category can be decomposed further into average discrepancies, and conditional discrepancies.

The unconditional volatility puzzle is that implicit standard deviations (ISD’s) from stock

index options have been higher on average over 1988-98 than realized volatility over the options’

lifetimes.  For instance, ISD’s from 30-day at-the-money put and call options on S&P 500 futures

have been 2% higher on average than the subsequent annualized daily volatility over the lifetime

of the options.4   This discrepancy has generated substantial post-’87 profits on average from writing

at-the-money puts or straddles, with Sharpe ratios two to six times that of investing in the stock

market.  See, e.g., Fleming (1998) or Jackwerth (2000). 

The conditional volatility puzzle is that regressing realized volatility upon ISD’s generally

yields slopes that are significantly positive, but significantly less than one.  For instance, the

regressions using the 30-day ISD’s and realized volatilities mentioned above yield volatility and

variance results
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5Christensen and Prabhala (1998) argue that measurement error in ISD’s may be biasing
slope estimates downwards, and estimate essentially unitary slopes on post-’87 monthly data using
instrumental variables.  Using instrumental variables on my data had negligible effect on point
estimates.  However the associated loss of power did increase standard errors, to the point where
unbiasedness could not be rejected in some cases.  Jorion (1995) provides a Monte Carlo assessment
of measurement error’s impact on volatility regressions.

6In options research, implicit skewness is roughly measured by the shape of the volatility
“smirk,” or pattern of ISD’s across different strike prices (“moneyness”).  The skewness/maturity
interaction can be seen by examined by the volatility smirk at different horizons conditional upon
rescaling moneyness proportionately to the standard deviation appropriate at different horizons.  See,

Figure 1.  ISD’s and realized volatility, 1988-98.  ISD’s are from 30-
day S&P 500 futures options.  Realized volatility is annualized, from
daily log-differenced futures prices over the lifetime of the options.

with heteroskedasticity-consistent standard errors in parentheses.5  Since intercepts are small, the

regressions imply that ISD’s are especially poor forecasts of realized volatility when high.

The skewness puzzle is that the levels of skewness implicit in stock index options are

generally much larger in magnitude than those estimated from stock index returns -- whether from

unconditional returns (Jackwerth, 2000) or conditional upon a time series model that captures salient

features of time-varying distributions (Rosenberg and Engle, 2000).  Furthermore, implicit skewness

falls off only slightly for longer maturities of stock index options of, e.g., 3-6 months.6  By contrast,
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e.g., Bates (2000, Figure 4).  Tompkins (2000) provides a comprehensive survey of volatility surface
patterns, including the maturity effects.

K2 ' 1.76e&4 % .2053 V1 t % .0795 V2 t

K3 ' &1.01e&5 & .0371 V1 t & .0012 V2 t

K4 ' 2.47e&6 % 10.54e&3V1 t % .06e&3V2 t

K2 ' .0058 % 1.3080V1 t % .3802V2 t

K3 ' &.0012 & .8112 V1 t & .0336V2 t

K4 ' .0007 % .7556 V1 t % .0083V2 t

Table 1
Implicit jump parameters, and (risk-neutral) cumulants at 1- and 6-month horizons, 
1988-98 estimates.
Average jump size:  -6.6%
Jump standard deviation: 11.0%
Jump intensity: λt ' 81.41 V1t % .01 V2t

1-month cumulants 

6-month cumulants

Average factor realizations:   .0092;  .0143.Avg(V1 ) ' Avg(V2 ) '

Conditional variance = ; skewness  = ; excess kurtosis = .K2 K3 /K 3/2
2 K4 / K 2

2

the distribution of log-differenced stock indexes or stock index futures converges rapidly towards

near-normality as one progresses from daily to weekly to monthly holding periods.  

A further puzzle is the evolution of distributions implicit in option prices.  Figure 2 below

summarizes that evolution using updated estimates of the Bates (2000) 2-factor stochastic

volatility/jump-diffusion model with time-varying jump risk.  The affine structure of that model

permits a factor representation of implicit cumulants in terms of two underlying state variables.  The

first factor (V1) affects variance directly and also determines the jump intensity, thereby affecting

cumulants at all maturities.  The second factor (V2) influences instantaneous variance (with roughly
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Figure 2.  Implicit factor estimates from S&P 500 futures options, 1988-98.  
V1 affects all cumulants, at all maturities.  V2 affects conditional variance but has little
impact on higher cumulants.  Units are in instantaneous variance per year conditional on no
jumps (left scale), or in implicit jump frequency (right scale).  See Bates (2000) for
estimation details.

half the variance loading of V1 -- see Table 1 below), but has relatively little impact on higher

cumulants.  

The graph indicates that the sharp market declines over 1988-98 (in January 1988, October

1989, August 1990, November 1997, and August 1998) were accompanied by sharp increases in

implicit jump risk.  The puzzles here are the abruptness of the shifts (Bates (2000) rejects the

hypothesis that implicit jump risk follows an affine diffusion), and the magnitudes of implicit jump

risk achieved following the market declines.  Furthermore, affine models assume the risk-neutral and

objective jump intensity are proportional.  These models therefore imply objective crash risk is

highest immediately following crashes, which some (e.g., Chernov et al, 1999) would find

unappealing.
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7Jackwerth’s results are disputed by Aït-Sahalia and Lo (2000), who find no anomalies when
comparing average option prices from 1993 with the unconditional return distribution estimated
from overlapping data from 1989-93.  The difference in results perhaps highlights the importance
of using conditional rather than unconditional distributions, as in Rosenberg and Engle (2000).  For
instance, both conditional variance and implicit standard deviations are time-varying; and a
substantial divergence between the two can produce anomalous implicit utility functions even in a
lognormal environment.

Finally, there is the implicit pricing kernel puzzle discussed in Jackwerth (2000) and

Rosenberg and Engle (2000).  The sharp discrepancy between the negatively skewed risk-neutral

distribution and roughly lognormal objective distribution at monthly horizons causes the risk-neutral

mode to be to the right of the estimated objective mode, even though the risk-neutral mean is

perforce to the left of the objective mean. If the level of the stock index is viewed as a reasonably

good proxy for overall wealth of the representative agent, this discrepancy in distributions implies

marginal utility of wealth is locally increasing in areas – implying utility functions that are locally

convex in areas, rather than globally concave.7

It is possible that a standard representative agent/pricing kernel model can explain the above

puzzles.  Pan (2001), for instance, finds a substantial risk premium on time-varying jump risk is a

promising candidate.  The risk premium raises implicit jump risk, volatility, and skewness relative

to the values from the objective distribution, while the time variation in jump risk can explain the

conditional volatility bias.  Bates (2000) finds that this model can also match the maturity profile

of implicit skewness better than models with constant implicit jump risk. 

The challenges for this explanation are the magnitude of the speculative opportunities

associated with the implicit risk premia, and its failure to address the pricing kernel anomaly.  The

stochastic evolution of implicit and objective jump risk is also puzzling,
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d lnD ' µd dt % σd dZ % γd dN (3)

2. A jump-diffusion economy

I consider a simple continuous-time endowment economy over , with a single terminal[0, T ]

dividend payment  at time T.  News about this dividend (or, equivalently, about the terminalD̃T

value of the investment) arrives as a univariate Markov jump-diffusion of the form

where Z is a standard Wiener process,

N is a Poisson counter with constant intensity , andλ

 is a deterministic jump size or announcement effect, assumed negative.γd < 0

Financial assets are claims on terminal outcomes.  Given the simple specification of news

arrival, any three non-redundant assets suffice to dynamically span this economy; e.g., bonds, stocks,

and a single long-maturity stock index option.  However, it is analytically more convenient to work

with the following three fundamental assets:

       1) a riskless numeraire bond in zero net supply that delivers one unit of terminal consumption

in all terminal states of nature;

       2) an equity claim in unitary supply that pays a terminal dividend  at time T, and is pricedDT

at  at time t relative to the riskless asset; andSt

       3) a jump insurance contract in zero net supply that costs an instantaneous and endogenously

determined insurance premium  and pays off 1 additional unit of the numeraire assetλ(t dt

conditional on a jump.  The terminal payoff of one insurance contract held to maturity is

.NT & m
T

0
λ(t dt

Other assets such as options are redundant given these fundamental assets, and are priced by no

arbitrage given equilibrium prices for the latter two assets.  Equivalently, the jump insurance

contract can be synthesized from the short-maturity options markets with overlapping maturities that

we actually observe.  The equivalence between option and jump insurance contracts is discussed

below in section 3.5.

