
NBER WORKING PAPER SERIES

THE ECONOMICS OF LABOR ADJUSTMENT: MIND THE GAP

Russell Cooper
Jonathan L. Willis

Working Paper 8527
http://www.nber.org/papers/w8527

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2001

We are grateful to seminar participants at Boston University, the University of British Columbia, the
University of Haifa, the University of Texas at Austin and the 2000 CMSG conference at McMaster
University for comments and suggestions. Discussions with John Haltiwanger, Daniel Hamermesh, Peter
Klenow and Christopher Ragan were much appreciated. The authors thank the NSF for Þnancial support. The
views expressed herein are those of the authors and not necessarily those of the National Bureau of Economic
Research, the Federal Reserve Bank of Kansas City, the Federal Reserve Bank of Minneapolis or the Federal
Reserve System.
 

© 2001 by Russell Cooper and Jonathan L. Willis.  All rights reserved.  Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is
given to the source.



The Economics of Labor Adjustment: Mind the Gap
Russell Cooper and Jonathan L. Willis
NBER Working Paper No. 8527
October 2001
JEL No. E24, J41, J6

ABSTRACT

We study the inferences about labor adjustment costs obtained by the “gap methodology” of
Caballero and Engel [1993] and Caballero, Engel and Haltiwanger [1997]. In that approach, the policy
function of a manufacturing plant is assumed to depend on the gap between a target and the current level
of employment. Using time series observations, these studies reject the quadratic cost of adjustment
model and find that aggregate employment dynamics depend on the cross sectional distribution of
employment gaps. We argue that these conclusions may not be justified. Instead these findings may
reflect difficulties measuring the gap. Thus it appears that the gap methodology, as currently employed,
may be unable to: (i) identify the costs of labor adjustment and (ii) assess the aggregate implications of
labor adjustment costs.

Russell W. Cooper Jonathan L. Willis
Department of Economics Research Department
270 Bay State Road Federal Reserve Bank of Kansas City
Boston University Kansas City, KS 64198
Boston, MA 02215
and NBER
rcooper@bu.edu



1 Introduction

In recent contributions, Caballero and Engel [1993], hereafter CE, and Caballero, Engel

and Haltiwanger [1997], hereafter CEH, investigate labor adjustment using a methodol-

ogy, reviewed extensively below, that encompasses both convex and nonconvex adjustment

processes. With this methodology, employment changes are postulated to depend on the

gap between the actual and target levels of employment.1 Both studies reach very simi-

lar conclusions on the nature of labor adjustment. The relationship between employment

adjustment and the employment gap is nonlinear: the response to a gap is increasing

in the absolute value of the gap. More importantly, both studies Þnd evidence of these

nonlinearities in time series data.

This paper questions the methodology and thus the conclusions of these studies, partic-

ularly the aggregate implications of the nonlinear plant level adjustment.2 We argue that

these reported nonlinearities may reßect difficulties in measurement of the gap rather than

economic fundamentals.

The approach taken by CE and CEH relies upon a hypothesis that employment changes

(∆e) respond to a gap (z) between the desired and actual number of workers at a plant.

Throughout we refer to z as the employment gap and ∆e
z
as the adjustment rate. The

gain to the gap approach is that the choice of employment, an inherently difficult dynamic

optimization problem, can be characterized through a nonlinear relationship between (∆e)

and (z). That is, the adjustment rate can be a nonlinear function of z.

However, there is no �free lunch�: the desired number of workers and hence the employ-

ment gap is unobservable. Thus in order to confront data, this approach needs an auxiliary

theory to infer z from observables. We argue that these measurement problems may be

severe enough to bias the inferences from these studies.

This paper constructs a dynamic model of labor adjustment assuming quadratic ad-

justment costs and uses the employment gap approach to analyze its implications. While

both CE and CEH do extensive data analysis, they do not provide a mapping from their

reduced form estimates to parameters of the adjustment cost function.3 We use simulated

data from our dynamic model to characterize the mapping from the structural parameters

of adjustment costs to the adjustment functions and aggregate employment relationships

characterized by CE and CEH.

1Hamermesh [1989] uses a gap methodology as well but does not adopt the approach of estimating a

nonlinear hazard function (explained below) to infer the nature of adjustment costs. Hence we focus on

CE and CEH in this discussion of methodology.
2To the extent that this approach is used in numerous other applications, our concerns are relevant for

those exercises as well.
3CE do provide a static model which they use to generate a target level of employment. We embed

their static model into a dynamic optimization problem.
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We do not contest the general view of non-linear employment adjustment at the plant

level. This Þnding is consistent with other evidence that points to inactivity as well as

bursts of employment adjustment at the plant level.4

But, does this plant-level nonlinearity matter for aggregate employment dynamics? CE

and CEH, using the gap methodology, conclude that indeed it does. This Þnding is a major

contribution of these papers. It is potentially important for business cycle and policy

analyzes as it implies macroeconomics must take plant-level distributions into account.

The Þnding implies that linear time series representations of aggregate employment, as in

Sargent [1978], are misspeciÞed.

We Þnd:

� if the gap is correctly measured, the adjustment rate is essentially constant and the
cross sectional distribution of employment gaps is irrelvant for aggregate employment

dynamics

� if the employment gap is mismeasured, then

1. a quadratic cost of adjustment model can generate a nonlinear adjustment rate

(∆e
z
depends nonlinearily on z )

2. aggregate employment dynamics can depend on the cross sectional distribution

of the employment gap

� the gap measures created by CE and CEH do not correspond very closely to the

actual gap measures in the quadratic cost of adjustment model.

To interpret these results, note that inferences from the gap approach are based upon the

following argument: if adjustment costs are quadratic, then the adjustment rate is constant

implying that aggregate employment is independent of the cross sectional distribution of

employment gaps.5 This proposition seems valid when the gap is properly measured. But

it fails using the procedures of CE and CEH to measure these gaps. We Þnd that both

the CE and CEH procedures will reject the null hypothesis of quadratic adjustment costs

4For example, Hamermesh [1989] provides a revealing discussion of lumpy labor adjustment at a set of

manufacturing plants. Davis and Haltiwanger [1992] document large employment changes at the plant level.

CEH also report evidence of inactivity in plant level employment adjustment. There seems little doubt

that explanation of plant level employment dynamics requires a model of adjustment that is richer than the

quadratic adjustment cost structure and includes some forms of non-differentiability and/or nonconvexity.
5Clearly, if the hazard function is independent of the gap, then the cross sectional distribution of the

gap is irrelevant for aggregate behavior. The fact that the partial adjustment model implies a ßat hazard

is essentially by construction. The link between the quadratic cost of adjustment structure and the partial

adjustment model is more subtle and is discussed further below.
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even if that hypothesis is true. A methodology that is unbiased under the null hypothesis

of quadratic adjustment costs is needed to assess that model.

We thus conclude that the time series evidence of nonlinear hazards reported by CE and

CEH should not be taken as a Þnding against the quadratic adjustment cost model. Nor

do their results provide evidence that nonlinear behavior at the plant level has aggregate

effects.

2 The Gap Approach: An Overview

We begin with a summary of the methodology employed by CE and CEH as well as a more

precise statement of their Þndings. This sets the background for our analysis.

2.1 Gap Methodology

We follow the notation and presentation in CEH.6 The gap between the desired employment

and the actual employment (in logs) in period t for plant i is deÞned as:

�zi,t ≡ e∗i,t − ei,t−1. (1)

Here e∗i,t is the desired level of employment given the realization of all period t random
variables and ei,t−1 is the level of employment prior to any period t adjustments. Thus �zi,t
represents a gap between the state of the plant at the beginning of the period and the level

of employment it would choose if it could �costlessly� alter employment.