Agents are assumed to have crash-averse utility functions over terminal outcomes of the form
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8See Shefrin (1997) for an alternate model for pricing options under heterogeneous beliefs.

U(Wt , Nt , t) ' Et e YÑT
W̃ 1&R

T & 1
1& R

for R > 0 (4)

E0 e YÑT u(W̃T ) ' j
4

N ' 0

e &λT λTe Y N

N!
E0 [u(WT)*N jumps ]

' e λT (e Y & 1) E (

0 u(WT) * λ( ' λe Y .
(5)

where  is terminal wealth,  is the number of jumps over , and  is a parameter ofWT NT [0, T ] Y > 0

crash aversion.  This generalization of power utility is the deterministic-jump equivalent of the

equilibrium pricing kernel specification in Ho, Perraudin, and Sørensen (1996), and has several

advantages.  First, as discussed in Ho et al and below, these preferences for a representative agent

facing independent and identically distributed returns imply constant risk-neutral jump intensities,

facilitating option pricing under the risk-neutral probability measure.  Indeed, the above utility

function can be derived as the entropy-minimizing pricing kernel that generates specific

instantaneous equity and jump risk premia given an i.i.d jump-diffusion process.

Second, these preferences retain the homogeneity of standard power utility, and the myopic

investment strategy property of the log utility subcase.  Third, investors with crash-averse

preferences ( ) use exaggerated certainty-equivalent crash frequency estimates when choosingY > 0

portfolio allocations, in a fashion potentially consistent with risk-neutral jump intensities inferred

from option prices:

An alternate interpretation is that  captures heterogeneous beliefs regarding the unknownY

frequency of crashes.8  However, this interpretation would require strong priors that preclude

investors from updating their subjective jump frequency  based on learning over time, or fromλe Y

trading with other investors in the heterogeneous-agent equilibria derived below.
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ηtλ
(

t dt ' Et η t%dt 1*dN ' 1 ' λ dt η t%dt*dN ' 1

9A crash insurance with instantaneous cost  that pays off 1 unit of the numeraireλ(t dt
conditional upon a jump occurring in   is priced at(t, t% dt ]

yielding the above expression.

U(WT ) ' u(WT ) exp&y j
ÑT

γw
(6)

ηt ' Et ηT

St '
Et ηT DT

ηt

λ(t ' λ
ηt%dt*dN'1

ηt

(7)

ηT ' UW (WT , NT ) *WT ' DT

' D &R
T e YNT .

(8)

The above is a model of “external” crash aversion.  An alternate “internal” crash aversion

model could be constructed assuming investors’ aversion to crashes depends only on the degree to

which their own investments are directly affected:

where  is the jump in log wealth conditional upon a jump occurring, and conditional upon theγw

investor’s portfolio allocation. The major advantage to the external crash aversion in (4) is its

analytic tractability.  While it is possible to work out homogeneous-agent equilibria using internal

crash aversion, deriving heterogeneous-agent equilibria is trickier.  The difference in specifications

echoes the analytic advantages of external over internal habit formation models discussed in

Campbell, Lo and MacKinlay (1997, p. 327-8).  

2.1 Equilibrium in a homogeneous-agent economy

The fundamental equations for pricing equity and crash insurance are

where  is a nonnegative pricing kernel.  The first two equations are standard; see, e.g.,ηT /ηt

Grossman and Zhou (1996).  The last is derived in Bates (1988, 1991).9  If all agents have identical

crash-averse preferences of the form given in (4) above, the pricing kernel can be derived from the

terminal marginal utility:
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Et e Φ d̃T % ψ ÑT ' exp Φdt% ψNt % (T & t) Φµd % ½Φ2σ2
d % λ e Φ γd% ψ

& 1 . (9)

Et e Φ d̃T % ψ ÑT ' e Φdt% ψNt Et exp[Φ∆ d̃ % ψ ñ]

' e Φdt% ψNt Et exp[Φ∆d̃*n'0 % ñ(Φγd % ψ)]

' e Φdt% ψNtexp (Φµd % ½Φ2σ2
d )τ% λτ e Φγd% ψ

& 1 .

(10)

λ( ' λe Y & Rγd (11)

ηt ' D &R
t e YNt e (T & t )[&Rµd % ½σ2

d % (λ( & λ)] (12)

St ' Dt exp (T & t) (µd % ½σ2
d & Rσ2

d ) % λ((e γ & 1) (13)

dS /S ' µdt % σd dZ % k (dN & λdt ) (14)

µ ' Rσ2 % (λ & λ( )k

. R (σ2 % λγ2
d ) % (&λγd )Y

(15)

The following is useful for computing relevant conditional expectations.

Lemma: If  follows the jump-diffusion in (3) above and  is the underlying jumpdt / ln Dt Nt

counter with intensity , then λ

Proof: There is a probability  of observing  jumps over .wn ' e &λτ (λτ)n / n! n / NT & Nt (t, T ]

Conditional upon n jumps,  for , and∆d / ln DT /Dt - N[µdτ % γd n, σ2
dτ] τ / T & t

The last line follows from the independence of the Wiener and jump components, and from the

moment generating functions for Wiener and jump processes. O

Using the lemma and the pricing kernel (8) yields the following asset pricing equations:

The last equation implies that the price of equity relative to the riskless numeraire follows

roughly the same i.i.d. jump-diffusion process as the underlying dividend process, with identical

instantaneous volatility and jump magnitudes:

for .  The instantaneous equity premiumk ' e γd & 1
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log(λ( /λ) ' &Rγd % Y . (16)

dS /S ' σd dZ ( % k (dN (& λ(dt) (17)

µ . .025R % .025Y

ln (λ( /λ) ' .10 R % Y
(18)

reflects required compensation for two types of risk.  First is the required compensation for stock

market variance from diffusion and jump components, roughly scaled by the coefficient of relative

risk aversion.  Second, the crash aversion parameter  increases the required excess return whenY $ 0

stock market jumps are negative.  

Crash aversion also directly affects the price of crash insurance relative to the actual arrival

rate of crashes:

Finally, derivatives are priced as if equity followed the risk-neutral martingale

where  is a jump counter with constant intensity .  The resulting (forward) option prices areN ( λ(

identical to the deterministic-jump special case of Bates (1991), given the geometric jump-diffusion.

2.2 Consistency with empirical anomalies

The homogeneous crash aversion model can explain some of the stylized facts from section 1.  First,

unconditional bias in implied volatilities is explained by the potentially substantial divergence

between the risk-neutral instantaneous variance  implicit in option prices, and the actualσ2 % λ(γ2
d

instantaneous variance  of log-differenced asset prices.  Second, the difference between  σ2 % λγ2
d λ(

and  is consistent with the observation in Bates (2000, pp. 220-1) and Jackwerth (2000, pp. 446-7)λ

of too few observed jumps over 1988-98 relative to the number predicted by stock index options.

The extra parameter  permits greater divergence in  from  than is feasible under standard para-Y λ( λ

meterizations of power utility.

To illustrate this, consider the following calibration: a stock market volatility σ = 15%

annually conditional upon no jumps, and adverse dividend news of  that arrives onγd ' &10%

average once every four years ( ).  From equations (15) and (16), the equity premium andλ ' .25

crash insurance premium are
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v0 '
E0 [η t V(St )]

η0

' E0 V(St )
E0[η t *St ]

E0 [ηt ]

/ E0 [V(St ) M(St ) ] ,

(19)

For R = 1 and Y = 1, the equity premium is 5%/year, while the jump risk  implicit in option pricesλ(

is three times that of the true jump risk.  Thus, the crash aversion parameter Y is roughly as

important as relative risk aversion for the equity premium, but substantially more important for the

crash premium.  Achieving the observed substantial disparity between  and λ  using risk aversionλ(

alone  would require levels of R that most would find unpalatable, and which would imply(Y ' 0)

an implausibly high equity premium.

Since returns are i.i.d. under both the actual and risk-neutral distribution, the homogeneous-

agent model is not capable of capturing the dynamic anomalies discussed in section 1.  The standard

results from regressing realized on implicit variance cannot be replicated here, because neither is

time-varying in this model.  Were there a time-varying volatility component in the dividend news

process, however, the difference between  and  would affect the intercept from such regressionsλ( λ

but could not explain why the slope estimate is less than 1.  Second, the model cannot match the

observed tendency of   to jump contemporaneously with substantial market drops.  Finally, theλ(t
i.i.d. return structure implies that implicit distributions should rapidly converge towards

lognormality at longer maturities -- which does not accord with the maturity profile of the volatility

smirk.

Furthermore, Jackwerth’s (2000) anomaly cannot be replicated under homogeneous crash

aversion.  As discussed in Rosenberg and Engle (2000), Jackwerth’s implicit pricing kernel involves

the projection of the actual pricing kernel upon asset payoffs.  E.g., stock index options with

terminal payoff  have an initial priceV(St )

where  has the usual properties of pricing kernels: it is nonnegative, and .  M(St ) E0[M(St ) ] ' 1

It is shown in the appendix that for crash-averse preferences, this projection takes the form
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M(St ) ' κ(t) S &R
t

p St *λe Y

p (St *λ )
(20)

-0.3 -0.2 -0.1 0.1 0.2 0.3

0.5

1

1.5

2

Figure 3.  Log of the implicit pricing kernel conditional upon
realized returns.  Calibration:  t ' 1/12, σd ' .15, R ' Y ' 1,

.γd ' &.10, λ ' .25

where  is a function of time and  is the probability density function of  conditionalκ(t) p (St * λ) St

upon a jump intensity of  over (0, t).  Implicit relative risk aversion is given by .λ &M lnM(S) / M lnS

For , one observes the strictly decreasing pricing kernel and constant relative risk aversionY ' 0

associated with power utility.  For , it is proven in the appendix that  is a strictlyY > 0 ln M(St )

decreasing function of  that is illustrated below in Figure 3.  Thus, this pricing kernel cannotln St

replicate the negative implicit risk aversion (positive slope) estimated by Jackwerth (2000) and

Rosenberg and Engle (2000) for some values of .  However, crash-averse preferences can replicateSt

the higher implicit risk aversion (steeper negative slope) for low  values that was estimated byln St

those authors and by Aït-Sahalia and Lo (2000).

Jackwerth (2000, p.446) conjectures that the negative risk aversion estimate may be

attributable to investors overestimating the crash risk relative to the observed ex post crash

frequency.  Within this model, such overestimation is equivalent to a positive value of , and cannotY

generate the required divergences between objective and risk-neutral distributions.  In equilibrium

the equity premium (15) is also positively affected by Y, shifting the mode of the objective

           ln M(St)

 ln(St /S0 )
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λ(dt & Et [1*dN ' 1 ]

Vart[1*dN ' 1]
'

(λ( & λ)dt
λdt (1 & λdt)

'
λ(

λ
& 1

(21)

distribution sufficiently to the right to preclude observing Jackwerth’s anomaly.  Of course, there

could still be an anomalous disparity between the risk-neutral distribution and the estimate of the

objective distribution.

Jackwerth’s exploration of whether the divergence between the risk-neutral and estimated

objective distributions is implausibly profitable is a separate issue.  Within this framework, crash

aversion can generate investment opportunities with high Sharpe ratios.  For instance, the

instantaneous Sharpe ratio on writing crash insurance is

which can be substantially larger than the instantaneous Sharpe ratio  on equity givenµ / σ2 % λk 2

investors’ aversion to this type of risk.  The put selling strategies examined in Jackwerth implicitly

involve a portfolio that is instantaneously long equity and short crash insurance.  Since adding a high

Sharpe ratio investment to a market investment must raise instantaneous Sharpe ratios, this model

is consistent with the substantial profitability of option-writing strategies reported in Jackwerth

(2000) and elsewhere.
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U(WT , NT ; ω) / max j
Y

ωY f Y(NT )
W 1&R

YT & 1
1& R

, R > 0
{WYT}

subject to WT ' j
Y

WYT , WYT $ 0 œY
(22)

max j
Y

ωY f Y(NT )
W 1&R

YT & 1
1& R

% ηT WT & j
Y

WYT
{WYT },ηT

(23)

wY (NT , T ; ω) /
WYT

WT

'
[ωY f Y(NT )]1/R

j
Y

[ωY f Y(NT )]1/R (24)

3. Equilibrium in a heterogeneous-agent economy

As this model is dynamically complete, equilibrium in the heterogeneous-agent case can be

identified by examining an equivalent central planner’s problem in weighted utility functions.  The

solution to that problem is Pareto-optimal, and can be attained by a competitive equilibrium for

traded assets in which all investors willingly hold market-clearing optimal portfolios given

equilibrium asset price evolution.  Section 3.1 below outlines the central planner’s problem, while

Section 3.2 discusses the resulting asset market equilibrium. Section 3.3 identifies the supporting

individual wealth evolutions and associated portfolio allocations, and confirms the optimality of the

equilibrium. Section 3.4 discusses the implications for option prices, while Section 3.5 compares

the equilibrium with the stylized facts discussed above in Section 1.

3.1 The central planner’s problem

Under homogeneous beliefs about state probabilities, the central planner’s problem of maximizing

a weighted average of expected state-dependent utilities is equivalent to constructing a representa-

tive state-dependent utility function in terminal wealth (Constantinides 1982, Lemma 2):

for fixed weights  that depend upon the initial wealth allocation in a fashion determinedω / {ωY }

below in Section 3.3.  Since the individual marginal utility functions   atUW (WYT , NT ; Y ) ' %4

 and the horizon is finite, the individual no-bankruptcy constraints  are non-bindingWYT ' 0 WYT $ 0

and can be ignored. Optimizing the Lagrangian

yields a terminal state-dependent wealth allocation

and a Lagrangian multiplier
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ηT ' W &R
T j

Y
ωY f Y(NT )

1
R

R

/ W &R
T f (NT ; ω)

(25)

UW (WYT , NT ; Y ) '
ηT

ωY

. (26)

g(Nt , t; λN ) / Et f (Nt % ñ) * λN

' j
n

e &λN (T & t)[λN (T & t) ]n

n!
f (Nt % n)

(27)

ηt ' e κη (T & t ) D &R
t g Nt , t, λe &Rγd (28)

St

Dt

' e κS (T& t ) g Nt , t, λe (1&R)γd

g Nt , t, λe &Rγd

/ e κS (T& t ) m(Nt , t)