CEH hypothesize a relationship between employment growth ∆ei,t and �zi,t given by:

∆ei,t = φ(�zi,t). (2)

Thus a key issue is characterizing the policy function, φ(zi,t), and inferring properties of

adjustment costs from it. In some cases, it is convenient to refer to an adjustment rate or

hazard function:7

Φ(�zi,t) ≡ φ(�zi,t)/�zi,t.

Specifying that employment adjustment depends only on the gap is an assumption: the

validity of this approximation to the optimal policy function of the plant can be evaluated

using our structural model.

6The notation and deÞnitions in CEH differ from those used by CE. In particular, CE deÞne the gap as

�zi,t ≡ ei,t − e∗i,t. Accordingly their expression for aggregate employment growth differs from that in CEH.
7There are two interpretations of this function. Either Φ(z) represents the magnitude of adjustment

(e.g. the fraction of a gap that is closed) or a probability of adjustment. The interpretation, of course,

would depend on the nature of adjustment costs.
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As the gap is central to this analysis, it is important to be very precise about how it is

deÞned and measured. The key is the meaning of �costlessly adjusting employment.� In

fact, there are two ways to characterize the target and, as we demonstrate in our quanti-

tative analysis, the results depend on the deÞnition.

First, one could deÞne the target as the level of employment that would arise if there

were never any costs of adjustment.8 This version of the target is quite easy to characterize

since it solves a static optimization problem. This is termed the static target in the

discussion that follows.

Second, one could construct a target measure in which the adjustment costs are removed

for a single period. The target would correspond to the level of employment to which an

optimizing agent would eventually adjust to in the absence of any changes in the stochastic

variables. This is termed the frictionless target. For the quadratic adjustment model,

this would be the level of employment where the state dependent policy function crosses

the 45 degree line.

This hypothesized relationship between employment changes and the gap cannot be

implemented directly since �zi,t is a theoretical construct that cannot be directly observed:

there exists no data set which includes �zi,t. In the literature, various approaches have been

pursued.

2.2 CEH Measurement of the Gap and Findings

CEH hypothesize a second relationship between another (closely related) measure of the

gap, (�z1i,t), and plant speciÞc deviations in hours:

�z1i,t = θ(hi,t − h̄). (3)

Here �z1i,t is the gap in period t after adjustments in the level of e have been made: �z
1
i,t =

�zi,t −∆ei,t. 9
8This approach to approximating the dynamic optimization problem is applied extensively but, from

our perspective, places too much emphasis on static optimization. Nickell [1978] says,

�... the majority of existing models of factor demand simply analyze the optimal ad-

justment of the Þrm towards a static equilibrium and it is very difficult to deduce from this

anything whatever about optimal behavior when there is no �equilibrium� to aim at.�

9Implicitly this assumes that there is no lag between the decision to adjust employment and the actual

adjustment. That is, unlike the time to build aspect of investment, employment adjustments take place

immediately. We use this timing assumption in our structural model.

Further, we have removed the heterogeneity in h̄ and in θ that is important for the empirical imple-

mentation in CEH. Finally, note that by assumption h̄ is independent of any shocks to the proÞtability of

employment. We will argue below that this is an important restriction.
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Intuitively, θ should be positive. As proÞtability rises, hours and the desired number of

workers will both increase. The gap decreases as workers (e) are added and hours fall closer

to h̄. Thus the supposed relationship between this measure of the gap and hours deviations

seems reasonable both in terms of the response of these variables to a shock and in terms

of transition dynamics. Note though that the correlation between hours and employees is

somewhat complicated: the shock leads to positive comovement between e and h but, in

the adjustment process, the comovement is negative.

Rewriting this relationship in terms of the pre-adjustment gap leads to:

�zi,t = θ(hi,t − h̄) +∆ei,t. (4)

Hence, given an estimate of θ, one can infer �zi,t from hours and employment observations.

The issue is estimating θ. Using (1) in (4) and taking differences yields:

∆ei,t = −θ∆hi,t +∆e∗i,t

Adding a constant (α) and noting that ∆e∗i,t is not observable, CEH estimate θ from:

∆ei,t = α− θ∆hi,t + εi,t. (5)

As CEH note, estimation of this equation may yield biased estimates of θ since the error

term (principally ∆e∗i,t) is likely to be correlated with changes in hours. That is, a positive
shock to proÞtability may induce the plant to increase hours (at least in the short run) and

will generally cause the desired level of employment to increase as well. CEH argue that

this problem can be (partially) remedied by looking at periods of large adjustment since

then the changes in hours and employment will overwhelm the error.10 As we proceed,

evaluating the implications of this bias will be important.

CEH use their plant level measures of the gap in two ways. First, they analyze the rela-

tionship between employment adjustment and employment gaps at the plant level. Second,

they investigate aggregate implications by estimating a reduced form hazard function from

time series. Letting ft(z) be the period t probability density function of employment gaps

across plants, the aggregate rate of employment growth is given by:

∆Et =

Z
z

zΦ(z)ft(z). (6)

10They also note the presence of measurement error, which they address through the use of a reverse

regression exercise. We have not included measurement error in our simulated environment.
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As Φ(z) is the adjustment rate or hazard function indicating the fraction of the gap that

is closed by employment adjustment, zΦ(z) is the size of the employment adjustment

for plants with a gap of z. As in CEH [Section IV], simpliÞcation based upon the given

speciÞcations of a hazard function produces an aggregate relationship between employment

changes and non-centered moments of z.

The CEH Þndings can be summarized as:

� using (5), CEH report a mean (across 2-digit industries) estimate of θ = 1.26. Their
estimate comes from using observations in which percent changes in both employment

and hours exceed one standard deviation of the respective series.

� using their estimates of θ to construct a gap measure (�zi,t), CEH (Figure 1a) Þnd a
nonlinear relationship between the average adjustment rate, Φ(�zi,t), and �zi,t

� CEH specify that Φ(z) is piece-wise linear. Table 3 in CEH summarizes aggregate
implications and indicates that employment growth depends on the second moment

of the distribution of employment gaps.

2.3 CE Measurement of the Gap and Findings

In contrast to CEH, CE do not estimate θ but instead calibrate it from a structural model of

static optimization by a plant with market power. Appendix A characterizes the mapping

from the structural parameters of the quadratic adjustment model (presented in the next

section) to θ.

An important element in their approach is the use of a static target. CE argue that the

static targets are the appropriate benchmarks for measuring employment gaps if shocks

follow a random walk. But, if the shocks are stationary, then this measure will not provide

the relevant employment target for a plant. Instead of adhering to the static solution, plants

will solve a dynamic optimization problem, explored below, taking into account conditional

expectations of future shocks. Plants balance the gains from adjusting to productivity

shocks against the costs imposed on employment adjustment in the future. We analyze the

bias in the measurement of the gap stemming from the use of a static target.

As CE do not have plant level data, their estimation uses aggregate observations on

net and gross ßows for US manufacturing employment to estimate a hazard function. CE

consider both a constant and a quadratic speciÞcation for Φ(z). They Þnd that a quadratic

hazard speciÞcation Þts the data better than the ßat hazard.11

11There is a difference then between the CE and CEH approaches to characterizing aggregate employment

growth: CE impose a quadratic hazard while CEH work with a piecewise linear adjustment function. Our

analysis will use both of these speciÞcations.
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3 A Dynamic Optimization Framework

Our analysis builds from the speciÞcation of a dynamic optimization problem at the plant

level. Our structure is purposefully close to that outlined in CE. 12 We use the model as a

data generating mechanism to evaluate the CE and CEH methodologies.