(29)

λ((Nt , t) ' λe &Rγd
g Nt% 1, t, λe &Rγd

g Nt , t, λe &Rγd
(30)

where  is a CES-weighted average of individual crash aversion functions ’s.   The Lagrangianf f Y

multiplier  is the shadow value of terminal wealth, and therefore determinesηT ' UW (WT , NT ; ω)

the pricing kernel when evaluated at .  From the first-order condition to (23), all individualWT ' DT

terminal marginal utilities of wealth are directly proportional to the multiplier:

3. 2 Asset market equilibrium

As in equations (7) above, the pricing kernel  can be used to price all assets.  That  assetηT /ηt

market equilibrium depends critically upon expectations of average crash aversion.  Define

as the conditional expectation of  given jump intensity  over  for future jumpsf (NT ) λN (t, T ]

.  It is shown in the appendix that the resulting asset pricing equations areñ / NT & Nt

where , κη ' &Rµd % ½R 2σ2
d % λ (e &Rγd & 1)

and .κS ' µd % (½ & R)σ2
d % λe &Rγd(e γd & 1)



19

dS
S

' µ(Nt , t)dt % σd dZ % k(Nt , t) (dN & λdt) (31)

µ(Nt ,t ) ' &Et
dS
S

dη
η

' Rσ2
d % [λ & λ((Nt , t) ] k(Nt , t)

(32)

dS
S

' σd dZ % k(N (

t , t) [dN ( & λ(t dt ] (34)

πYt /
ωY exp[YNt % λe &γd(T& t) (e Y & 1)]

j
Y

ωY exp[YNt % λe &γd(T& t) (e Y & 1)] (35)

1% k(Nt , t) ' e γd
m[Nt % 1, t]

m[Nt , t] (33)

The equilibrium equity price follows a jump-diffusion of the form

where

and

for defined above in equation (29).  The risk-neutral price process follows a martingale ofm[N, t ]

the form

for  a risk-neutral jump counter with instantaneous jump intensity , the functional formN ( λ(t (N (

t , t)

of which is given above in equation (30). 

Several features of the equilibrium are worth emphasizing.  First, conditional upon no jumps

the asset price follows a diffusion similar to  -- i.e., with identical and constant instantaneousDt

volatility .  This property reflects the assumption of common relative risk aversion R, and wouldσd

not hold in general under alternate utility specifications or heterogeneous risk aversion.  A further

implication discussed below is that all investors hold identical equity positions.

Second, the equilibrium price process and crash insurance premium depend critically upon

the heterogeneity of agents.   This is simplest to illustrate in the unitary risk aversion case, for which

equilibrium values can be expressed directly in terms of the weighted distribution of individual crash

aversions.  Define pseudo-probabilities
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ln(λ(t /λ) ' &Rγd % ln ECS e Y

. &Rγd % ECS Y % ½VarCS [Y ]
(36)

ln(St /Dt)
T& t

' &κs % ln ECS e Φ(e Y&1) * Φ ' λ (T& t)e &γd (e γd&1)

. µd & (R&½)σ2
d % λe &γd ECS e Y (e γd&1)

(37)

ln(1% kt) . γd 1 % λe &γd(T & t)CovCS Y, e Y . (38)

as the weight assigned to investors of type  at time t, and define cross-sectional average ,Y ECS (C)

variance , and covariance with respect to those weights.  It is shown in the appendix thatVarCS (C)

the asset market equilibrium takes the form

To a first-order approximation, jump insurance premia in (36) and equity prices in (37)

replicate the homogeneous-agent equilibria, using average values for Y and , respectively.e Y

However, heterogeneity introduces second- and higher-order effects, as well, depending upon the

dispersion of agents.  In particular, the size of log equity jumps  in (33) and (38) can beln(1% kt )

substantially magnified relative to the dividend signal  when there is substantial heterogeneity inγd

agents.

Figure 4 below illustrates these impacts in the case of only two types of agents, conditional

upon the initial wealth distribution and its impact on social weights  (given below in equationω

(41)) and conditional upon an adverse dividend shock .  The impact of small dividendγd ' &.03

announcements upon jumps in log equity prices is greatest in the central areas of wealth distribution.

The substantial  divergence of preferences in the center implies greater trading of crash insurance,

and more substantial wealth redistribution and shifts in the investment opportunity set conditional

upon a jump.  The result is that a modest 3% drop in the dividend signal can induce a 3% to 18%

drop in the log price of equity!  As indicated in Table 2 below, this magnification is also present for

alternate values of the risk aversion parameter R.
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Table 2.  Average log jump size  conditional upon initial wealth allocationln(1% kt )
 and risk aversion R.  Calibration: , , , .w1 ' W1(0) /W(0) σ ' .20 λ ' .25 γd ' &.03 T ' 50

      given:ln(1% kt ) R

          .5 1 2 4 8w1

 0
 .0001
 .001
 .01
 .1
 .2
 .3
 .4
 .5
 .6
 .7
 .8
 .9
 .99
 .999
1

-.030
-.030
-.032
-.052
-.157
-.189
-.187
-.171
-.149
-.125
-.101
-.076
-.053
-.032
-.030
-.030

-.030
-.030
-.032
-.045
-.136
-.178
-.189
-.183
-.166
-.144
-.118
-.090
-.060
-.033
-.030
-.030

-.030
-.030
-.030
-.036
-.090
-.135
-.163
-.177
-.178
-.169
-.149
-.119
-.079
-.035
-.030
-.030

-.030
-.030
-.030
-.031
-.044
-.061
-.079
-.097
-.114
-.128
-.135
-.129
-.096
-.035
-.030
-.030

-.030
-.030
-.030
-.030
-.034
-.038
-.043
-.048
-.053
-.059
-.066
-.072
-.065
-.033
-.030
-.030

The crash insurance rate  is always between the  value of the crash-tolerantλ(t λe &Rγd

investors ( ), and the  value of the crash-averse investors.  Its value dependsY ' 0 λe Y & Rγd

monotonically upon the relative weights of the two types of investors, and is biased upward relative

to the wealth-weighted average by the variance term in equation (36).  The equity premium  variesµ

somewhat with the magnitude of crash risk, in a non-monotonic fashion.

A final observation is that the asset market equilibrium depends upon the number of jumps

, and is consequently nonstationary.  This is an almost unavoidable feature of equilibrium modelsNt

with a fixed number of heterogeneous agents.  Heterogeneity implies agents have different portfolio

allocations, implying their relative wealth weights and the resulting asset market equilibrium depend
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10See Dumas (1989) and Wang (1996) for examples of the predominantly nonstationary
impact of heterogeneity in a diffusion context.  An interesting exception is Chen and Kogan (2001),
who show that external habit formation preferences can induce stationarity in an exchange economy
with heterogeneous agents.
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Figure 4: Impact of initial relative wealth share  upon initialw1 ' W1(0) /W(0)
equilibrium quantities.  Two agents, with crash aversion , respectively.  Calibration:Y ' 0, 1

, , ; .σ ' .20 λ ' .25 γd ' &.03 R ' 1, T ' 50, t ' 0

Log jump size Crash premium ln(1 % kt ) λ(t /λ

Equity premium µt ' Rσ2 % (λ & λ(t )kt

upon the nonstationary outcome of asset price evolution.10  In this model, the number of jumps Nt

and time t are proxies for wealth distribution.  Crashes redistribute wealth towards the more crash-

averse, making the representative agent more crash-averse.  An absence of crashes has the opposite

effect through the payment of crash insurance premia.