3.1 Quadratic Adjustment Cost Model

Letting A represent the proÞtability of a production unit (e.g. a plant), we consider the

following dynamic programming problem:

V (A, e−1) = max
h,e

R(A, e, h)− ω(e, h)− ν
2

µ
e− e−1
e−1

¶2
e−1 + βEA0|AV (A0, e). (7)

Here h represents the input of hours by a worker, e−1 is the inherited stock of workers
before quits occur (at an exogenous rate of q) and e is the stock of current workers.13 Note

the timing assumption of the model: workers hired in a given period become productive

immediately.

For our analysis we will work with a Cobb-Douglas production function in which the

labor input is simply the product eh. Allowing for market power by the plant, we obtain:

R(A, e, h) = A(eh)α (8)

where the parameter α is determined by the shares of capital and labor in the production

function as well as the elasticity of demand.

The costs of adjustment are assumed to be a quadratic function of the percent change

in the stock of workers that are employed (e) and the number of workers at the start of

the current period.14 That is, the adjustment cost arises for net not gross hires. In (7), ν

parameterizes the level of the adjustment cost function.

12For example, we have not added stochastic adjustment costs since these would drive an immediate

wedge between employment changes and any gap measure. CE also include a idiosyncratic shock to the

plant�s gap that has no apparent counterpart in the optimization model. We did not know how to include

this in our formulation.
13Note that there is a slight change in notation here as e and h both refer to levels and not log levels.

Other inputs into the production function, such as capital and energy are assumed, for simplicity, to be

ßexible. Maximization over these factors is thus subsumed by R(A, e, h) and variations in inputs costs are

part of A.
14The literature uses both a quadratic speciÞcation in which the cost is in terms of per cent differ-

ences (Bils[1987]) and speciÞcations in which adjustment costs are in terms of employment changes alone

(Hamermesh[1989]).
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The function ω(e, h) represents total compensation to workers as a function of the

number of workers and their average hours. This compensation function is critical for

generating movements in both hours and the number of workers.15 For our analysis, we

follow Bils [1987] and Shapiro [1986] and assume:

ω(e, h) = w ∗ e ∗ £w0 + h+ w1 (h− 40) + w2 (h− 40)2¤
where w is the straight-time wage.16

Using the reduced form proÞt function and assuming quadratic costs of adjustment,

the dynamic programming problem can be solved using value function iteration. Let e =

ζ(A, e−1) be the policy function for employment. Using this policy function, employment is
determined by a stochastic difference equation.17 Let h = H (A, e−1) be the policy function
for hours.

The frictionless target, e∗(A), is the solution to the optimization problem when ν = 0

for one period. For this model, the frictionless target is equivalent to the solution to

e = ζ(A, e). The adjustment process, deÞned by iterations of e = ζ(A, e−1) given A,
converges to the frictionless target, e∗(A). Denote by h∗(A) = H(e∗(A), A) the frictionless
hours target. Note that this target will generally be a function of A.

The static target, used by CE, is deÞned as the solution to (7) when ν = 0 in all periods.

Thus employment and hours simply satisfy static Þrst order conditions.

The top two panels of Figure 1 illustrate the policy functions and employment targets

for two realizations of A. Both the frictionless and static employment targets are indicated

in the Þgure. Since plants take future adjustment costs into account in determining the

frictionless target, they will not be as responsive as the static target to changes in the

productivity shock. In general, the frictionless target will be less than the static target for

above average productivity shocks and vice versa for below average shocks.

As a result, the frictionless hours target for a given shock, h∗ (A), will also deviate from
the static hours target, as shown in the bottom panel of Figure 1.18 If the frictionless

employment target is below the static employment target for a given shock, then the

15A simpler model with a production function, a Þxed wage rate and an employment adjustment cost

is not sufficient as there is no �penalty� for overworking employees. Thus, as long as there is no cost

to adjusting hours, Þrms will only modify hours in reaction to shocks. There will be no need to adjust

employees.
16In contrast to Sargent [1978] there is no exogenous component to wage variation. In his study, variations

in productivity were much larger than variations in wages.
17See Sargent [1978] for a further discussion of this problem and the solution methodology for Þnding

the path of employment adjustment.
18See Appendix A for a discussion of the static hours target. It is determined from the Þrst-order

condition for hours if employment is set at its static target. As discussed in Appendix A, the static hours

target is not state dependent.
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frictionless hours target will be above the static hours target to compensate for the lower

level of employment.

3.2 Partial Adjustment Model

Within this model, one can be much more explicit about the partial adjustment struc-

ture and the resulting ßat hazard speciÞcation. The partial adjustment model is a policy

function deÞned by:

e = λe∗ + (1− λ)e−1 (9)

for λ ∈ [0, 1]. The dependence of e on A comes through the speciÞcation of the�target,�
e∗.19 If the optimal policy has this form, then the ßat hazard implication is immediate:

Φ(z) =
e− e−1
e∗ − e−1 = λ.

But, what is (9) a solution to? When does it solve (7)?

The standard partial adjustment structure is often �rationalized� by solving for the

optimal transition path towards the target in the presence of quadratic adjustment costs

and a quadratic loss function.20 Consider a dynamic programming problem given by:

$(e∗, e−1) = min
e

(e− e∗)2
2

+
κ

2
(e− e−1)2 + βEe∗0|e∗$(e∗0, e). (10)

where the loss depends on the gap between the current stock of workers (e) and the target

(e∗). Here there is no model of the target; it is taken as an exogenous process. Assume
that e∗ follows an AR(1) process with serial correlation of ρ. Working with this quadratic
speciÞcation, it is straightforward to show that the optimal policy is linear in the state

variables:

e = λ1e
∗ + λ2e−1.

If the shocks follow a random walk (ρ = 1), then partial adjustment is optimal (λ1 + λ2 =

1).21

The optimal policy may not take the partial adjustment form for two reasons. First,

(10) is an approximation to (7). Second, shocks may not follow a random walk.

19Clearly e∗ ought to be the frictionless rather than the static target since adjustment will stop for a
dynamically optimizing plant once that target is reached.
20Alternatively, consider a dynamic optimization framework, such as (7), and assume that the within

period return function can be written as a quadratic function and that shocks follow a random walk. Then,

the optimal employment level is a linear function of the static optimum and the lagged level of employment.

This can be seen directly, for example, from the Þrst-order conditions provided in Sargent [1978] in the

linear quadratic framework.
21Essentially guess that the policy function is linear in the state variables and use that to solve the Þrst
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4 Empirical Implications

Our goal is to consider the empirical implications of the quadratic adjustment cost model.

We do so Þrst by looking at the aggregate implications, as in the regression results reported

in CE and CEH.We then characterize the microeconomic hazards in terms of the response of

employment to the employment gap and Þnally study the determination of the employment

gap.

In the following analysis, we use our model to directly measure the employment gap at

the plant level. We call this the observed gap. As noted above, there are two commonly

used notions of targets: the frictionless and static targets. Corresponding to these two

measures of the target are thus two measures of the observed gap: the frictionless gap

and the static gap. We can measure these directly using our model as a data generating

mechanism.

Also, we can follow CEH and try to infer the employment gap from observed hours

variations, using (4) where θ is estimated from (5). We term this the CEH gap. Following

CEH, we provide two measures of this gap based upon two estimates of θ. The Þrst uses the

full simulated panel and the second uses a subsample comprised of observations entailing

large changes in employment and hours, where large is deÞned as a change greater than

one standard deviation.

4.1 Parameterization

To solve the dynamic programming problem given in (7), we need to calibrate a number of

parameters and specify functional forms. We assume:

� a Cobb-Douglas production function in which hours and workers are perfectly sub-
stitutable. Labor�s share is 0.65 and the markup is set at 25%.

� the compensation function uses the estimates of Bils [1987] and Shapiro [1986]:
{w0, w1, w2} = {1.5, 0.19, 0.03} and the straight time wage, w, is normalized to 0.05.
The elasticity of the wage with respect to hours is close to 1 on average

order condition from the dynamic programming problem. The solution has

λ1 =
1+ βκλ1ρ

1 + κ− βκ(λ2 − 1)
and

λ2 =
κ

(1 + κ− βκ (λ2 − 1)) .
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� as estimated in Cooper-Haltiwanger [2000], the proÞtability shocks are represented by
a Þrst-order Markov process and are decomposed into aggregate (A) and idiosyncratic

components (ε). We assume that A ∈ {0.9, 1.1} and ε takes on 15 possible values.
The serial correlation for the plant-level shocks is 0.83 and it is 0.8 for the aggregate

shocks. The standard deviation of the plant-level shocks is set at 0.3 as estimated in

Cooper and Haltiwanger [2000].22

� We consider two values of the adjustment cost parameter, ν = 1 and ν = 10, as these
lead to adjustment rates such that the half-life of a gap is between 1 quarter and 1

year.23

Given this parameterization of the basic functions, the optimization problem given in

(7) is solved using value function iteration to obtain policy functions. Using these policy

functions, we create a simulated panel data set where the number of plants equals 1000

and the number of time periods is 1000.24

4.2 Aggregate Implications

Given that both CE and CEH present quantitative results on the estimation of hazard

functions from time series data, we begin by analyzing the aggregate implications of the

quadratic adjustment model. We create a time series by aggregating across the plants

in our simulated panel data set. Following CE and CEH, we can investigate aggregate

implications by looking at the relationship between aggregate employment changes and the

cross-sectional distribution of the employment gap given by (6).

Table 1 presents estimates for three speciÞcations of a hazard function (Φ(z)): constant,

piece-wise linear and quadratic.25 More precisely, we specify

Φ(z) =

(
λ0 + λ

−
1 z + λ2z

2 for z < 0

λ0 + λ
+
1 z + λ2z

2 for z > 0
(11)

22Cooper-Haltiwanger obtain these estimates from a model in which there were, by assumption, no ad-

justment costs to labor. Thus we view this parameterization as a starting point and explore the robustness

of our Þndings to variations in these parameters of the distributions. The shocks do not follow a random

walk. Relatedly, in Sargent [1978] all stochastic processes are found to be stationary.
23We are grateful to Dan Hamermesh for suggestions on this parameterization.
24CEH have a panel with 36 quarters and 10,000 plants. Our results are robust to adding more plants.

We analyze only 1000 plants to reduce computation time. The number of time periods is set at 1000 to

minimize simulation error.
25To be clear, this hazard function is imposed on the aggregate data which itself comes from a panel

created by the optimal decisions at the plant level. These optimal decisions will not necessarilly obey any

of these simple hazard speciÞcations.
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which nests different speciÞcations of the hazard function.

CEH restrict λ2 to be zero and estimate λ
−
1 = 1.30 and λ+1 = 1.32. In contrast, CE

estimate a quadratic hazard given by:

Φ(z) = �λ0 + �λ2(z − z0)2 (12)

where z0 is a constant.
26 Expanding this hazard, the parameters (�λ0, �λ2, z0) can be es-

timated from (11) with the restriction that λ+1 = λ−1 .
27 CE (Table 2, BLS) report

(�λ0 = 0.02, �λ2 = 0.53, z0 = −0.82).We provide estimates for both speciÞcations of the
hazard function using both the observed gap and the CEH gap for the two types of targets.

4.2.1 Frictionless Target

The results for the frictionless target computed using the observed gap are reported at

the top of Table 1a. When the appropriate target is used, the results are consistent with

intuition: the estimated hazard is ßat with an adjustment rate that is 0.5 when ν = 1 and

0.19 when the adjustment cost is larger, ν = 10. There is essentially no evidence of any

economically signiÞcant nonlinearity: the model with a constant hazard Þts quite well.28

The R2 for this speciÞcation is essentially 1.29

There are two deviations from this benchmark associated with two potential �errors�

in measuring the gap. First, as in CE, the static target, which is easy to compute, may be

used instead of the frictionless target. The second is the CEH measure of the gap.

4.2.2 Static Target

Using the static target one would strongly reject the hypothesis that the hazard function

is ßat in favor of either the piecewise linear or quadratic cases as shown in the lower

portion of Table 1a. For example, in the quadratic speciÞcation, we Þnd that when ν = 1,

λ2 is estimated at 0.33 with a standard error of 0.01. Further, the coefficients in the

piecewise linear speciÞcation (λ+1 = 1.46,λ
−
1 = 1.16) are also statistically and economically

signiÞcant. The nonlinearity is also statistically signiÞcant when ν = 10 for both the

piecewise linear and quadratic cases. Note though that here the R2 for the constant hazard

26CE introduce additional features that we have avoided. As discussed in their Section IV.2, they apply

an idiosyncratic shock to the distribution of plant deviations. We are not sure what this transformation

represents in our structural model and thus we have excluded it from our analysis.
27Thus when we refer to estimation of (12), we are doing so by estimating (11) with the restriction that

λ+1 = λ
−
1 .

28Though the regression coefficients on some of the nonlinear pieces are statistically signiÞcant, they add

essentially nothing to the goodness of Þt and the estimated coefficients are very small.
29This high value of R2 partly reßects the limited nature of the model: there are no other factors of

production with adjustment costs, there are no shocks to the adjustment costs directly, no measurement

error, etc.
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model is quite high (0.91) so that adding these higher moments of the cross sectional

distribution, while signiÞcant, do not lead to the large increases in R2 reported by CE.

The table also includes the quadratic speciÞcation given in (12) in the bottom row of

Table 1a, where λ+1 = λ−1 has been imposed. From this regression, we estimate (�λ0 =

−0.35, �λ2 = 0.54, z0 = −0.15) when ν = 1 and (�λ0 = −0.22, �λ2 = 0.17, z0 = −0.23) when
ν = 10. The coefficients are all signiÞcantly different from zero. 30

The difference in results between using the frictionless and static targets to determine

the employment gap can be viewed as the introduction of measurement error into the

regression. If the static target is equal to the frictionless target, we should not see any

change in results. Figure 1, however, illustrated the difference between the two targets.

Therefore, switching to the static target is likely to lead to a bias in the estimate as there

is not a constant difference between these targets.

Using the hazard given in (12), one can rewrite the aggregate employment growth

equation, (6), as:

∆Et = λ0m
s
1,t + λ1m

s
2,t + λ2m

s
3,t + εt + λ0

³
mf
1,t −ms

1,t

´
+ λ1

³
mf
2,t −ms

2,t

´
+ λ2

³
mf
3,t −ms

3,t

´

where ms
i,t is the i

th uncentered moment of the cross-sectional distribution of the static gap

in period t and mf
i is the corresponding measure for the frictionless gap. The error term

contains three measurement error terms in addition to εt. If any of these measurement

errors are correlated with the moments of the static employment gap, then a bias in the

estimates will be present.

To study this bias, we regress the measurement error in the Þrst uncentered moment on

the three moments of the static gap.31 We estimate (−1.66, 0.37, 1.07) as the coefficients
on the three moments. The standard errors are all less than 0.04. These results indicate

that the error is related to the static gap in a nonlinear way, thus leading to the nonlinear

estimates of the adjustment function.

4.2.3 CEH Measure of the GAP

Second, the frictionless target could be inferred from variations in observed hours, as in

CEH, opening the possibility of measurement error. The results for this case are in Table

1b. The different sections refer to alternative treatments of the data. �Full sample� means

that we use the complete sample while �big change� refers to a sample constructed by in-

30At least with regards to the quadratic term and ν = 1, our estimates are not at odds with the CE

Þndings. Again, our methodology does not include the extra step of randomization across the gaps. Also,

our model does not imply that z0 should be present: if there is a zero gap, there should be no adjustment.
31Thanks to Peter Klenow for discussions on this characterization of the measurement error.
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cluding only observations in which the employment and hours changes exceed one standard

deviation, as in the sample splits of CEH.