23

WY (t) ' Et

η̃T

ηt

D̃T wY (NT , T; ω)

' St

Et f (NT ; ω)
ω1/R

Y e YNT /R

j
Y
ω1/R

Y e YNT /R
* λe (1&R)γd

Et f (NT ; ω) * λe (1&R)γd

/ St wY (Nt , t; ω) ,

(39)

wY*t'0 ' wY (0,0 ; ω)

' κ E0 ω1/R
Y e YNT /R f (NT ; ω)

1& 1
R * λe (1&R)γd

(40)

wY*t'0 ' κ ωY e λT (e Y & 1) . (41)

3.3 Supporting wealth evolution and portfolio choice

An investor’s wealth at any time t can be viewed as the value (or cost) of a contingent claim that

pays off the investor’s share of terminal wealth  conditional upon the number of jumps:WT ' DT

see equation (A.16) in the appendix for details.  The quantity  is the current share ofwY (Nt, t ; ω)

current total wealth , and appropriately sums to 1 across all investors.  The weights  ofW(t) ' St ω

the social utility function are implicitly identified up to an arbitrary factor of proportionality by the

initial wealth distribution:

for .  In the  case the mapping between  and the initial wealthκ / E0 f (NT ; ω) * λe (1&R)γd R'1 ω

distribution is explicit, and takes the form

The investment strategy that dynamically replicates the evolution of  can be identifiedWY (t)

using positions in equity and crash insurance that mimic the diffusion- and jump-contingent

evolution: 
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XY '
MWY (St ,Nt , t)

MS
' wY (Nt , t; ω)

QY ' [∆WY & NS∆S ]dN ' 1

' S(1% kt )[wY (Nt %1, t, ω) & wY (Nt , t, ω) ] .

(42)

qY (t) /
QY (t)
WY (t)

' (1 % kt )
wY (Nt%1, t; ω)

wY (Nt , t; ω)
& 1 . (43)

0.2 0.4 0.6 0.8 1

-0.5

0.5

1

1.5

Figure 5.  Equilibrium crash insurance positions and
aggregate demand for crash insurance, as a function of

.  Calibration is the same as in Figure 4.w1 ' W1(0) /W(0)

  Crash-averse investors’q1

Total demand w1 q1

                w1

Crash-tolerant investors’q0

where  is the percentage jump size in the equity price given above in equations (33) andkt ' k(Nt , t)

(38).  Thus, each investor holds  shares of equity (i.e., is 100% invested in equity),XY ' WY (t) / St

and holds a relative crash insurance position of

The wealth-weighted aggregate crash insurance positions  appropriately sumjY wY (Nt , t ; ω) qY (t)

to 0.

Figure 5 below graphs the individual crash insurance demands  given crash aversions(q0 , q1 )

 and 1, respectively, conditional upon the initial wealth allocation and itsY ' 0 w1 ' W1(0) /W(0)
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11Campbell and Viceira (1999) and Campbell, Rodriguez and Viceira (2001) find substantial
hedging against stochastic shifts in expected returns, while Chacko and Viceira (1999) find little
hedging against stochastic volatility.  The two approaches diverge in the specification and
calibration of shifts in the investment opportunity set.

impact upon equilibrium .  The aggregate demand for crash insurance  is also graphed,(λ(t , kt ) w1 q1

using the same calibration as in Figure 4 above.  At , crash-tolerant investors  set aw1 ' 0 (Y ' 0)

relatively low market-clearing price  and sell little insurance.  Crash-averse investorsλ(t ' λe &γd

 insure heavily individually, but are a negligible fraction of the market.  As  increases, (Y ' 1) w1 λ(t
does as well (see Figure 4 above) and the crash insurance positions of both investors decline.

Aggregate crash insurance volumes are heaviest in the central regions where both types of investors

are well represented.  As  approaches 1, the high price of crash insurance induces crash-tolerantw1

investors to write contracts that will cost them 60% of their wealth conditional upon a crash. 

3.3.1 Optimality

The individual’s investment strategy yields a terminal wealth , and an associated terminalWYT

marginal utility of wealth  that (from equation (26)) is proportional to theUW (WYT , NT ; Y )

Lagrangian multiplier   that prices all assets.  Therefore, no investor has an incentive to perturbηT

his investment strategy given equilibrium asset prices and price processes.  Furthermore, as noted

above, the markets for equity and crash insurance clear, so the markets are in equilibrium.   Since

all individual state-dependent marginal utilities are proportional at expiration, the market is

effectively complete.  All investors agree on the price of all Arrow-Debreu securities, so their

introduction would not affect the equilibrium. 

3.3.2 Comparison with myopic investment strategies

The equilibrium asset price evolution in Section 3.2 involves considerable and stochastic evolution

over time of the instantaneous investment opportunity set.  Since Merton (1973), hedging against

such shifts has been identified as the key distinction between static and dynamic asset market

equilibria.  As there are conflicting results even in a diffusion setting as to the quantitative

importance of such hedging,11 and as there has been little exploration of the issue in a jump-diffusion

context, a comparison with the myopic investment strategies characteristic of static equilibria may
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J(Wt , Nt , t) / max Et e YNT
W 1& R

T & 1
1 & R

(44)

dS /S ' µdt % σdZ % k (dN & λdt) .

x myopic '
1

Rσ2
µ % (λ( & λ)k

q myopic '
λe Y

λ(

1
R & (1 % w (k)

(46)

be useful.  Furthermore, myopic strategies are optimal when investors have unitary risk aversion

( ), or when returns are i.i.d. -- e.g., in the case of investor homogeneity.R ' 1

 

The myopic portfolio allocation is defined as the position that maximizes terminal expected

utility

conditional upon assuming instantaneous investment opportunities will remain unchanged at the

current level over the investor’s lifetime.  Those opportunities are summarized by the instantaneous

cost of crash insurance , and the price process λ(

No assumption are made at this stage regarding the values of .(µ, k, λ( )

It is shown in the appendix that the myopic investor will choose constant portfolio proportions

where  is the portfolio share in equity, andx / St X /W

 is the number of insurance contracts as a fraction of overall wealth.q / Q /W

If investors are homogeneous, the market-clearing conditions  yield the(x myopic, q myopic) ' (1, 0)

equilibrium and time-invariant  given above in equations (11) and (15).  The above myopic(µ, λ()

portfolio weights are also optimal under time-varying  when , but not for general(µt , kt , λ
(

t ) R ' 1

R.

The myopic portfolio allocation equations (46) indicate that equity and crash insurance are

complements when jumps are negative ( ).  An  increase in the price of crash insurance k < 0 λ(

lowers the demand for both equity and crash insurance, while an increase in the expected excess

return  on equity raises both.   The equations also indicate that myopic crash insurance positionsµ
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but not equity positions are directly affected by the investor’s idiosyncratic crash aversion parameter

.  Furthermore, at the equilibrium equity premium (32), myopic investors duplicate the optimalY

investment strategy of holding 100% in equity, and diverge from that optimum only in their holdings

of crash insurance.

Table 3 compares the optimal and myopic crash insurance strategies at the equilibrium values

for   resulting from various initial wealth allocations and risk aversion.  The two strategies(kt , λ
(

t )

are broadly similar across different asset market equilibria, and are identical either when risk

aversion , or when a preponderance of one type of individual (  = 0 or 1) yields aR ' 1 W1(t) / W(t)

homogeneous-agent equilibrium with a time-invariant investment opportunity set. 