Note that for both speciÞcations (ν ∈ {1, 10}), the constant hazard hypothesis is re-
jected for both the full and big change samples. In fact, the ßat hazard speciÞcation yields

rather nonsensical results: ie. the adjustment rate is in excess of 100% for the full sample

and is actually negative (ν = 10) once we concentrate on the large changes in employment

and hours. Further, there is a nontrivial increase in the R2 associated with adding these

terms to the hazard function, particularly for the big change sample with ν = 1.

4.2.4 Summary

Thus from the aggregate estimation results we Þnd that the hazard function is essentially

ßat iff the gap is properly measured. Using either the CE or the CEH procedure for

measuring the gap, one would reject the ßat hazard speciÞcations and conclude that ad-

justment costs were not quadratic. Here we have seen that this conclusion is not valid: the

measurement of the gap introduces the nonlinearities, not the economic behavior.

We now turn to further explorations of these rejections of the constant hazard model. To

what extent do they reßect aggregation? To what extent do they reßect mismeasurement

of the gap created in the estimation of auxiliary model that links hours variations to the

target? We address these questions in turn.

4.3 Micro Hazards

For the analysis of plant level hazards, we consider an expanded speciÞcation of the hazard

function used in the aggregate analysis:

Φ(z) =

(
λ0 + λ

−
1 z + λ2z

2 + ξ0
1
z
for z < 0

λ0 + λ
+
1 z + λ2z

2 + ξ0
1
z
for z > 0.

The additional 1
z
term in the hazard function is added to reßect the possible presence of

a constant term in the policy function (φ(z)). For this speciÞcation, the constant haz-

ard prediction is that all coefficients except for λ0 should be insigniÞcantly different from

zero. If only λ0 and λ
−
1 /λ

+
1 are signiÞcant, then the hazard function is linear but not ßat.

The estimates (standard errors in parenthesis) for this exercise are presented in Table 2a

(observed gap) and 2b (CEH gap).

4.3.1 Frictionless Target

Using the frictionless target measure, the hazard rate (λ0) is very close to the estimates

obtained from aggregate data for both values of ν. For example at ν = 1, the value of
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λ0 from the micro hazard is 0.50, the same as the value estimated from the aggregate

data. Evidently, there is no bias introduced by the aggregation per se as long as the

appropriate measure of the target is being used. Using this gap measure there is no evidence

of nonlinearity at the plant level as λ2 is essentially zero. While there is some evidence for

a linearly decreasing hazard as a function of the employment gap as λ−1 + λ
+
1 sum to zero.

Adding these linear terms
¡
λ−1 ,λ

+
1

¢
into the estimation can only account for eight percent

of the total sum of squared deviations from a constant hazard hypothesis. Also important

to note is that the inverse of z has no explanatory power, ξ0 = 0. These same points hold

for ν = 10.

For the observed frictionless gap, Figure 2 presents the simulated data when ν = 1.

This is intended as a counterpart to Figure 1a in CEH. The top part of the Þgure contains

a scatterplot of the observed frictionless gap and the rate of employment adjustment,

expressed as the change in employment divided by the employment gap, along with a

line depicting a constructed average adjustment rate. Note that this relationship is a bit

�cloudy� as the gap measure is not quite a sufficient statistic for employment adjustment.

The bottom panel shows the cross sectional distribution of the employment gaps pro-

duced by the model. This distribution is slightly more diffuse than the corresponding

picture in Figure 1a in CEH. Figure 5 presents the same panels for the case of ν = 10.

Here the average adjustment rate line has a slightly positive slope.

4.3.2 Static Target

For the case of the static target we Þnd evidence of signiÞcant nonlinearity at the plant-

level. Figure 3 displays the scatterplot of adjustment rates and a constructed average

adjustment measure using the static target.

Starting Þrst with a simple constant hazard speciÞcation for v = 1, the estimate for λ0

reported in Table 2a is 0.35, much lower than the 0.5 estimate using the frictionless target.

This reßects the fact that the static target does not incorporate the cost of adjustment as

does the frictionless target. As described earlier, Figure 1 illustrates how measures of static

employment targets corresponding to above and below-average shocks will be exaggerated

relative to the frictionless target. Therefore, the static target on average will indicate that

more adjustment is required, i.e. a larger gap exists, and the adjustment rate for a given

change in employment will be smaller.

The more general hazard speciÞcation (including all but 1
z
) indicates marginally sig-

niÞcant nonlinearities, but the R2 on this regression is 0. However, when the inverse of z

is added to a constant hazard speciÞcation, its coefficient, ξ0, is strongly signiÞcant and

the R2 increases to 0.42. This result indicates that there is not a proportional relationship

between the static gap and changes in employment.32 The results corresponding to ν = 10

32This result can again be understood from the perspective of the measurement error induced by using
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are similar. Though the nonlinearities are signiÞcant, the only change in the R2 coincides

with the inclusion of 1
z
.

4.3.3 CEH Measure of the Gap

For the hazards estimated at the plant level using the CEH measure of the gap, there is

little to be discerned from the results in Table 2b. The hazard rate (λ0) is estimated to be

much greater than the value associated with the frictionless target, often in excess of 100%

adjustment, depending on the value of ν. As we shall see, the problems with this measure

of the gap are a direct consequence of severely biased estimates of θ.

4.4 Estimates of θ

The Þnal step in understanding the aggregate results and the CEH methodology is to

explore the estimates of θ, the relationship between the gap and hours. The issue is to

determine if problems with the CEH gap measure stem from the estimation of θ. As CE

did not estimate θ, this issue does not arise directly in their analysis. However, there is

still the issue of whether the θ they impose from their static model generates a reasonable

gap measure.

Table 3 summarizes the estimates of this parameter for a number of different speciÞ-

cations. The Þrst two rows correspond to the estimated value of θ using the actual gap

that we construct in our simulated environment. Of these rows, the Þrst measure uses the

frictionless target to create the gap while the second measure uses the static target. The

other rows use the CEH approach to estimate θ. Note that their results do not depend

on the deÞnition of the target since it is not observed to them. Results are again reported

for the two different parameterizations of the quadratic adjustment cost model, ν = 1 and

ν = 10.

First note that the sign on θ from the CEH regression is opposite that obtained when

the observed gap is used in the regression, as in (3). Since their methodology relies on θ

to construct a measure of the gap, this difference is important to understand.

Recall that in (5), the error term contains the change in the employment target level.

Assuming that changes in hours are uncorrelated with changes in employment targets, the

sign on θ will be determined by the unconditional correlation between changes in hours

and changes in employment. In the simulated data, this correlation is 0.69, indicating that

the sign on θ in (5) will be negative. The driving force behind this positive correlation is

the partial adjustment to changes in employment targets. When plants experience produc-

tivity shocks, they respond to changes in employment targets by changing both hours and

employment in the same direction.

the static rather than the frictionless employment target.
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CEH acknowledge that hours and employment target changes could be correlated, so

they only use observations in which there are large changes in both hours and employment

to estimate θ. They argue that in these periods, the changes in employment targets will

be swamped by the effects of large changes in hours and employment. But in a model

of convex adjustment, the only periods in which there will be large changes in hours and

employment are periods in which there are large changes in employment target levels. This

is evident in the simulated data: the correlation between changes in hours and changes in

employment target levels is 0.95 in the full sample and 0.99 in the CEH-criterion subsample.

To obtain an unbiased estimate of θ in a model of quadratic costs of adjustment, controlling

for changes in employment target levels is essential.