The table indicates that a myopic strategy can be a poor approximation to the optimal

strategy in other cases.  The divergence is most pronounced for the large positions achieved under

low levels of risk aversion , but is also present for larger R values.  For instance, when(R ' ½)

crash-tolerant and crash-averse investors are equally represented (  = ½) and R = 2, a 3%W1 / W

adverse dividend shock will induce a 17.8% stock market crash (from Table 2).  The crash-averse

buy crash insurance contracts from the crash-tolerant that pay off 36.5% of current wealth

conditional on a crash.  The myopic positions  = (-16.9%, 26.4%) in Table 3(q myopic
0 , q myopic

1 )

substantially understate the magnitude of those optimal insurance positions.
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Table 3.  Optimal and myopic crash insurance positions, at equilibrium asset prices determined by
idiosyncratic crash aversions , initial wealth allocation , and common riskY ' 0, 1 w1 ' W1(0) /W(0)
aversion R.  Equilibrium values for  and parameter values are in Table 2 above.  Entries indicateln(1% kt )
the payoff of insurance positions conditional on a crash, as a fraction of investor’s wealth.

w1

Crash aversion ; R = Crash aversion ; R =Y ' 0 Y ' 1

0.5 1 2 4 8 0.5 1 2 4 8

Optimal positions q (

Y

0.0
.0001
.001
.01
.1
.2
.3
.4
.5
.6
.7
.8
.9
.99
.999

1.0

 .000
 .000
-.002
-.017
-.128
-.215
-.285
-.347
-.402
-.452
-.499
-.542
-.584
-.629
-.651
-.839

 .000
 .000
-.002
-.016
-.128
-.214
-.282
-.339
-.391
-.440
-.485
-.529
-.572
-.609
-.613
-.613

 .000
 .000
-.001
-.011
-.119
-.205
-.270
-.321
-.365
-.405
-.444
-.482
-.518
-.497
-.418
-.382

 .000
 .000
 .000
-.003
-.062
-.140
-.204
-.255
-.293
-.322
-.341
-.352
-.345
-.241
-.217
-.215

 .000
 .000
 .000
-.001
-.017
-.045
-.080
-.115
-.145
-.166
-.177
-.175
-.153
-.118
-.114
-.114

6.200
1.852
1.773
1.648
1.148
 .858
 .666
 .520
 .402
 .301
 .214
 .136
 .065
 .006
 .001
 .000

1.667
1.667
1.660
1.598
1.152
 .856
 .657
 .509
 .391
 .293
 .208
 .132
 .064
 .006
 .001
 .000

 .630
 .652
 .793

1.134
1.069
 .822
 .629
 .482
 .365
 .270
 .190
 .121
 .058
 .005
 .000
 .000

.276

.276

.277

.299

.557

.559

.477

.382

.293

.214

.146

.088

.038

.002

.000

.000

.129

.129

.129

.131

.152

.179

.187

.173

.145

.111

.076

.044

.017

.001

.000

.000

Myopic positions q myopic
Y

0.0
.0001
.001
.01
.1
.2
.3
.4
.5
.6
.7
.8
.9
.99
.999

1.0

 .000
 .000
-.004
-.041
-.284
-.429
-.522
-.592
-.648
-.695
-.737
-.774
-.808
-.836
-.839
-.839

 .000
 .000
-.002
-.016
-.128
-.214
-.282
-.339
-.391
-.440
-.485
-.529
-.572
-.609
-.613
-.613

 .000
 .000
-.001
-.007
-.056
-.091
-.117
-.142
-.169
-.199
-.234
-.275
-.324
-.376
-.381
-.382

 .000
 .000
 .000
-.002
-.028
-.051
-.066
-.073
-.077
-.080
-.087
-.103
-.142
-.209
-.214
-.215

 .000
 .000
 .000
-.001
-.010
-.021
-.032
-.041
-.048
-.053
-.055
-.058
-.072
-.110
-.114
-.114

6.200
6.195
6.153
5.764
3.362
2.122
1.440
1.012
 .717
 .501
 .334
 .201
 .092
 .008
 .001
 .000

1.667
1.667
1.660
1.598
1.152
 .856
 .657
 .509
 .391
 .293
 .208
 .132
 .064
 .006
 .001
 .000

.630

.629

.628

.615

.500

.418

.358

.309

.264

.220

.173

.122

.065

.007

.001

.000

.276

.276

.275

.272

.236

.201

.178

.164

.154

.147

.137

.117

.075

.006

.001

.000

.129

.129

.129

.128

.117

.104

.091

.080

.071

.066

.062

.058

.043

.004

.000

.000
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c(S0 , t; X ) ' E0

ηt

η0

max(St & X, 0)

/ E (

0 [max(St & X, 0) ] .

(47)

c(S0 , t; X ) ' j
N

w (

N c BS(S0 , t; X, bN , r'0)

' j
N

w (

N S0 e bN t N(d1N ) & XN(d2N )
(48)

p(S0, t, X ) ' c(S0, t, X ) % X & S0. (49)

3.4 Option markets

3.4.1 Option prices

At time 0, European call options of maturity  are priced at expected terminal value weighted byt

the pricing kernel:

Conditional upon  jumps over ,  and  have a joint lognormal distribution that reflectsNt (0, t ] ηt St

their common dependency on  given above in equations (28) and (29).  Consequently, it is shownDt

in the appendix that the risk-neutral distribution for  is a weighted mixture of lognormals,St

implying European call option prices are a weighted average of Black-Scholes-Merton prices:

where ,λN / λe &R γd

,w (

N / e &λN t(λN t)N

N !
g(N, t; λN)
g(0, 0; λN)

,bN ' &λN(e γd & 1) % nγd % ln [m(N, t) /m(0,0)] / t

 and d1N ' [ln(S0 /X ) % bN t % ½σ2
d t ] / σd t

.d2N ' d1N & σd t

Put prices can be computed from call prices using put-call parity:

Since jumps are always negative, the distribution of log-differenced equity prices implicit

in option prices is always negatively skewed.  The maturity profile of implicit skewness is quite

sensitive to the initial distribution of wealth, given the nonmonotonic dependency of  onln(1% kt )

wealth distribution shown above in Table 2 and Figure 4.  For small values of , a second jumpw1

will be larger than the first.  The increasing probability of multiple jumps at longer maturities causes

implicit skewness to fall slower than the  rate of i.i.d. returns, implying slower flattening out1 / t
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12Tompkins examines implicit volatility patterns from various countries’ futures options on
currency, stock index, bonds and interest rates, with the moneyness dimension appropriately scaled
by maturity-specific volatility estimates from at-the-money options.  He finds some maturity
variation in implicit volatility patterns, but not much by comparison with the strong inverse pattern
predicted by i.i.d. returns.
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Figure 6.  Annualized risk-neutral skewness
, as a function of t.Skew[t]× t

w1 ' .8

w1 ' .1

of the implicit volatility smirk.  For larger values of  the size of sequential jump sizes is reversed,w1

and implicit skewness can fall faster than the  rate of i.i.d. returns; see Figure 6. 1 / t

However, model-specific estimates from option prices such as in Table 1 above indicate that

implicit  (rather than ) is roughly flat across option maturities t.  This stylizedSkew [t] Skew [t] × t

fact appears common to a broad array of futures options, as indicated in the Tompkins (2000) survey

of volatility smiles and smirks.12  Thus, although Bates (2000) argues that stochastic implicit jump

intensities  are needed to match the volatility smirk at longer maturities, it does not appear thatλ(t
the  stochastic variation of  in this model generates the correct maturity profile of implicit(λ(t , kt )

skewness.

3.4.1 Option replication and dynamic completion of the markets

Options can be dynamically replicated using positions in equity and crash insurance.  Instanta-

neously, each call option has a price , and can be viewed as an instantaneous bundle of c(St , Nt , t ) cS

units of equity risk, and  units of crash insurance.  [∆c & cS∆S ]dN ' 1 > 0
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13As indicated above in Figure 4, the total volume (open interest) in crash insurance and
therefore in options can either rise or fall as the wealth distribution varies.

This equivalence between options and crash insurance indicates how investors replicate the

optimal positions of section 3.3 dynamically using the call and/or put options actually available.

Crash-averse investors choose an equity/options bundle with unitary delta overall and positive

gamma (e.g., hold 1½ stocks and buy one at-the-money put option), while crash-tolerant investors

take offsetting positions that also possess unitary delta (e.g., hold ½ stock, and write 1 put option).

Equity and option positions are adjusted in a mutually acceptable and offsetting fashion over time,

conditional upon the arrival of dividend news.  

A further implication is that the crash-tolerant investors who write options actively delta-

hedge their exposure, which is consistent with the observed practice of option market makers.   As λ(t / λ

increases (e.g., because of wealth transfers to the crash-averse from crashes) , the market makers

respond to the more favorable prices by writing more options as a proportion of their wealth.13  They

simultaneously adjust their equity positions to maintain their overall target delta of 1.  This strategy

is equivalent to market makers putting their personal wealth in an index fund, and fully delta-

hedging every index option they write.

3.5 Consistency with empirical option pricing anomalies

The heterogeneous-agent model explains unconditional deviations between risk-neutral and

objective distributions analogously to the homogeneous-agent model.  The divergence in the jump

intensity  implicit in options and the true jump frequency  can reconcile the average divergenceλ(t λ

between risk-neutral and objective variance, and between the predicted and observed frequency of

jumps over 1988-98.  The heterogeneous-agent model can also be somewhat more consistent with

the maturity profile of implicit skewness than the homogeneous-agent model, although still appears

inadequate relative to observed patterns.

The advantage of the heterogeneous-agent model is that it can explain some of the

conditional divergences as well.  First, the stochastic evolution of  is qualitatively consistent withλ(t
the evolution of jump intensity proxy V1 shown above in Figure 2.   depends directly upon theλ(t
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Figure 7.  Simulated instantaneous risk-neutral variance
 conditional upon jump timing matching thatRσ2 % λ(t γ

2
t

observed over 1988-98.  Calibration: ; i.e.,w1 (0) ' 10%
crash-averse investors own 10% of total wealth at end-
1987.

relative wealth distribution, which in turn follows a pure jump process given above in (40) for the R ' 1

case.  Consequently, market jumps cause sharp increases in , while an absence of jumps generatesλ(t
geometric decay in  towards the lower level of crash-tolerant investors.  λ(t

Figure 7 below illustrates the resulting evolution of instantaneous risk-neutral variance

( ) conditional on the five major shocks over 1988-98, and conditional on starting withRσ2 % λ(t γ
2
t

 = .1 at end-1987.  This behavior is qualitatively similar to the actual impact of jumps on overallw1

variance and on jump risk shown above in Figure 2.  However, the absence of major shocks over

1992-96 and the resulting wealth accumulation by crash-tolerant investors/option market makers

implies that the shocks of 1997 and 1998 should not have had the major impact that was in fact

observed.

It is possible the heterogeneous model can explain the results from ISD regressions as well.

The analysis is complicated by the fact that instantaneous objective and risk-neutral variance are

nonstationary, with a nonlinear cointegrating relationship from their common dependency on the

 nonstationary variable :Nt
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Vart[d lnS] ' [σ2 % λγ2
t ] dt

Var (

t [d lnS] ' [σ2 % λ((Nt , t) γ
2
t ] dt

(50)
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Figure 8.  Log of the implicit pricing kernel
conditional upon realized asset returns. 
Calibration: .w1 ' .3, t ' 1/12

   lnE0 [ηt * ∆st ]

       ∆st

M(St ) /
E0 [ηt*St ]

η0

' κS &R
t

j 4
N' 0 w ((

N p (St * N )

p (St )
where

wN '
e &λ t(λ t)N

N !
, w ((

N '
wN m(N, t)R g N, t, λe (1&R )γd

j 4
N' 0 wN m(N, t)R g N, t, λe (1&R )γd

.

(51)

for  and .  It is not immediately clear whether regressing realized onγt / ln [1% k (Nt , t)] λ(t > λ

implied volatility is meaningful under nonlinear cointegration.  However, the fact that implicit

variance does contain information for objective variance but is biased upwards suggests that running

this sort of regression on post-’87 data would yield the usual informative-but-biased results reported

above in equation (2), with estimated slope coefficients less than 1 in sample.

It does not appear that the heterogeneous-agent model can explain the implicit pricing kernel

puzzle.  Using the same projection as in (19) above , the projected pricing kernel is

As illustrated in Figure 8, this implicit pricing kernel appears to be a strictly decreasing function of St

-- in contrast to the locally positive sections estimated in Jackwerth (2000) and Rosenberg and Engle

(2000).  However, the above implicit kernel can replicate those studies’ high implicit risk aversion
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for large negative returns, as indicated by the slope of the line in Figure 8 for  in the -10% to∆s

-20% ranges.

4. Summary and conclusions

This paper has proposed a modified utility specification, labeled “crash aversion,” to explain the

observed tendency of post-’87 stock index options to overpredict realized volatility and jump risk.

Furthermore, the paper has developed a complete-markets methodology that permits identification

of asset market equilibria and associated investment strategies in the presence of jumps and investor

heterogeneity.  The assumption of heterogeneity appears to have stronger consequences than

observed with diffusion models.  Jumps can cause substantial reallocation of wealth, and the

resulting shifts in the investment opportunity set can be substantial. Small announcement effects

regarding the terminal value of the market can have substantially magnified instantaneous price

impacts when investors are heterogeneous.

The model has been successful in explaining some of the stylized facts from stock index

options markets.  The specification of crash aversion is compatible with the tendency of option

prices to overpredict volatility and jump risk, while heterogeneity of agents offers an explanation

of the stochastic evolution of implicit jump risk and implicit volatilities.  In this model, the two are

higher immediately after market drops not because of higher objective risk of future jumps (as

predicted by affine models), but because crash-related wealth redistribution has increased average

crash aversion.  Crash aversion is also consistent with the implicit pricing kernel approach’s

assessment of high implicit risk aversion at low wealth levels, although the approach cannot

replicate the locally risk-loving behavior reported in Jackwerth (2000) and Rosenberg and Engle

(2000).

While motivated by empirical option price regularities, the model in the paper is not suitable

for direct estimation.  First, jump risk is not the only risk spanned in the options markets.  Stochastic

variations in conditional volatility occur more frequently, and are also important to option market

makers.  Second, the nonstationary equilibrium derived here and characteristic of most

heterogeneous-agent models hinders estimation.  The purpose of the paper is to provide a framework
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for exploring the trading of jump risk through the options markets, as an initial model of the option

market making process.

The framework in this paper can be expanded in various ways.  For simplicity, this paper has

focused on deterministic jumps and an “external” crash aversion specification insensitive to the

impact of crashes upon individual wealth.  Extending the model to random jumps and/or “internal”

crash aversion should be relatively straightforward, although feedback effects in the latter case could

require additional restrictions to achieve an equilibrium.  A particularly interesting extension could

be to explore the implications of portfolio constraints on positions in options and/or jump insurance.

Selling crash insurance requires writing calls or puts -- a strategy that individual investors cannot

easily pursue.  Further research will examine the impact of such constraints upon equilibria in equity

and options markets.
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' D m
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' D m
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d % λ (e mγd & 1)] Et h (Nt% ñ ) * λe mγd .