The implications of the sign reversal are displayed in Figure 4, which shows a sample of

employment changes, deviation in hours, and various measures of the employment gap from

a simulation of the model. The upper panel displays the two measures of the actual gap,

and the lower panel contains two measures of the gap constructed from CEH estimates

of θ. The differences between the gap measures are readily apparent once the scales of

the two panels are taken into account. The series for employment changes and hours

deviation are identical in both panels. In the upper panel, the gap measures have a higher

degree of variability than employment changes, indicative of the expected plant behavior

of partial adjustment when faced with convex costs of adjustment. In the lower panel,

employment changes greatly exceed the CEH gap measures. Since hours and employment

are positively correlated, the effect of the negative sign on θ is essentially to force the

constructed employment gap to be a dampened version of the change in employment. The

correlation between the actual measures of the gap and the CEH gap measures are positively

correlated (approximately 0.52 for the big change subsample at ν = 1), but the conclusions

to be drawn from analysis of these series are very different.

As for the CE approach, the estimate of θ obtained from using the frictionless and static

gap measures differ. In fact, the estimate using the static target, as in CE, produces an

estimate of θ that is exactly equal to the one obtained analytically.33 However, the gap

measure produced by using this estimate of θ does not correspond with the frictionless gap

measure. The difference is due to the fact that the frictionless hours target is dependent

upon the productivity shock, whereas the static hours target is independent of the shock.

This distinction between the two hours targets has important implications for the mea-

surment of the gaps in CEH, represented by (3). A complicated log-linearization in the

form of (18) may be constructed using the frictionless targets. The relationship between

33Using (18) from Appendix A and the given parameterization, CE would Þnd θ is equal to 8.8.
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the employment gap and hours deviations used by CEH can be written as

�zi,t = θ (hi,t − h∗ (Ai,t)) .

Using the correct target for hours and the frictionless employment gap, we do obtain the

analytically calculated value of θ. But the problem for the CEH methodology is that there

are now two unobservables since the hours target cannot be approximated by a constant

mean. Even if an estimate for θ is available, the employment gap cannot be accurately

constructed without observing the hours target. The errors caused by having the correct θ

and using the mean level of hours to approximate the hours target is illustrated precisely

by the observed static target results above for the aggregate and micro hazards.

4.5 Robustness

The conclusions we have reached concerning the inferences from the gap methodology are,

admittedly, based upon the selection of parameters for the plant level optimization problem

and for the driving processes. It is natural to explore the robustness of these Þndings.

4.5.1 SpeciÞcation of Optimization Problem

With regards to the speciÞcation of the plant level optimization problem, we consider two

variations. First, our production function assumes that the labor input is the product of

hours and the number of employees. Yet, CE, citing Bils [1987], analyze a model in which:

R(A, e, h) = A (eαehαh) (13)

with αe = 0.72,αh = 0.77.
34 In this case, our conclusions on the methods of CE and CEH

do not change: nonlinearities remain in the aggregate regressions, using (12) as the hazard

function, as shown in the second row of Table 4.

Second, as noted earlier, the literature is somewhat mixed on the speciÞcation of the

quadratic adjustment cost model. In our model, we assume that the cost depends on the

rate of change in employment, not the change alone. Instead we could consider:

ν

2
(e− e−1)2 . (14)

Using this speciÞcation of the adjustment cost function does not have a signiÞcant effect

on any of our conclusions: nonlinearities remain in the aggregate regressions (see row 3 of

Table 4).

34The values for αe and αh are produced by assuming constant returns to scale in capital and employment,

a markup of 25%, and using the production relationship between hours and employment reported in CE.
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4.5.2 Shocks

Of particular concern are the speciÞcations of the stochastic processes as these parame-

terizations came from Cooper and Haltiwanger [2000] who investigated a model without

costs of adjusting labor in a panel of approximately 7,000 plants over the 1972-88 period.

Thus it is important to consider robustness with respect to the process governing both the

aggregate and plant speciÞc shocks.

For the idiosyncratic shocks, our analysis uses the standard deviation and serial correla-

tion reported by Cooper-Haltiwanger and creates a state space with 15 shocks and a transi-

tion matrix that mimics this process assuming that the shocks are normally distributed.35

To explore the sensitivity of the results to the idiosyncratic shock parameterization, we

compute results over a range of plausible alternative parameter settings. Table 5 displays

the corresponding results for the aggregate regression, where the static targets are used to

measure the employment gaps. The serial correlation values range from 0.7 to 0.99 and the

standard deviations range from 0.1 to 0.4. The actual values used in the baseline estimates

are (0.83,0.3). In the left side of the table, where ν = 1, increases in the serial correlation

lead to higher estimates of λ2, the quadratic coefficient of the adjustment function. When

the standard deviation is increased, the linear coefficient, λ1, increases, but the effect on

λ0 and λ2 depends on the level of serial correlation. For high levels of serial correlation, an

increase in the standard deviation leads to small increases in the nonlinearity, but the level

of nonlinearity decreases for lower levels of serial correlation. In all of the results, however,

the hypothesis of a constant or linear hazard function would be rejected. The right side of

Table 5 shows results when the scalar on the adjustment cost function, ν, is increased to

10. The conclusions are very similar.

We also consider variations in the representation of the aggregate shock process and

here Þnd that the speciÞcation can matter. Cooper-Haltiwanger represent the aggregate

shock process as a two-state Markov process where the shock has values of {1.1, .9} and a
transition matrix of

Ã
.8 .2

.2 .8

!
(15)

which reproduces the serial correlation and variance of aggregate shocks. By construction,

the distribution of shocks is uniform. Note that there are two aspects of the approximation:

the number of elements in the state space and the elements in the matrix.

An alternative estimate of the variance and serial correlation comes from Sargent [1978]

who estimates an aggregate shock process in his model of dynamic labor demand. Sargent

reports an aggregate shock process in which the serial correlation is 0.94. Row 4 of Table

35Thus we follow the procedure outlined in Tauchen [1986].
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4 shows our results for that speciÞcation of the aggregate shocks.36 Again our Þndings are

robust to this alternative speciÞcation of the aggregate shocks.

However, changes in the Þneness and the spread of the state space can inßuence our

Þndings with regards to the CE aggregate results (the hazard given in (12)). Suppose that

we increase the number of elements in the aggregate state space from 2 to 11.37 In this

case, for the aggregate regression we Þnd that the level of nonlinearity is lower (row 5 of

Table 4), but is still strongly signiÞcant. For ν = 10, our results are similar.

To study the spread of the state space, we set the endpoints one standard deviation

above and below the mean, where the endpoints were previously set 0.4 standard deviations

from the mean. We use an 11-point state space representation where the aggregate shocks

here go from 0.77 to 1.3. This change produces a substantial decrease in the estimated

degree of nonlinearity in the aggregate regression (row 6 of Table 4). The estimate of λ0 is

now close the the constant hazard estimate of 0.4 for this speciÞcation. Similar results are

reported for ν = 10. In both cases, one would still reject a ßat hazard, but the magnitude of

the degree of nonlinearity is much smaller than baseline estimates. Interestingly, the degree

of nonlinearity in plant-level employment adjustment actually increases when the endpoints

of the aggregate state space are expanded. Further, even for the aggregate regressions, there

is evidence of signiÞcant nonlinearity in the piecewise linear speciÞcation. Note further that

these aggregate results hold when there is an implausibly large domain for the aggregate

shocks.

5 Conclusions

The point of this paper was to assess the inferences of CE and CEH that aggregate em-

ployment dynamics depend upon the cross sectional distribution of employment gaps. The

paper argues that due to measurement problems, a researcher might Þnd that the cross sec-

tional distribution matters for aggregate time series even if adjustment costs are quadratic

due to measurement problems. Thus the time series evidence presented by CE and CEH is

not convincing. So, despite the overwhelming evidence that plants adjustment is nonlinear,

the question of whether this matters for aggregate employment dynamics remains an open

issue.

Can we do better? Within the gap methodology, it is apparent that the CEH method-

ology is inferior to that employed by CE.38 However, even the CE approach falls short due,

36Sargent did not estimate the mean value of the shock, so we are unable to normalize the estimate

of the variance of the innovations for use in our model. Therefore, we set the variance at 0.008, which

corresponds to the estimates by Cooper-Haltiwanger. Here shocks are drawn from a normal distribution.
37In order to solve the model we also have to reduce the number of idiosyncratic shocks from 15 discrete

points to 5 points. This reduction leads to only a marginal change in results.
38We understand that data limitations led CEH to their formulation.
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primarily due to state contingent differences between the frictionless and static employment

targets. We have seen that adding a state dependent hours target to the model yields the

appropriate frictionless target. However, implementing this procedure with actual data is

less clear.

There are, however, competing approaches to estimating a parameterized version of an

adjustment cost function nesting both convex and nonconvex costs that do not rely on gap

measures. Examples of this now exist in the literature on investment, durables and price

setting. These involve using indirect inference techniques to match the moments produced

by simulations of a structural model with those observed.39 Clearly, labor is next.
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Appendix A: CE Gap and Target

CE use this basic framework to generate some analytic results on θ, the parameter that con-

nects variations in hours with variations in the number workers and the target employment

level. Their approach is completely static. They maximize

R(A, e, h)− ω(e, h)

for the optimal choice of hours given (A, e) yielding a Þrst order condition of:

Rh(A, e, h) = ωh(e, h). (16)

The level of hours satisfying this Þrst order condition is also appropriate in a dynamic

setting since the hours choice entails no costs of adjustment. Similarly, they optimize over

the number of workers setting hours at h̄ implying:

Re(A, e, h̄) = ωe(e, h̄). (17)

This Þrst-order condition is intended to characterize a target level of employment as hours

are set at their optimal level. We let e∗∗(A) denote the solution to (17). This is the static
target and it is, by construction, independent of the speciÞcation of the adjustment cost

function. Given e∗∗(A) and the speciÞcations above for the compensation and produc-
tion functions, plants will always choose the same steady-state level of hours per worker,

h∗∗ (A) = h̄, ∀A.
Log-linearizing (17) given the functional forms yields

�At + (α− 1) �et + α�ht =
w0
¡
h̄
¢
h̄

w
¡
h̄
¢ �ht

where ��xt� is a percent deviation from steady state in period t. Since the static target for

hours is independent of deviations in the productivity shock, we can express the relationship

between the static employment target and the productivity shock from (17) as

�At = (1− α) �e∗∗t .

Substitution of this relationship into the log-linearized version of (16) yields:

(1− α) �e∗∗t + (α− 1) �ht + α�et = �et + ξw�ht

where ξw is the marginal wage elasticity with respect to hours.
40 This can be rewritten as

�e∗∗t − �et =
1− α+ ξw
1− α

�ht. (18)

40The marginal wage elasticity can be expressed as ξw =
2w2h̄

w(1+w1+2w2(h̄−40)) .
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Using the mean level of observed hours as an approximation for h̄, equation (3) denotes

the same relation as (18) with θ equal to 1−α+ξw
1−α .41

Relative to the parameterization of our model, CE would set θ = 8.8 using the following

analysis. The marginal wage elasticity is evaluated at the static steady state level of 37.3

hours. From this, ξw = 2.18.

The value of α is given by optimization of capital (K) in the fully speciÞed production

function, assuming no adjustment costs of investment

�R (A, e, h,K) =
³
�A (eh)αLKαK

´ η−1
η − rK

where αL and αK are the respective labor and capital shares, η is the price elasticity of

demand, and r is the rental rate on capital. Maximization with respect to capital leads to

the reduced form in (8) where

α =

η−1
η
αL

1− η−1
η
αK
.

With η set equal to 5, corresponding to a markup of 25%, and assuming constant returns

to scale in capital and labor with αL = .65, α is equal to 0.72. Using these calculation, θ

can be determined from θ = 1−α+ξw
1−α .

41We are grateful to Robert King for pushing us to make this connection.
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Table 1a:  Aggregate Implications
ν = 1 ν = 10

Specification const λ0 λ1
+ λ1

− λ2 R2
const λ0 λ1

+ λ1
− λ2 R2

Observed gap:
frictionless target -0.012 0.50 1.00 0.001 0.19 1.00

(0.000) (0.001) (0.000) (0.000)
-0.001 0.51 -0.04 0.03 1.00 -0.001 0.20 0.002 -0.02 1.00
(0.000) (0.001) (0.002) (0.002) (0.000) (0.001) (0.001) (0.001)
-0.012 0.54 -0.04 1.00 0.001 0.19 0.003 1.00
(0.000) (0.004) (0.005) (0.000) (0.001) (0.002)

static target 0.03 0.34 0.91 0.01 0.07 0.86
(0.001) (0.003) (0.000) (0.001)
-0.03 -1.04 1.46 1.16 0.96 -0.02 -0.35 0.39 0.29 0.89
(0.00) (0.04) (0.05) (0.04) (0.00) (0.03) (0.03) (0.02)

 0.03 -0.10 0.33 0.95 0.01 -0.12 0.10 0.88
(0.00) (0.02) (0.01) (0.00) (0.01) (0.01)
-0.03 -0.34 0.16 0.16 0.54 0.96 -0.03 -0.21 0.08 0.08 0.17 0.90
(0.00) (0.02) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01) (0.01)



Table 1b:  Aggregate Implications
ν = 1 ν = 10

Specification const λ0 λ1
+ λ1

− λ2 R2
const λ0 λ1

+ λ1
− λ2 R2

CEH gap:
full sample 0.00 1.53 0.51 0.00 1.43 0.34

(0.00) (0.05) (0.00) (0.06) 999
0.30 9.48 -62.53 -18.74 0.76 -0.06 -2.50 107.94 26.55 0.40

(0.01) (0.48) (2.98) (1.67) (0.01) (1.19) (20.19) (21.98) (999.00)
0.03 -0.28 30.29 0.58 0.00 -2.42 993.57 0.37

(0.00) (0.16) (2.51) (0.00) (0.61) (157.71) (999.00)
big change 0.00 0.56 0.06 0.00 -0.61 0.12

(0.00) (0.07) (0.00) (0.05) 999
0.39 0.62 -27.87 31.16 0.76 0.02 -8.96 144.87 184.75 0.15

(0.01) (0.39) (2.47) (1.82) (0.00) (1.70) (32.74) (34.85) 999
0.02 -4.06 118.87 0.32 0.00 -4.88 1500.83 0.14

(0.00) (0.25) (6.21) (0.00) (0.83) (293.07) (999.00)



Table 2a: Estimates of Policy Function
ν = 1 ν = 10

Specification λ0 λ1
+ λ1

− λ2 ξ0 R2 λ0 λ1
+ λ1

− λ2 ξ0 R2

Observed gap:
frictionless target 0.50 0.00 0.19 0.00

(0.000) (0.000)
0.50 -0.04 0.04 0.08 0.17 0.05 0.04 0.03

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
0.50 -0.06 0.03 0.01 0.08 0.15 0.20 0.19 -0.19 0.07

(0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)
0.50 0.00 0.08 0.19 0.00 0.00

(0.000) (0.000) (0.000) (0.000)
0.50 -0.04 0.04 0.00 0.14 0.17 0.05 0.04 0.00 0.03

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
0.50 -0.05 0.02 0.01 0.00 0.14 0.15 0.20 0.19 -0.19 0.00 0.07

(0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000)
static target 0.35 0.00 0.10 0.00