(A.2)

ηt ' EtηT

' Et D &R
T f (NT )

' D &R
t e κη (T & t) Et f (NT ) *λe &Rγd

/ D &R
t e κη (T & t) g Nt , t; λe &Rγd

(A.3)

Appendix
Section A.1 of the appendix prices assets when agents are heterogeneous. Section A.2 derives the

myopic investment strategies.  Section A.3 derives the objective and risk-neutral probability density

functions under heterogeneity.  Section A.4 derives properties of the implicit pricing kernel under

homogeneous and heterogeneous agents.

A.1 Asset market equilibrium in a heterogeneous-agent economy (Section 3.2)
Lemma:  If the log-dividend   follows the jump-diffusion given above in equation (3) anddt / ln Dt

 is an arbitrary function, then h(NT )

where denotes expectations conditional upon a jump intensity  over .Et [C * λ] λ (t, T ]

Proof:

where .  τ / T & t

The asset pricing equations (28)-(30) follow directly from the lemma:
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Et DT ηT
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'
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T f (NT )

Et D &R
T f (NT )

' Dt e κS (T & t) Et f (NT ) *λe (1&R)γd

Et f (NT ) *λe &Rγd
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(A.4)

λ(t ' λ
ηt*jump

ηt

'
(Dt e γd )&R Et f (NT ) *λe &Rγd , Nt% 1

D &R
t Et f (NT ) *λe &Rγd , Nt

' e &Rγd
g Nt%1, t; λe &Rγd

g Nt , t; λe &Rγd

(A.5)

g(Nt , t, λN ) / Et f (NT ) * λN

' Et j
Y
ωY e YNT * λN

' j
Y

ωY exp YNt % λN (T& t) e Y & 1 .

(A.6)

πYt /
ωY exp[YNt % λN(T& t) (e Y & 1)]

j
Y

ωY exp[YNt % λN(T& t) (e Y & 1)] (A.7)

for  and .κη ' &Rµd % ½R 2σ2 % λ (e &Rγ & 1) κS ' (µd % ½σ2
d) & Rσ2 % λe &Rγ(e γ & 1)

In the special case  and for arbitrary ,R ' 1 λN

Define  and , and define pseudo-probabilitiesλN / λe &Rγd λO / λe (1&R)γd

Using (A.6) for g, the equity pricing equation (A.4) becomes
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λ(t
λ

' e &Rγd
j

Y
ωY exp Y (Nt % 1) % λN (T& t) e Y & 1

j
Y

ωY exp YNt % λN (T& t) e Y & 1

' e &Rγdj
Y

πYt e Y

' e &Rγd ECS e Y .

(A.9)

ln m(Nt ,t) / ln
g(Nt , t; λO)
g(Nt , t; λN )

.
M ln g(Nt , t; λN)

MλN
(λO & λN )

(A.10)

ln (1% kt ) ' Rγd % ln
m(Nt %1, t)

m(Nt , t)

. Rγd %
M ln m(Nt; t)

MNt

. Rγd %
M2 ln g(Nt; t; λN)

MNt MλN
(λO & λN).

(A.11)

for the cross-sectional expectation  defined with regard to probabilities (A.7), and forECS (C)

.  From (A.5), the jump risk premium has a similarΦ / (λO & λN ) (T & t) ' λe γd (e &Rγd &1)(T & t)

representation:

The approximation for the log jump size follows from the following approximations:

For , the partial derivatives of  areR ' 1 ln g
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while the cross-derivative is

Consequently (from (A.11)),

Section 3.3, equation (39)

Substituting in  from (A.4) yields (39).St ' Dt e κS (T & t) Et f (NT ) *λe (1&R)γd

Et f (NT ) *λe Rγd
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J(Wt , Nt , t) ' g1(T & t)
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t

1& R
e YNt %

e YNtg2 (T & t)
1& R

(A.20)

JW (Wt , Nt , t) ' g1(T & t) W &R
t e YNt . (A.21)

A.2 Myopic portfolio choice (Section 3.3.2)
The myopic portfolio allocation strategy  in equity and crash insurance maximizes the(x, q)

Hamilton-Jacobi-Bellman equation

under the assumption of constant , and subject to the terminal boundary condition (µ, σ, λ, λ(, k)

The first-order conditions to (A.17) with respect to q and x are

Given the terminal utility specification, it is straightforward to show that the value function J is of

the form

with an associated marginal utility function

Since  and , this marginal utility function yields(&WJWW /JW) ' R J (

W /JW ' e Y (1% xk % q)&R

constant portfolio proportions that satisfy
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St
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' e &κS t Dt

D0

m[Nt , t]
m[0, 0] (A.25)

under a constant investment opportunity set.  Furthermore, the value function and these portfolio

proportions satisfies the Hamilton-Jacobi-Bellman equation for some functions  and  thatg1 g2

appropriately converge to 1 as .t 6 T

If , myopic investment strategies are optimal even if investment opportunitiesR ' 1

 are stochastic.  Defining , the objective function becomes(µt , σt , λ
(

t , kt ) τ / T & t

where  is a modified expectation conditional upon a jump intensity  over .E (

t λe Y (t, T ]

Consequently, the marginal utility 

is again of the form (A.21) above, and optimal portfolio proportions are given by (A.22) with .R ' 1

A.3 Objective and risk-neutral distributions
Stock prices and pricing kernels are jump-dependent multiples of the dividend signal, which is in

turn a draw from jump-dependent mixture of lognormals.  From (29), gross stock returns are

for .  The density function for  isκS ' (µd % ½σ2
d ) & Rσ2 % λe &Rγ(e γ & 1) ∆d / ln[Dt /D0 ]
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for  equal to the normal density function with mean m and variance .  Consequently,n(z * m, σ2) σ2

log-differenced stock prices  are also drawn from a mixture of normals:∆s / ln[St /S0 ]

Define  as the delta function that takes on infinite value when , zero value1(∆s ' z) ∆s ' z

elsewhere, and integrates to 1.  The objective density function , while the risk-p(z) ' E0 [1(∆ s̃ ' z) ]

neutral density function is

For any two normally distributed variables  and  and any arbitrary function , x̃ ỹ h( y)

where  is also normally distributed with mean  and variance .y ( E( y) % Cov(x, y) Var( y)

Conditional upon n jumps,  and  are both normally distributed with covariance .ln ηt ∆s &Rσ2
d

Consequently, (A.28) can be re-written as
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Since , the weights  sum to 1.  Furthermore, sinceη0 ' E0 ηt ' jN wN E0[ηt * N jumps] w (

n

it is straightforward to show that

for .λN / λe &Rγd

A.4 Implicit pricing kernels (equations (20) and (51))
Using equations (12) and (13), the projection of the pricing kernel upon the asset price in the

homogeneous-agent case is

where  and  capture time-dependent terms irrelevant to implicit risk aversion.  Theκ0 (t) κ1 (t)

distribution of  is an -dependent mixture of normals:st / ln St Nt

Consequently, the conditional expectation in (A.33) can be evaluated using Bayes’ rule to evaluate

the conditional probabilities
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yielding an implicit pricing kernel

where  denotes the unconditional density of  given a jump intensity of  over .p(st * λ) st λ (0, t]

Taking partials with respect to  and using the fact that  yieldsst ps (st*n) ' &p(st*n) st & (µ0 % nγd )

σ2
d

(after some tedious calculations) an implicit risk aversion value

where  and  are defined with regard to the probabilities in (A.35).  Since  and n areE ((

0 Cov ((

0 e Yn

both increasing functions of n, the covariance term is positive.  Consequently, the implicit risk

aversion is everywhere positive given .γd < 0

The heterogeneous-agent case is similar.  From (28) and (29), the Lagrange multiplier is

This is of the same form as (A.33), with  replacing .  Consequently, them(Nt , t)R g(Nt , C) e YNt

implicit pricing kernel becomes
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