(0.01) (0.00)
0.34 0.13 -0.04 0.00 0.14 -0.04 -0.07 0.00

(0.01) (0.02) (0.01) (0.00) (0.00) (0.00)
0.36 0.04 -0.13 0.06 0.00 0.20 -0.27 -0.31 0.15 0.00

(0.01) (0.04) (0.04) (0.03) (0.00) (0.01) (0.01) (0.01)
0.32 0.05 0.42 0.09 0.01 0.12

(0.00) (0.000) (0.00) (0.000)
0.23 0.13 0.19 0.05 0.42 0.10 -0.01 -0.03 0.01 0.12

(0.01) (0.01) (0.01) (0.000) (0.00) (0.00) (0.00) (0.000)
0.13 0.56 0.64 -0.31 0.05 0.42 0.13 -0.10 -0.12 0.06 0.01 0.12

(0.01) (0.03) (0.03) (0.02) (0.000) (0.00) (0.01) (0.01) (0.01) (0.000)



Table 2b: Estimates of Policy Function
ν = 1 ν = 10

Specification λ0 λ1
+ λ1

− λ2 ξ0 R2 λ0 λ1
+ λ1

− λ2 ξ0 R2

CEH gap:
full sample 1.64 0.00 1.62 0.00

(0.12) (0.06)
1.73 -1.00 -0.77 0.00 1.62 -0.20 -0.14 0.00

(0.19) (1.86) (1.58) (0.10) (3.01) (3.14)
1.93 -4.80 -5.31 13.67 0.00 1.78 -13.07 -12.51 162.12 0.00

(0.25) (3.55) (3.95) (10.90) (0.13) (8.04) (7.82) (93.88)
1.65 -0.01 0.00 1.60 -0.01 0.02

(0.12) (0.000) (0.06) (0.000)
1.75 -0.59 -1.25 -0.01 0.00 1.59 4.56 -3.93 -0.01 0.02

(0.19) (1.86) (1.57) (0.00) (0.09) (2.98) (3.11) (0.00)
1.98 -5.12 -6.66 16.28 -0.01 0.00 1.70 -4.38 -12.53 112.68 -0.01 0.02

(0.25) (3.55) (3.94) (10.88) (0.00) (0.13) (7.96) (7.75) (93.01) (0.00)
big change 1.20 0.00 0.55 0.00

(0.18) (0.10)
1.40 -2.23 -2.15 0.00 0.70 -5.31 -5.64 0.00

(0.31) (3.20) (3.12) (0.18) (6.39) (6.63)
1.96 -15.55 -16.48 54.75 0.00 0.86 -21.48 -21.33 248.70 0.00

(0.42) (7.24) (7.66) (26.72) (0.26) (18.69) (18.28) (270.11)
1.18 0.03 0.02 0.55 0.00 0.00

(0.18) (0.000) (0.10) (0.000)
1.36 -4.46 0.59 0.03 0.02 0.72 -1.53 -10.85 0.00 0.00

(0.31) (3.16) (3.09) (0.00) (0.18) (6.37) (6.62) (0.00)
1.81 -15.15 -10.91 43.94 0.03 0.02 0.88 -18.00 -26.82 253.25 0.00 0.00

(0.41) (7.16) (7.57) (26.43) (0.00) (0.25) (18.65) (18.24) (269.48) (0.00)



Table 3: Estimate of theta
ν = 1 ν = 10

Specification Estimate Std. Error R2 Obs. Estimate Std. Error R2 Obs.
Observed gap:

frictionless target 5.00 (0.002) 0.82 983000 3.37 (0.002) 0.82 983000
static target 8.95 (0.000) 1.00 983000 9.01 (0.001) 0.99 983000

CEH gap:
full sample -3.49 (0.004) 0.48 983000 -0.57 (0.001) 0.30 983000
big change -4.66 (0.004) 0.88 165939 -0.90 (0.001) 0.82 134407



Table 4
Aggregate Implications for Alternative Specifications of the Model Using the Static Target Measure*

ν = 1 ν = 10
const λ0 λ1 λ2 R2

const λ0 λ1 λ2 R2

(1) Static Baseline -0.03 -0.34 0.16 0.54 0.96 -0.03 -0.21 0.08 0.17 0.90
(0.00) (0.02) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01)

(2) CE/Bils -0.03 -0.33 0.16 0.54 0.96 -0.03 -0.21 0.08 0.17 0.90
(0.00) (0.02) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01)

(3) (ν/2)(e-e-1)
2 -0.03 -0.33 0.12 0.52 0.96 -0.03 -0.18 0.07 0.15 0.90

(0.00) (0.02) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01)
(4) Sargent (2 point dist.) -0.02 -0.20 0.12 0.43 0.96 -0.04 -0.28 0.10 0.22 0.93

(0.00) (0.02) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01)
(5) Sargent (11 point dist.) 0.01 0.01 0.04 0.32 0.93 -0.01 -0.08 0.03 0.11 0.87

(0.00) (0.03) (0.01) (0.03) (0.00) (0.02) (0.01) (0.01)
(6) Sargent (11 point dist.) 0.04 0.31 0.01 0.07 0.92 0.00 0.07 0.02 0.03 0.87

(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00)

*The regression results are for the aggregate employment growth equation (6) using the CE hazard function (12).  In simplified form, 
  the estimation equation is ∆et = const  + λ0m1,t + λ1m2,t + λ2m3,t + εt where mi,t is the ith uncentered moment of the cross-sectional 
  distribution of the employment gap.



Table 5
Aggregate Implications for Alternative Settings of the Idiosyncratic Shock Process Using the Static Target Measure*

ν = 1 ν = 10
ρ σ const λ0 λ1 λ2 R2

const λ0 λ1 λ2 R2

0.70 0.10 0.00 0.06 0.05 0.60 0.97 -0.01 -0.13 0.06 0.43 0.97
(0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

0.90 0.10 0.00 0.14 0.04 0.60 0.97 0.00 -0.08 0.06 0.47 0.98
(0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

0.99 0.10 0.01 0.19 0.02 0.63 0.97 0.00 -0.01 0.05 0.50 0.98
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

0.70 0.30 -0.05 -0.43 0.16 0.44 0.95 -0.04 -0.19 0.07 0.13 0.89
(0.01) (0.03) (0.01) (0.02) (0.00) (0.02) (0.01) (0.01)

0.90 0.30 -0.02 -0.20 0.13 0.58 0.97 -0.03 -0.22 0.09 0.22 0.92
(0.00) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01)

0.99 0.30 0.01 0.12 0.05 0.66 0.97 -0.01 -0.09 0.08 0.47 0.98
(0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

0.70 0.40 -0.06 -0.44 0.15 0.33 0.94 -0.04 -0.14 0.05 0.08 0.88
(0.01) (0.03) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01)

0.90 0.40 -0.03 -0.33 0.16 0.52 0.96 -0.04 -0.20 0.08 0.15 0.90
(0.00) (0.02) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01)

0.99 0.40 0.01 0.08 0.06 0.66 0.97 -0.01 -0.13 0.10 0.45 0.98
(0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

*The regression results are for the aggregate employment growth equation (6) using the CE hazard function (12).  In simplified form, 
  the estimation equation is ∆et = const  + λ0m1,t + λ1m2,t + λ2m3,t + εt where mi,t is the ith uncentered moment of the cross-sectional 
  distribution of the employment gap.
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Employment policy function conditional on high productivity shock
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                         Figure 2
Average adjustment rate function and scatterplot 
                          (ν = 1)
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                         Figure 3
Average adjustment rate function and scatterplot 
                          (ν = 1)
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                         Figure 4
Simulated employment gaps:  measured directly 
                          (ν = 1)
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                         Figure 5
Average adjustment rate function and scatterplot 
                          (ν = 10)
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